On well-posedness of the free boundary problem for ideal compressible MHD equations and Maxwell equations in vacuum
- Autores: Trakhinin Y.L.1
-
Afiliações:
- Sobolev Institute of Mathematics
- Edição: Volume 71, Nº 1 (2025): Nonlocal and nonlinear problems
- Páginas: 176-193
- Seção: Articles
- URL: https://journals.rcsi.science/2413-3639/article/view/327847
- DOI: https://doi.org/10.22363/2413-3639-2025-71-1-176-193
- EDN: https://elibrary.ru/VLOCPJ
- ID: 327847
Citar
Texto integral
Resumo
We survey results on the well-posedness of the free interface problem when an interface separates a perfectly conducting inviscid fluid (e.g., plasma) from a vacuum. The fluid flow is governed by the equations of ideal compressible magnetohydrodynamics (MHD). Unlike the classical statement, when the vacuum magnetic field obeys the div-curl system of pre-Maxwell dynamics, we do not neglect the displacement current in the vacuum region and consider the Maxwell equations for electric and magnetic fields. With boundary conditions on the interface this forms a nonlinear hyperbolic problem with a characteristic free boundary. The statement of this free boundary problem comes from the relativistic setting where the displacement current in vacuum cannot be neglected. We also briefly discuss the recent result showing the stabilizing effect of surface tension.
Sobre autores
Yu. Trakhinin
Sobolev Institute of Mathematics
Autor responsável pela correspondência
Email: trakhin@math.nsc.ru
Novosibirsk, Russia
Bibliografia
- Alinhac S. Existence d’ondes de rar´efaction pour des syst`emes quasi-lin´eaires hyperboliques multidimensionnels// Commun. Part. Differ. Equ. -1989.- 14.- C. 173-230.
- Bernstein I., Frieman E., Kruskal M., Kulsrud R. An energy principle for hydromagnetic stability problems// Proc. Roy. Soc. London Ser. A. -1958.-244.- C. 17-40.
- Catania D., D’Abbicco M., Secchi P. Stability of the linearized MHD-Maxwell free interface problem// Commun. Pure Appl. Anal. -2014.- 13.- C. 2407-2443.
- Catania D., D’Abbicco M., Secchi P. Weak stability of the plasma-vacuum interface problem// J. Differ. Equ. - 2016.- 261.-C. 3169-3219.
- Chazarain J., Piriou A. Introduction to the Theory of Linear Partial Differential Equations.- Amsterdam : North-Holland Publ. Co., 1982.
- Chen S. Initial boundary value problems for quasilinear symmetric hyperbolic systems with characteristic boundary// Front. Math. China.-2007.- 2.-C. 87-102.
- Goedbloed H., Keppens R., Poedts S. Magnetohydrodynamics of Laboratory and Astrophysical Plasmas.- Cambridge : Cambridge Univ. Press, 2019.
- Kreiss H.-O. Initial boundary value problems for hyperbolic systems// Commun. Pure Appl. Math.- 1970.-23.-C. 277-298.
- Landau L.D., E. Lifshitz M. Electrodynamics of Continuous Media.- Oxford: Pergamon Press, 1984.
- Mandrik N., Trakhinin Y. Influence of vacuum electric field on the stability of a plasma-vacuum interface// Commun. Math. Sci. -2014.- 12.- C. 1065-1100.
- Morando A., Secchi P., Trakhinin Y., Trebeschi P. Stability of an incompressible plasma-vacuum interface with displacement current in vacuum// Math. Methods Appl. Sci. -2020.- 43.-C. 7465-7483.
- Morando A., Secchi P., Trebeschi P. Regularity of solutions to characteristic initial-boundary value problems for symmetrizable systems// J. Hyperbolic Differ. Equ. -2009.- 6, № 4.-C. 753-808.
- Samulyak R., Du J., Glimm J., Xu Z. A numerical algorithm for MHD of free surface flows at low magnetic Reynolds numbers// J. Comput. Phys. -2007.- 226.-C. 1532-1549.
- Secchi P. Some properties of anisotropic Sobolev spaces// Arch. Math. (Basel).- 2000.- 75.- C. 207-216.
- Secchi P., Trakhinin Y. Well-posedness of the linearized plasma-vacuum interface problem// Interfaces Free Bound. -2013.- 15.-C. 323-357.
- Secchi P., Trakhinin Y. Well-posedness of the plasma-vacuum interface problem// Nonlinearity.- 2014.- 27.-C. 105-169.
- Secchi P., Trakhinin Y., Wang T. On vacuum free boundary problems in ideal compressible magnetohydrodynamics// Bull. London Math. Soc. -2023.- 55.- C. 2087-2111.
- Secchi P., Trakhinin Y., Wang T. Well-posedness of the two-dimensional relativistic plasma-vacuum interface problem// готовится в печать.
- Trakhinin Y. Dissipative symmetrizers of hyperbolic problems and their applications to shock waves and characteristic discontinuities// SIAM J. Math. Anal.- 2006.- 37.-C. 1988-2024.
- Trakhinin Y. The existence of current-vortex sheets in ideal compressible magnetohydrodynamics// Arch. Ration. Mech. Anal.- 2009.- 191.- C. 245-310.
- Trakhinin Y. On the well-posedness of a linearized plasma-vacuum interface problem in ideal compressible MHD// J. Differ. Equ. -2010.-249.-C. 2577-2599.
- Trakhinin Y. Stability of relativistic plasma-vacuum interfaces// J. Hyperbolic Differ. Equ. -2012.-9.- C. 469-509.
- Trakhinin Y. On well-posedness of the plasma-vacuum interface problem: The case of non-elliptic interface symbol// Commun. Pure Appl. Anal. - 2016.- 15.- C. 1371-1399.
- Trakhinin Y. On violent instability of a plasma-vacuum interface for an incompressible plasma flow and a nonzero displacement current in vacuum// Comm. Math. Sci.- 2020.- 18.-C. 321-337.
- Trakhinin Y. On well-posedness of the two-dimensional MHD-Maxwell free interface problem// Lobachevskii J. Math.- 2024.-45.-C. 1528-1540.
- Trakhinin Y. Stabilizing effect of surface tension for the linearized MHD-Maxwell free interface problem// ArXiv. -2024.-2409.14758.
- Trakhinin Y., Wang T. Well-posedness of free boundary problem in non-relativistic and relativistic ideal compressible magnetohydrodynamics// Arch. Ration. Mech. Anal. -2021.- 239.-C. 1131-1176.
- Trakhinin Y., Wang T. Well-posedness for the free-boundary ideal compressible magnetohydrodynamic equations with surface tension// Math. Ann. -2022.- 383.- C. 761-808.
- Trakhinin Y., Wang T. Well-posedness for moving interfaces with surface tension in ideal compressible MHD// SIAM J. Math. Anal.- 2022.- 54.- C. 5888-5921.
Arquivos suplementares
