On the Construction of a Variational Principle for a Certain Class of Differential-Difference Operator Equations
- Autores: Kolesnikova I.A.1
-
Afiliações:
- Peoples’ Friendship University of Russia (RUDN University)
- Edição: Volume 67, Nº 2 (2021): Dedicated to the memory of Professor N. D. Kopachevsky
- Páginas: 316-323
- Seção: Articles
- URL: https://journals.rcsi.science/2413-3639/article/view/327666
- DOI: https://doi.org/10.22363/2413-3639-2021-67-2-316-323
- ID: 327666
Citar
Texto integral
Resumo
In this paper, we obtain necessary and sufficient conditions for the existence of variational principles for a given first-order differential-difference operator equation with a special form of the linear operator Pλ(t) depending on t and the nonlinear operator Q. Under the corresponding conditions the functional is constructed. These conditions are obtained thanks to the well-known criterion of potentiality. Examples show how the inverse problem of the calculus of variations is constructed for given differentialdifference operators.
Sobre autores
I. Kolesnikova
Peoples’ Friendship University of Russia (RUDN University)
Autor responsável pela correspondência
Email: kolesnikova-ia@rudn.ru
Moscow, Russia
Bibliografia
- Беллман Р., Кук К. Дифференциально-разностные уравнения. - М.: Мир, 1967.
- Каменский Г. А. Вариационные и краевые задачи с отклоняющимся аргументом// Дифф. уравн. - 1970. - 69, № 8. - С. 1349-1358.
- Попов А. М. Условия потенциальности дифференциально-разностных уравнений// Дифф. уравн. - 1998. - 34, № 3. - С. 422-424.
- Савчин В. М. Условия потенциальности Гельмгольца для ДУЧП с отклоняющимися аргументами// Тез. докл. XXXII научной конф. ф-та физ.-мат. и естеств. наук. - М.: РУДН, 1994. - С. 25.
- E` l’sgol’c L. E`. Qualitative methods in mathematical analysis. - Am. Math. Soc., 1964.
- Filippov V. M., Savchin V. M., Shorokhov S. G. Variational principles for nonpotential operators// J. Math. Sci. - 1994. - 68, № 3. - С. 275-398.
- Kolesnikova I. A., Popov A. M., Savchin V. M. On variational formulations for functional differential equations// J. Funct. Spaces Appl. - 2007. - 5, № 1. - С. 89-101.
- Savchin V. M. An operator approach to Birkhoff’s equation// Вестн. РУДН. Сер. Мат. - 1995. - 2, № 2. - С. 111-123.
- Skubachevskii A. L. Elliptic functional differential equations and applications. - Ba¨sel-Boston-Berlin: Birkha¨user, 1997.
Arquivos suplementares
