Исследование интегродифференциальных уравнений методами спектральной теории
- Авторы: Власов В.В.1, Раутиан Н.А.1
-
Учреждения:
- Московский государственный университет им. М. В. Ломоносова
- Выпуск: Том 67, № 2 (2021): Посвящается памяти профессора Н. Д. Копачевского
- Страницы: 255-284
- Раздел: Статьи
- URL: https://journals.rcsi.science/2413-3639/article/view/327663
- DOI: https://doi.org/10.22363/2413-3639-2021-67-2-255-284
- ID: 327663
Цитировать
Полный текст
Аннотация
В работе приводится обзор результатов, посвященных исследованию интегродифференциальных уравнений с неограниченными операторными коэффициентами в гильбертовом пространстве. Указанные уравнения являются операторными моделями интегродифференциальных уравнений с частными производными, возникающих в многочисленных приложениях: в теории вязкоупругости, в теории распространения тепла в средах с памятью (уравнения Гуртина-Пипкина), теории усреднения. Наиболее интересные и глубокие результаты обзора посвящены спектральному анализу операторфункций, являющихся символами изучаемых интегродифференциальных уравнений.
Об авторах
В. В. Власов
Московский государственный университет им. М. В. Ломоносова
Автор, ответственный за переписку.
Email: victor.vlasov@math.msu.ru
Москва, Россия
Н. А. Раутиан
Московский государственный университет им. М. В. Ломоносова
Email: nadezhda.rautian@math.msu.ru
Москва, Россия
Список литературы
- Азизов Т. Я., Копачевский Н. Д., Орлова Л. Д. Эволюционные и спектральные задачи, порождаемые проблемой малых движений вязкоупругой жидкости// Тр. СПб. Мат. об-ва. - 1988. - 6. - С. 5-33.
- Азизов Т. Я., Копачевский Н. Д., Орлова Л. Д. Операторный подход к исследованию гидродинамической модели Олдройта// Мат. заметки. - 1999. - 65, № 6. - С. 924-928.
- Андронова О. А., Копачевский Н. Д. О линейных задачах с поверхностной диссипацией энергии// Соврем. мат. Фундам. направл. - 2008. - 29. - С. 11-28.
- Власов В. В., Медведев Д. А., Раутиан Н. А. Функционально-дифференциальные уравнения в пространствах Соболева и их спектральный анализ. - М.: МГУ, 2011.
- Власов В. В., Перез Ортиз Р. Спектральный анализ интегродифференциальных уравнений, возникающих в теории вязкоупругости и теплофизике// Мат. заметки. - 2015. - 98, № 4. - С. 630-634.
- Власов В. В., Перез Ортиз Р., Раутиан Н. А. Исследование вольтерровых интегро-дифференциальных уравнений с ядрами, зависящими от параметра// Дифф. уравн. - 2018. - 54, № 3. - С. 369-386.
- Власов В. В., Раутиан Н. А. Корректная разрешимость и спектральный анализ абстрактных гиперболических интегродифференциальных уравнений// Тр. сем. им. И. Г. Петровского. - 2011. - 28.- С. 75-113.
- Власов В. В., Раутиан Н. А. Исследование интегродифференциальных уравнений, возникающих в теории вязкоупругости// Изв. вузов. Сер. Мат. - 2012. - 6.- С. 56-60.
- Власов В. В., Раутиан Н. А. Спектральный анализ и представление решений абстрактных интегродифференциальных уравнений// Докл. РАН. - 2014. - 454, № 2. - С. 141-144.
- Власов В. В., Раутиан Н. А. О свойствах решений интегродифференциальных уравнений, возникающих в теории тепломассообмена// Тр. Моск. мат. об-ва. - 2014. - 75, № 2. - С. 219-243.
- Власов В. В., Раутиан Н. А. Корректная разрешимость и спектральный анализ интегродифференциальных уравнений, возникающих в теории вязкоупругости// Соврем. мат. Фундам. направл. - 2015. - 58. - С. 22-42.
- Власов В. В., Раутиан Н. А. Спектральный анализ функционально-дифференциальных уравнений. - М.: МАКС Пресс, 2016.
- Власов В. В., Раутиан Н. А. Корректная разрешимость вольтерровых интегро-дифференциальных уравнений в гильбертовом пространстве// Дифф. уравн. - 2016. - 52, № 9. - С. 1168-1177.
- Власов В. В., Раутиан Н. А. Исследование операторных моделей, возникающих в теории вязкоупругости// Соврем. мат. Фундам. направл. - 2018. - 64, № 1. - С. 60-73.
- Власов В. В., Раутиан Н. А. Корректная разрешимость и представление решений интегро-дифференциальных уравнений, возникающих в теории вязкоупругости// Дифф. уравн. - 2019. - 55, № 4. - С. 574-587.
- Власов В. В., Раутиан Н. А. Спектральный анализ и представление решений интегро-дифференциальных уравнений с дробно-экспоненциальными ядрами// Тр. Моск. мат. об-ва. - 2019. - 80, № 2. - С. 197-220.
- Власов В. В., Раутиан Н. А. О свойствах полугрупп, порождаемых вольтерровыми интегро-дифференциальными уравнениями// Дифф. уравн. - 2020. - 56, № 8. - С. 1122-1126.
- Власов В. В., Раутиан Н. А. Исследование вольтерровых интегро-дифференциальных уравнений с ядрами, представимыми интегралами Стилтьеса// Дифф. уравн. - 2021 (принято к печати).
- Власов В. В., Раутиан Н. А., Шамаев А. C. Разрешимость и спектральный анализ интегродифференциальных уравнений, возникающих в теплофизике и акустике// Докл. РАН. - 2010. - 434, № 1. - С. 12-15.
- Власов В. В., Раутиан Н. А., Шамаев А. C. Спектральный анализ и корректная разрешимость абстрактных интегродифференциальных уравнений, возникающих в теплофизике и акустике// Соврем. мат. Фундам. направл. - 2011. - 39. - С. 36-65.
- Власов В. В., Раутиан Н. А., Шамаев А. C. Исследование операторных моделей, возникающих в задачах наследственной механики// Соврем. мат. Фундам. направл. - 2012. - 45.- С. 43-61.
- Жиков В. В. Об одном расширении и применении метода двухмасштабной сходимости// Мат. сб. - 2000. - 191 - № 7. - С. 31-72.
- Жиков В. В. О двухмасштабной сходимости// Тр. сем. им. И. Г. Петровского. - 2003. - 23.- С. 149- 187.
- Закора Д. А. Модель сжимаемой жидкости Олдройта// Соврем. мат. Фундам. направл. - 2016. - 61.- С. 41-66.
- Закора Д. А., Копачевский Н. Д. О спектральной задаче, связанной с интегро-дифференциальным уравнением второго порядка// Уч. зап. Тавр. нац. ун-та им. В. И. Вернадского. - 2004. - № 2. - С. 2-18.
- Ильюшин А. А., Победря Б. Е. Основы математической теории термовязкоупругости. - М.: Наука, 1970.
- Като Т. Теория возмущений линейных операторов. - М.: Мир, 1972.
- Копачевский Н. Д. Задача Коши для линейного интегро-дифференциального уравнения в гильбертовом пространстве// Уч. зап. Тавр. нац. ун-та им. В. И. Вернадского. - 2001. - 16. - С. 139-152.
- Копачевский Н. Д. Вольтерровы интегродифференциальные уравнения в гильбертовом пространстве. Специальный курс лекций. - Симферополь: «Бондаренко О. А.», 2012.
- Копачевский Н. Д., Крейн С. Г., Нго Зуй Кан. Операторные методы в линейной гидродинамике. Эволюционные и спектральные задачи. - М.: Наука, 1989.
- Копачевский Н. Д., Орлова Л. Д., Пашкова Ю. С. Дифференциально-операторные и интегро-дифференциальные уравнения в проблеме малых колебаний гидродинамических систем// Уч. зап. Симф. гос. ун-та. - 1995. - 41, № 2. - С. 96-108.
- Копачевский Н. Д., Семкина Е. В. Об интегро-дифференциальных уравнениях Вольтерра второго порядка, неразрешенных относительно старшей производной// Уч. зап. Тавр. нац. ун-та им. В. И. Вернадского. Сер. физ.-мат. науки. - 2013. - 26, № 1. - С. 52-79.
- Крейн С. Г. Линейные дифференциальные уравнения в банаховом пространстве. - М.: Наука, 1967.
- Лионс Ж.-Л., Мадженес Э. Неоднородные граничные задачи и их приложения. - М.: Мир, 1971.
- Лыков А. В. Некоторые проблемные вопросы теории тепломассопереноса// В сб.: «Проблемы теплои массопереноса». - Минск: Наука и техника, 1976. - С. 9-82.
- Милославский А. И. Об устойчивости некоторых классов эволюционных уравнений// Сиб. мат. ж. - 1985. - 26. - С. 118-132.
- Милославский А. И. Спектральные свойства операторного пучка, возникающего в вязкоупругости// Деп. в Укр. НИИНТИ. - Харьков, 13.07.87. - № 1229-УК87. - С. 53.
- Милославский А. И. О спектре неустойчивости операторного пучка// Мат. заметки. - 1991. - 49, № 4. - С. 88-94.
- Работнов Ю. Н. Элементы наследственной механики твердых тел. - М.: Наука, 1977.
- Радзиевский Г. В. Асимптотика распределения характеристических чисел оператор-функций, аналитических в угле// Мат. сб. - 1980. - 112, № 3. - С. 396-420.
- Раутиан Н. А. Об ограниченности одного класса интегральных операторов дробного типа// Мат. сб. - 2009. - 200, № 12. - С. 81-106.
- Раутиан Н. А. О представлении решений интегродифференциальных уравнений с неограниченными операторными коэффициентами в гильбертовом пространстве// Сб. тр. межд. конф. «Качественная теория дифференциальных уравнений и приложения». - МЭСИ, 2011. - С. 116-134.
- Раутиан Н. А. О структуре и свойствах решений интегродифференциальных уравнений, возникающих в теплофизике и акустике// Мат. заметки. - 2011. - 90, № 3. - С. 474-477.
- Раутиан Н. А. Полугруппы, порождаемые вольтерровыми интегро-дифференциальными уравнениями// Дифф. уравн. - 2020. - 56, № 9. - С. 1226-1244.
- Сандраков Г. В. Многофазные осредненные модели диффузии для задач с несколькими параметрами// Изв. РАН. Сер. Мат. - 2007. - 71, № 6. - С. 119-72.
- Санчес Паленсия Э. Неоднородные среды и теория колебаний. - М.: Мир, 1984.
- Скубачевский А. Л. Эллиптические задачи с нелокальными условиями в близи границы// Мат. сб. - 1986. - 129, № 2. - С. 279-302.
- Скубачевский А. Л. Об одном классе функционально-дифференциальных операторов, удовлетворяющих гипотезе Като// Алгебра и анализ. - 2018. - 30, № 2. - С. 249-273.
- Шкаликов А. А. Сильно демпфированные пучки операторов и разрешимость соответствующих операторно-дифференциальных уравнений// Мат. сб. - 1988. - 177, № 1. - С. 96-118.
- Amendola G., Fabrizio M., Golden J. M. Thermodynamics of Materials with Memory. Theory and Applications. - New York-Dordrecht-Heidelberg-London: Springer, 2012.
- Biot M. A. Generalized theory of acoustic propagation in porous dissipative media// J. Acoust. Soc. Am. - 1962. - 34.- С. 1254-1264.
- Dafermos C. M. Asymptotic stability in viscoelasticity// Arch. Ration. Mech. Anal. - 1970. - 37. - С. 297- 308.
- Davydov A. V., Tikhonov Y. A. Study of Kelvin-Voigt models arising in viscoelasticity// Differ. Equ. - 2018. - 54, № 12. - С. 1620-1635.
- Desch W., Miller R. K. Exponential stabilization of Volterra integrodifferential equations in Hilbert space// J. Differ. Equ. - 1987. - 70. - С. 366-389.
- Devis P. L. Hyperbolic integrodifferential equations// Proc. Am. Math. Soc. - 1975. - 47. - С. 155-160.
- Devis P. L. On the hyperbolicity of the equations of the linear theory of heat conduction for materials with memory// SIAM J. Appl. Math. - 1976. - 30.- С. 75-80.
- Di Blasio G. Parabolic Volterra equations of convolution type// J. Integral Equ. Appl. - 1994. - 6.- С. 479-508.
- Di Blasio G., Kunisch K., Sinestrari E. L2-regularity for parabolic partial integrodifferential equations with delays in the highest order derivatives// J. Math. Anal. Appl. - 1984. - 102. - С. 38-57.
- Engel K.-J., Nagel R. One-parameter semigroup for linear evolution equations. - New York-Berlin- Heidelberg: Springer, 1999.
- Eremenko A., Ivanov S. Spectra of the Gurtin-Pipkin type equations// SIAM J. Math. Anal. - 2011. - 43. - С. 2296-2306.
- Gurtin M. E., Pipkin A. C. General theory of heat conduction with finite wave speed// Arch. Ration. Mech. Anal. - 1968. - 31. - С. 113-126.
- Ismagilov R. S., Rautian N. A., Vlasov V. V. Examples of very unstable linear partial functional differential equations// arXiv. - 1402.4107v1.
- Ivanov S. A. «Wave type» spectrum of the Gurtin-Pipkin equation of the second order// arXiv. - 1002.2831.
- Ivanov S., Pandolfi L. Heat equations with memory: lack of controllability to the rest// J. Math. Anal. Appl.- 2009.- 355. - С. 1-11.
- Ivanov S. A., Sheronova T. L. Spectrum of the heat equation with memory// arXiv. - 0912.1818v1.
- Kopachevsky N. D., Krein S. G. Operator approach to linear problems of hydrodynamics. Vol. 2: Non-selfadjoint problems for viscous fluids. - Basel-Boston-Berlin: Birkha¨user, 2003.
- Kopachevsky N. D., Syomkina E. V. Linear Volterra integro-differential second-order equations unresolved with respect to the highest derivative// Eurasian Math. J. - 2013. - 4, № 4. - С. 64-87.
- Miller R. K. Volterra integral equations in a Banach space// Funkcialaj Ekvac. - 1975. - 18. - С. 163-194.
- Miller R. K. An integrodifferencial equation for rigid heat conductors with memory// J. Math. Anal. - 1978. - 66. - С. 313-332.
- Miller R. K., Wheeler R. L. Well-posedness and stability of linear Volterra integrodifferential equations in abstract spaces// Funkcialaj Ekvac. - 1978. - 21. - С. 279-305.
- Munoz Rivera J. E., Naso M. G., Vegni F. M. Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory// J. Math. Anal. Appl. - 2003. - 286. - С. 692-704.
- Myshkis A. D., Vlasov V. V. On an analogy between the classifications of functional differential equations and partial differential equations// Funct. Differ. Equ. - 2009. - 16, № 3. - С. 545-560.
- Pandolfi L. The controllability of the Gurtin-Pipkin equations: a cosine operator approach// Appl. Math. Optim. - 2005. - 52. - С. 143-165.
- Pazy A. Semigroups of linear operators and applications of partial differential equations. - New York etc.: Springer, 1983.
- Perez Ortiz R., Vlasov V. V. Correct solvability of Volterra integrodifferential equations in Hilbert space// Electron. J. Qual. Theory Differ Equ. - 2016. - 31. - С. 1-17.
- Pruss J. On linear Volterra equations of parabolic type in Banach spaces// Trans. Am. Math. Soc. - 1987. - 301, № 2. - С. 691-721.
- Pruss J. Bounded solutions of Volterra equations// SIAM J. Math. Anal. - 1988. - 19, № 1. - С. 133-149.
- Pruss J. Evolutionary integral equations and applications. - Basel-Baston-Berlin: Birkha¨user, 1993.
- Rautian N. A. Well-posedness of Volterra integro-differential equations with fractional exponential kernels// В сб.: «Differential and Difference Equations with Applications». - Cham: Springer, 2020. - С. 517-533.
- Shapiro J. Composition Operators and Classical Function Theory. - New York: Springer, 1993.
- Skubachevskii A. L. Elliptic Functional Differential Equations and Applications. - Basel: Birkha¨user, 1997.
- Vlasov V. V., Gavrikov A. A., Ivanov S. A., Knyaz’kov D. Yu., Samarin V. A., Shamaev A. S. Spectral properties of combined media// J. Math. Sci. (N.Y.). - 2010. - 164, № 6. - С. 948-963.
- Vlasov V. V., Rautian N. A. Spectral analysis and representations of solutions of abstract integro-differential equations in Hilbert space// В сб.: «Concrete operators, spectral theory, operators in harmonic analysis and approximation», IWOTA 11, Sevilla, Spain, July 3-9, 2011. - Basel: Birkha¨user/Springer, 2014. - С. 517-535.
- Vlasov V. V., Rautian N. A. Spectral analysis of integrodifferential equations in Hilbert spaces// J. Math. Sci. (N.Y.). - 2019. - 239, № 6. - С. 771-787.
- Vlasov V. V., Rautian N. A. A study of operator models arising in problems of hereditary mechanics// J. Math. Sci. (N.Y.). - 2020. - 244, № 2. - С. 170-182.
- Vlasov V. V., Wu J. Solvability and spectral analysis of abstract hyperbolic equations with delay// Funct. Differ. Equ. - 2009. - 16, № 4. - С. 751-768.
- Wu J. Theory and applications of partial functional differential equations. - New York: Springer, 1996.
Дополнительные файлы
