Partial Preservation of Frequencies and Floquet Exponents of Invariant Tori in the Reversible KAM Context 2
- Авторлар: Sevryuk MB1
-
Мекемелер:
- V. L. Talroze Institute of Energy Problems of Chemical Physics of the Russia Academy of Sciences
- Шығарылым: Том 63, № 3 (2017): Differential and Functional Differential Equations
- Беттер: 516-541
- Бөлім: New Results
- URL: https://journals.rcsi.science/2413-3639/article/view/347264
- DOI: https://doi.org/10.22363/2413-3639-2017-63-3-516-541
- ID: 347264
Дәйексөз келтіру
Толық мәтін
Аннотация
Авторлар туралы
M Sevryuk
V. L. Talroze Institute of Energy Problems of Chemical Physics of the Russia Academy of Sciences
Email: sevryuk@mccme.ru
38 build. 2 Leninskii Prospect, 119334 Moscow, Russia
Әдебиет тізімі
- Бредон Г. Введение в теорию компактных групп преобразований. - М.: Наука, 1980.
- Де ла Яве Р. Введение в КАМ-теорию. - Москва-Ижевск: Ин-т комп. иссл., 2003.
- Коннер П., Флойд Э. Гладкие периодические отображения. - М.: Мир, 1969.
- Марсден Дж., Мак-Кракен М. Бифуркация рождения цикла и ее приложения. - М.: Мир, 1980.
- Мозер Ю. О разложении условно-периодических движений в сходящиеся степенные ряды// Усп. мат. наук. - 1969. - 24, вып. 2. - C. 165-211.
- Моррис С. Двойственность Понтрягина и строение локально компактных абелевых групп. - М.: Мир, 1980.
- Севрюк М. Б. Линейные обратимые системы и их версальные деформации// Тр. сем. им. И. Г. Петровского - 1991. - вып. 15. - C. 33-54.
- Севрюк М. Б. Некоторые проблемы теории КАМ: условно-периодические движения в типичных системах// Усп. мат. наук. - 1995. - 50, вып. 2. - C. 111-124.
- Севрюк М. Б. Частичное сохранение частот и показателей Флоке в теории КАМ// Тр. МИАН. - 2007. - 259. - C. 174-202.
- Arnold V. I., Kozlov V. V., Neishtadt A. I. Mathematical Aspects of Classical and Celestial Mechanics. - Berlin: Springer-Verlag, 2006.1
- Bredon G. E. Introduction to Compact Transformation Groups. - New York: Academic Press, 1972.
- Broer H. W., Ciocci M. C., Hanßmann H., Vanderbauwhede A. Quasi-periodic stability of normally resonant tori// Phys. D. - 2009. - 238, № 3. - C. 309-318.
- Broer H. W., Hoo J., Naudot V. Normal linear stability of quasi-periodic tori// J. Differ. Equ. - 2007. - 232, № 2. - C. 355-418.
- Broer H. W., Huitema G. B. Unfoldings of quasi-periodic tori in reversible systems// J. Dynam. Differ. Equ. - 1995. - 7, № 1. - C. 191-212.
- Broer H. W., Huitema G. B., Sevryuk M. B. Families of quasi-periodic motions in dynamical systems depending on parameters// В сб.: «Nonlinear Dynamical Systems and Chaos». - Basel: Birkha¨user, 1996. - С. 171-211.
- Broer H. W., Huitema G. B., Sevryuk M. B. Quasi-Periodic Motions in Families of Dynamical Systems. Order amidst Chaos. - Berlin: Springer, 1996.
- Broer H. W., Huitema G. B., Takens F. Unfoldings of quasi-periodic tori// Mem. Am. Math. Soc. - 1990. - 83, № 421. - C. 1-81.
- Broer H. W., Sevryuk M. B. KAM theory: Quasi-periodicity in dynamical systems// В сб.: «Handbook of Dynamical Systems», Vol. 3. - Amsterdam: Elsevier, 2010. - С. 249-344.
- Calleja R. C., Celletti A., de la Llave R. Domains of analyticity and Lindstedt expansions of KAM tori in some dissipative perturbations of Hamiltonian systems// Nonlinearity. - 2017. - 30, № 8. - C. 3151-3202.
- Chow S.-N., Li Y., Yi Y. Persistence of invariant tori on submanifolds in Hamiltonian systems// J. Nonlinear Sci. - 2002. - 12, № 6. - C. 585-617.
- Conner P. E., Floyd E. E. Differentiable Periodic Maps. - New York: Academic Press, Berlin: Springer, 1964.
- De la Llave R. A tutorial on KAM theory// Proc. Symp. Pure Math. - 2001. - 69. - С. 175-292.
- Dumas H. S. The KAM Story. A Friendly Introduction to the Content, History, and Significance of Classical Kolmogorov-Arnold-Moser Theory. - Hackensack: World Scientific, 2014.1
- Gonza´ lez-Enr´ıquez A., Haro A`., de la Llave R. Singularity theory for non-twist KAM tori// Mem. Am. Math. Soc. - 2014. - 227, № 1067. - C. 1-115.
- Hanßmann H. Non-degeneracy conditions in KAM theory// Indag. Math. (N. S.). - 2011. - 22, № 3-4. - C. 241-256.
- Haro A`., Canadell M., Figueras J.-L., Luque A., Mondelo J.-M. The Parameterization Method for Invariant Manifolds. From Rigorous Results to Effective Computations. - Cham: Springer, 2016.
- Hoveijn I. Versal deformations and normal forms for reversible and Hamiltonian linear systems// J. Differ. Equ. - 1996. - 126, № 2. - C. 408-442.
- Kong Y., Xu J. Persistence of lower dimensional hyperbolic tori for reversible system// Appl. Math. Comput. - 2014. - 236. - C. 408-421.
- Lamb J. S. W., Roberts J. A. G. Time-reversal symmetry in dynamical systems: a survey// Phys. D. - 1998. - 112, № 1-2. - C. 1-39.
- Li Y., Yi Y. Persistence of hyperbolic tori in Hamiltonian systems// J. Differ. Equ. - 2005. - 208, № 2. - C. 344-387.
- Liu Zh. Persistence of lower dimensional invariant tori on sub-manifolds in Hamiltonian systems// Nonlinear Anal. - 2005. - 61, № 8. - C. 1319-1342.
- Marsden J. E., McCracken M. The Hopf Bifurcation and Its Applications. - New York: Springer, 1976.
- Montgomery D., Zippin L. Topological Transformation Groups. - Huntington: R. E. Krieger Publishing, 1974.
- Morris S. A. Pontryagin Duality and the Structure of Locally Compact Abelian Groups. - Cambridge: Cambridge Univ. Press, 1977.
- Moser J. Convergent series expansions for quasi-periodic motions// Math. Ann. - 1967. - 169, № 1. - C. 136-176.
- Quispel G. R. W., Sevryuk M. B. KAM theorems for the product of two involutions of different types// Chaos. - 1993. - 3, № 4. - C. 757-769.
- Roberts J. A. G., Quispel G. R. W. Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems// Phys. Rep. - 1992. - 216, № 2-3. - C. 63-177.
- Ru¨ ssmann H. Invariant tori in non-degenerate nearly integrable Hamiltonian systems// Regul. Chaotic Dyn. - 2001. - 6, № 2. - C. 119-204.
- Ru¨ ssmann H. Addendum to «Invariant tori in non-degenerate nearly integrable Hamiltonian systems»// Regul. Chaotic Dyn. - 2005. - 10, № 1. - C. 21-31.
- Sevryuk M. B. Reversible Systems. - Berlin: Springer, 1986.
- Sevryuk M. B. The iteration-approximation decoupling in the reversible KAM theory// Chaos. - 1995. - 5, № 3. - C. 552-565.
- Sevryuk M. B. Excitation of elliptic normal modes of invariant tori in Hamiltonian systems// В сб.: «Topics in Singularity Theory». - Providence: Am. Math. Soc., 1997. - С. 209-218.
- Sevryuk M. B. Excitation of elliptic normal modes of invariant tori in volume preserving flows// В сб.: «Global Analysis of Dynamical Systems». - Bristol: Inst. Phys., 2001. - С. 339-352.
- Sevryuk M. B. Partial preservation of frequencies in KAM theory// Nonlinearity. - 2006. - 19, № 5. - C. 1099-1140.
- Sevryuk M. B. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman’s method// Discrete Contin. Dyn. Syst. - 2007. - 18, № 2-3. - C. 569-595.
- Sevryuk M. B. KAM tori: persistence and smoothness// Nonlinearity. - 2008. - 21, № 10. - C. T177- T185.
- Sevryuk M. B. The reversible context 2 in KAM theory: the first steps// Regul. Chaotic Dyn. - 2011. - 16, № 1-2. - C. 24-38.
- Sevryuk M. B. KAM theory for lower dimensional tori within the reversible context 2// Mosc. Math. J. - 2012. - 12, № 2. - C. 435-455.
- Sevryuk M. B. Quasi-periodic perturbations within the reversible context 2 in KAM theory// Indag. Math. (N. S.). - 2012. - 23, № 3. - C. 137-150.
- Sevryuk M. B. Whitney smooth families of invariant tori within the reversible context 2 of KAM theory// Regul. Chaotic Dyn. - 2016. - 21, № 6. - C. 599-620.
- Sevryuk M. B. Herman’s approach to quasi-periodic perturbations in the reversible KAM context 2// Mosc. Math. J. - 2017. - 17, № 4. - C. 803-823.
- Shih C. W. Normal forms and versal deformations of linear involutive dynamical systems// Chinese J. Math. - 1993. - 21, № 4. - C. 333-347.
- Tao T. Poincare´’s Legacies, Pages from Year Two of a Mathematical Blog. Part I. - Providence: Am. Math. Soc., 2009.
- Tits J. Œuvres/Collected Works. Vol. IV. - Zu¨ rich: Eur. Math. Soc., 2013.
- Wagener F. A parametrised version of Moser’s modifying terms theorem// Discrete Contin. Dyn. Syst. Ser. S. - 2010. - 3, № 4. - C. 719-768.
- Wang X., Xu J., Zhang D. Persistence of lower dimensional elliptic invariant tori for a class of nearly integrable reversible systems// Discrete Contin. Dyn. Syst. Ser. B. - 2010. - 14, № 3. - C. 1237-1249.
- Wang X., Xu J., Zhang D. A new KAM theorem for the hyperbolic lower dimensional tori in reversible systems// Acta Appl. Math. - 2016. - 143.- C. 45-61.
- Wang X., Xu J., Zhang D. A KAM theorem for the elliptic lower dimensional tori with one normal frequency in reversible systems// Discrete Contin. Dyn. Syst. - 2017. - 37, № 4. - C. 2141-2160.
- Xu J., Lu X. General KAM theorems and their applications to invariant tori with prescribed frequencies// Regul. Chaotic Dyn. - 2016. - 21, № 1. - C. 107-125.
- Yoccoz J.-C. Travaux de Herman sur les tores invariants// Aste´risque. - 1992. - 206. - C. 311-344.
- Zhang D., Xu J., Wu H. On invariant tori with prescribed frequency in Hamiltonian systems// Adv. Nonlinear Stud. - 2016. - 16, № 4. - C. 719-735.
Қосымша файлдар

