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Аннотация. В статье исследуется разрешимость начально-краевой задачи для альфа-модели
вязкопластичной жидкости типа Бингама с периодическими условиями по пространственным пе-
ременным. На основе аппроксимационно-топологического подхода доказывается существование
слабых решений изучаемой альфа-модели, а также устанавливается сходимость решений альфа-
модели к решениям исходной модели при стремлении параметра альфа к нулю.
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1. Постановка задачи

Движение однородной несжимаемой жидкости с постоянной плотностью в ограниченной обла-
сти Ω ⊂ R

n, n = 2, 3, на отрезке времени [0, T ], T > 0, определяется системой дифференциальных
уравнений в форме Коши (см., например, [2]):

∂v

∂t
+

n∑

i=1

vi
∂v

∂xi
−Divσ +∇p = f, div v(t, x) = 0, t ∈ [0, T ], x ∈ Ω, (1.1)

где v(t, x)—неизвестная вектор-функция скорости движения частицы жидкости, p(t, x)—неиз-
вестная функция давления, f(t, x)— заданная плотность внешних сил, σ = (σij)

i=1,n

j=1,n
—неизвест-

ный девиатор тензора напряжений.
Для корректной постановки эту систему дополняют реологическим (определяющим) соотноше-

нием, которое указывает тип изучаемой жидкости. В данной работе рассматриваются вязкопла-
стические жидкости. Главная особенность вязкопластических жидкостей проявляется в задержке
начала течения до тех пор, пока действующие напряжения τ не превысят некоторую величину
τ∗, называемую пределом текучести, или начальным напряжением сдвига. При τ > τ∗ структу-
ра жидкости разрушается, а при обратном снижении напряжения τ � τ∗ — восстанавливается.
Этот процесс происходит достаточно быстро. Примером вязкопластических жидкостей служат
концентрированные суспензии [25]. Наличие у вязкопластических жидкостей предела текучести
дало им второе название, широко используемое а английской литературе, — yield-stress liquids [28].
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Заметим, что в 1890 г. профессор Новороссийского университета Федор Никифорович Шведов
первым обнаружил отклонение свойств растворов желатина от теории Ньютона и для объясне-
ния полученных результатов ввел понятие пластичности [24]. За рубежом этот тип жидкостей
ассоциируется с именем Бингама, предложившим в 1922 г. для описания течения красок понятие
предела текучести [16]. Реологическое соотношение для таких моделей имеет следующий вид:

σ =

⎧
⎨

⎩
2μE(v) + τ∗

E(v)
|E(v)| , если |E(v)| �= 0,

|σ| � τ∗, если |E(v)| = 0,
(1.2)

где E = (Eij)i=1,n

j=1,n
—тензор скорости деформации, Eij(v) = 1

2

( ∂vi
∂xj

+
∂vj
∂xi

)
, μ > 0—коэффициент

вязкости среды. Изучение таких математических моделей было начато достаточно давно (см.,
например, [10, 12, 19, 27]).

В данной работе для системы уравнений (1.1), (1.2) изучается альфа-модель. Альфа-модели
представляют собой своего рода регуляризованные приближенные системы, которые зависят от
некоторого положительного параметра α, причем регуляризация осуществляется путем некото-
рой фильтрации вектора скорости, который стоит в аргументе нелинейного члена (см. [8, 20]).

Интерес к изучению альфа-моделей в первую очередь связан с их применением к исследованию
эффектов турбулентности для потоков жидкости, а также с лучшими по сравнению с исходными
моделями численными результатами. Отметим, что при изучении турбулентного потока жид-
кости одной из определяющих характеристик является большой диапазон пространственных и
временных масштабов. Это характерное свойство является источником затруднений, как в теоре-
тических исследованиях, так и в вычислениях на практике. Более того, во многих практических
приложениях физически значимые характеристики потока часто сосредоточены на больших мас-
штабах по пространству, как это видно, например, при численном гидродинамическом прогнози-
ровании погоды. В связи с этим было приложено немало усилий для моделирования крупномас-
штабной динамики турбулентного течения путем фильтрации более мелких масштабов.

Как правило, такая фильтрация происходит за счет применения обратного оператора Гельм-
гольца к первому или второму аргументу билинейного оператора системы уравнений движения
среды (или ко всему оператору). Параметр альфа имеет размерность квадрата длины и опреде-
ляет масштаб, при котором высокочастотные (по пространству) моды будут отфильтровываться.
Соответствующие регуляризованные системы принято называть альфа-моделями.

При этом в теоретических исследованиях идея использования такого рода аппроксимаций впер-
вые возникла в работе Ж. Лере [21] (в данной работе Ж. Лере использовал общий вид ядра
фильтрации) для доказательства существования слабого решения системы уравнений Навье—
Стокса. Позднее на этой идее были построены различные альфа-модели для уравнений Эйле-
ра [17, 18], Навье—Стокса [6, 15], Лере [3, 4], Джеффриса—Олдройда [23], дробного Фойгта [5, 7]
и др. Данная работа продолжает изучение альфа-моделей и рассматривает разрешимость следу-
ющей начально-краевой задачи для альфа-модели движения жидкости Бингама:

∂v

∂t
+

n∑

i=1

ui
∂v

∂xi
−Divσ +∇p = f, (1.3)

σ =

⎧
⎨

⎩
2μE(v) + τ∗

E(v)
|E(v)| , если |E(v)| �= 0,

|σ| � τ∗, если |E(v)| = 0,
(1.4)

u = (I − α2Δ)−1v, (1.5)
div v = 0, (1.6)

v|∂Ω = 0, v|t=0 = v0. (1.7)

В работе рассматривается задача (1.3)–(1.7) с периодическим условием по пространственной
переменной, которую в дальнейшем будем называть периодической (по пространственной пере-
менной) начально-краевой задачей для альфа-модели Бингама. Для формулировки основного
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результата сначала введем необходимые функциональные пространства и дадим определение
слабого решения изучаемой начально-краевой задачи (1.3)–(1.7).

2. Определение слабого решения

Введем необходимые обозначения. Пусть Ω =
n∏

i=1
(0, li) ⊂ R

n. Через (C∞
per)

n обозначим про-

странство периодических вектор-функций со значениями в R
n и с периодами i = 1, . . . , n. Введем

множество

Φ =
{
φ ∈ (C∞

per)
n :

∫

Ω

φdx = 0, divφ = 0
}
.

Через V 1 обозначим замыкание Φ по норме W 1
2 (Ω), V

2 — замыкание Φ по норме W 2
2 (Ω). Через

V 0 обозначим замыкание Φ по норме L2(Ω). Через V −1 обозначим сопряженное к V 1 простран-
ство.

Обозначим через D(A) = V 2 и рассмотрим на D(A) оператор A : Av = −πΔv, где π —проектор
Лере, π : L2(Ω) → V 0, v ∈ D(A). Оператор A—монотонный линейный самосопряженный опера-
тор, и для каждого β ∈ R можно определить Aβ с областью определения D(Aβ) ⊂ V 0 (см. [11]).
Обозначим V β = D(Aβ/2). Можно показать, что оператор A является изоморфизмом из V β+2 в
V β. Подробное определение пространств, а также их свойства можно найти в [11].

Одним из основных функциональных пространств является пространство

W1 = {v ∈ L2(0, T ;V
1) ∩ L∞(0, T ;V 0), v′ ∈ L4/3(0, T ;V

−1)}
с нормой ‖v‖W1 = ‖v‖L2(0,T ;V 1) + ‖v‖L∞(0,T ;V 0) + ‖v′‖L4/3(0,T ;V −1).

Обозначим через Δα : V β+2 → V β , β � 0, оператор Δα = (J + α2A), где J = πI, I — тож-
дественный оператор. В силу [11, лемма 4.4.4] оператор Δα обратим. Применим проектор Лере
π : L2(Ω) → V 0 к обеим частям равенства v = (I − α2Δ)u для β = 3 и выразим из последнего
равенства u: u = (J + α2A)−1v = Δ−1

α v. Так как v(t) ∈ V 1, получим, что u(t) ∈ V 3 при п.в.
t ∈ [0, T ].

Пусть f ∈ L2(0, T ;V
−1) и v0 ∈ V 1. Дадим определение слабого решения рассматриваемой

задачи.

Определение 2.1. Пара функций (v, σ) ∈ W1 × L2(0, T ;L2(Ω)) называется слабым решением
начально-краевой задачи (1.3)–(1.7) для альфа-модели Бингама, если для всех ϕ ∈ V 1 и почти
всех t ∈ (0, T ) она удовлетворяет равенству

〈v′, ϕ〉 −
n∑

i,j=1

∫

Ω

(Δ−1
α v)ivj

∂ϕj

∂xi
dx+

∫

Ω

σ : E(ϕ) dx =

∫

Ω

f ϕdx, (2.1)

а также реологическому соотношению (1.4) и начальному условию v|t=0 = v0.

Здесь символ «:» для двух матриц A = (aij), B = (bij) обозначает A : B =
n∑

i,j=1
aijbij.

Основным результатом работы являются следующие теоремы:

Теорема 2.1. Пусть f ∈ L2(0, T ;V
−1) и v0 ∈ V 1. Тогда начально-краевая задача (1.3)–(1.7)

имеет хотя бы одно слабое решение (v, σ) ∈ W1 × L2(0, T ;L2(Ω)).

Теорема 2.2. Пусть выполнены условия теоремы 2.1. Кроме того, если рассмотреть семей-
ство альфа-моделей (1.3)–(1.7), зависящих от параметра αm, то существует последователь-
ность решений vm этого семейства, которая при стремлении αm к нулю сходится к слабому
решению исходной начально-краевой задачи (см. определение (7.1)).

Для доказательства разрешимости рассматриваемой начально-краевой задачи (1.3)–(1.7) бу-
дет использоваться аппроксимационно-топологический метод исследования задач гидродинамики
(см. [9]). Для этого вводится семейство вспомогательных задач (раздел 3), зависящих от малого
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параметра, доказываются априорные оценки решений (раздел 4) и на основе теории топологи-
ческой степени Лере—Шаудера для вполне непрерывных векторных полей доказывается суще-
ствование слабых решений вспомогательной задачи (раздел 5). Далее, для доказательства разре-
шимости исследуемой альфа-модели на основе необходимых оценок устанавливается предельный
переход (раздел 6). В заключение показывается, что последовательность решений исследуемой
альфа-модели сходится к решению исходной модели (раздел 7).

3. Аппроксимационная задача

«Приблизим» реологическое соотношение модели Бингама (1.4) следующим неньютоновским
соотношением:

σ = 2μE(v) + τ∗
E(v)

max{δ, |E(v)|} , δ > 0.

При такой аппроксимации реологического соотношения (1.4) мы можем исключить в поста-
новке задачи неизвестную σ и рассматривать задачу только о нахождении скорости v. При этом
также аппроксимируем интегральное равенство (2.1), добавив в него слагаемое

δ

∫

Ω

A2v Aϕdx.

Таким образом, для доказательства разрешимости исходной начально-краевой задачи иссле-
дуется следующая аппроксимационная задача (для фиксированного δ > 0):

Задача 3.1. Найти функцию v ∈ W2 =
{
v : v ∈ L2(0, T ;V

4), v′ ∈ L2(0, T ;V
−2)
}
, удовлетво-

ряющую для любого ϕ ∈ V 2 и почти всех t ∈ (0, T ) соотношению

〈v′, ϕ〉 −
n∑

i,j=1

∫

Ω

(Δ−1
α v)ivj

∂ϕj

∂xi
dx+ μ

∫

Ω

∇v : ∇ϕdx+

+ τ∗
n∑

i,j=1

∫

Ω

Eij(v)Eij(ϕ)
max{δ, E(v)} dx+ δ

∫

Ω

A2v Aϕdx =

∫

Ω

f ϕdx

и начальному условию v(0) = v0.

Перепишем аппроксимационную задачу в операторном виде. Для этого введем следующие опе-
раторы:

A : L2(0, T ;V
1) → L2(0, T ;V

−2), 〈Av(t), ϕ〉 =
∫

Ω

∇v(t) : ∇ϕdx;

A3 : L2(0, T ;V
4) → L2(0, T ;V

−2), 〈A3v(t), ϕ〉 =
∫

Ω

A2v Aϕdx;

K : L4(0, T ;V
1) → L2(0, T ;V

−2), 〈K(v(t)), ϕ〉 =
n∑

i,j=1

∫

Ω

(Δ−1
α v)ivj

∂ϕj

∂xi
dx;

Bδ : L2(0, T ;V
1) → L2(0, T ;V

−2), 〈Bδ(v)(t), ϕ〉 = τ∗
n∑

i,j=1

∫

Ω

Eij(v)(t)
max{δ, |E(v)(t)|} Eij(ϕ) dx.

Заметим, что аппроксимационную задачу 3.1 можно записать в виде операторного уравнения:

v′ + μAv +Bδ(v)−K(v) + δA3v = f, (3.1)

решение которого должно удовлетворять начальному условию v(0) = v0.
Рассмотрим свойства операторов из уравнения (3.1). Отметим, что для исследуемых операто-

ров можно доказать и более сильные результаты, чем приведенные ниже, но мы приводим только
те, которые будут в дальнейшем использоваться. Для удобства через C мы будем обозначать кон-
станты, конкретное значение которых для нас не важно. Если важен точный вид константы, то
она будет выписываться в явном виде.
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Лемма 3.1. Для оператора А имеют место следующие свойства:
1. Для любой функции v ∈ L2(0, T ;V

1) функция Av принадлежит L2(0, T ;V
−1), оператор

A : L2(0, T ;V
1) → L2(0, T ;V

−1) непрерывен и имеет место оценка

‖Av‖L2(0,T ;V −1) � ‖v‖L2(0,T ;V 1). (3.2)

2. Для любой функции v ∈ W2 функция Av принадлежит L2(0, T ;V
−1), кроме того, оператор

A : W2 → L2(0, T ;V
−2) вполне непрерывен.

Доказательство данной леммы см. в [11].

Лемма 3.2. Для оператора K имеют место следующие свойства:
1. Отображение K : L4(Ω) → V −1 непрерывно, и для него имеет место оценка

‖K(v)‖V −1 � C‖v‖2L4(Ω). (3.3)

2. Для любого v ∈ L4(0, T ;L4(Ω)) функция K(v) принадлежит L2(0, T ;V
−1), и отображение

K : L4(0, T ;L4(Ω)) → L2(0, T ;V
−1) непрерывно.

3. Для любой функции v ∈ W2 функция K(v) принадлежит L2(0, T ;V
−2), отображение K :

W2 → L2(0, T ;V
−2) является вполне непрерывным, и для него имеет место оценка

‖K(v)‖L2(0,T ;V −2) � C‖v‖L2(0,T ;V 1)‖v‖L∞(0,T ;V 0). (3.4)

Доказательство.
1. Для любых v ∈ L4(Ω), ϕ ∈ V 1, используя неравенство Гельдера, мы получим

|〈K(v), ϕ〉| =
∣∣∣∣∣∣

n∑

i,j=1

∫

Ω

(Δ−1
α v)ivj

∂ϕj

∂xi
dx

∣∣∣∣∣∣
�

n∑

i,j=1

⎛

⎝
∫

Ω

|((I − α2Δ)−1v)ivj |2 dx
⎞

⎠
1/2⎛

⎝
∫

Ω

∣∣∣∣
∂ϕj

∂xi

∣∣∣∣
2

dx

⎞

⎠
1/2

�

�
n∑

i,j=1

⎛

⎝
∫

Ω

|((I − α2Δ)−1v)i|4dx
⎞

⎠
1/4⎛

⎝
∫

Ω

|vj |4dx
⎞

⎠
1/4

‖ϕ‖V 1 � C‖(I − α2Δ)−1v‖L4(Ω)‖v‖L4(Ω)‖ϕ‖V 1 �

� C‖v‖2L4(Ω)‖ϕ‖V 1 ,

откуда следует неравенство (3.3). Отметим, что здесь мы воспользовались следующей известной
оценкой (см. [1, 14]):

‖(I − α2Δ)−1v‖Lp(Ω) � ‖v‖Lp(Ω), p > 1. (3.5)

Покажем непрерывность отображения K : L4(Ω) → V −1. Для произвольных vm, v0 ∈ L4(Ω)
имеем:

|〈K(vm), ϕ〉 − 〈K(v0), ϕ〉| =
∣∣∣∣∣∣

∫

Ω

n∑

i,j=1

(
(Δ−1

α vm)iv
m
j

∂ϕj

∂xi
dx−

∫

Ω

n∑

i,j=1

(Δ−1
α v0)iv

0
j

)∂ϕj

∂xi
dx

∣∣∣∣∣∣
�

�
n∑

i,j=1

‖(Δ−1
α vm)iv

m
j − (Δ−1

α v0)iv
0
j‖L2(Ω)‖ϕ‖V 1 ,

откуда следует, что

‖K(vm)−K(v0)‖V −1 �
n∑

i,j=1

‖(Δ−1
α vm)iv

m
j − (Δ−1

α v0)iv
0
j‖L2(Ω).

Вновь используя неравенство (3.5), преобразуем правую часть последнего неравенства:
n∑

i,j=1

‖(Δ−1
α vm)iv

m
j − (Δ−1

α v0)iv
0
j ‖L2(Ω) =

=
n∑

i,j=1

‖(Δ−1
α vm)iv

m
j − (Δ−1

α vm)iv
0
j + (Δ−1

α vm)iv
0
j − (Δ−1

α v0)iv
0
j ‖L2(Ω) �
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� C
(
‖vm − v0‖L4(Ω)‖Δ−1

α vm‖L4(Ω) + ‖Δ−1
α vm −Δ−1

α v0‖L4(Ω)‖v0‖L4(Ω)

)
�

� C
(
‖vm‖L4(Ω)‖vm − v0‖L4(Ω) + ‖vm − v0‖L4(Ω)‖v0‖L4(Ω)

)
=

= C
(
‖vm‖L4(Ω) + ‖v0‖L4(Ω)

)
‖vm − v0‖L4(Ω).

Таким образом,

‖K(vm)−K(v0)‖V −1 � C
(‖vm‖L4(Ω) + ‖v0‖L4(Ω)

) ‖vm − v0‖L4(Ω). (3.6)

Полагая vm → v0 в L4(Ω), получаем непрерывность отображения K : L4(Ω) → V −1.

2. Пусть v ∈ L4(0, T ;L4(Ω)). В силу оценки (3.3) при почти всех t ∈ (0, T ) имеем

‖K(v)(t)‖V −1 � C‖v(t)‖2L4(Ω).

Возведем это неравенство в квадрат, проинтегрируем по t от 0 до T и оценим правую часть
сверху:

T∫

0

‖K(v)(t)‖2V −1dt � C2

T∫

0

‖v(t)‖4L4(Ω) dt = C2‖v‖2L4(0,T ;L4(Ω)) < ∞.

Поскольку правая часть последнего неравенства конечна, то конечна и левая часть. Таким
образом, для v ∈ L4(0, T ;L4(Ω)) мы имеем, что K(v) ∈ L2(0, T ;V

−1). Переходим теперь к дока-
зательству непрерывности отображения K : L4(0, T ;L4(Ω)) → L2(0, T ;V

−1).
Пусть последовательность {vm} ⊂ L4(0, T ;L4(Ω) сходится к некоторому пределу v0 ∈

L4(0, T ;L4(Ω)). Из неравенства (3.6) получим, что при почти всех t ∈ (0, T ) имеет место оценка

‖K(vm)(t)−K(v0)(t)‖V −1 � C
(
‖vm(t)‖L4(Ω) + ‖v0(t)‖L4(Ω)

)
‖(vm − v0)(t)‖L4(Ω).

Возведем последнее неравенство в квадрат и проинтегрируем по t от 0 до T. Воспользовавшись
неравенством Гельдера, получим:

T∫

0

‖K(vm)(t)−K(v0)(t)‖2V −1 dt �

� C2

⎛

⎝
T∫

0

(‖vm(t)‖L4(Ω) + ‖v0(t)‖L4(Ω)

)4
dt

⎞

⎠
1/2⎛

⎝
T∫

0

‖vm(t)− v0(t)‖4L4(Ω) dt

⎞

⎠
1/2

.

Заметим, что
T∫

0

(‖vm(t)‖L4(Ω) + ‖v0(t)‖L4(Ω)

)4
dt � 8

T∫

0

(
‖vm(t)‖4L4(Ω) + ‖v0(t)‖4L4(Ω)

)
dt =

= 8
(
‖vm(t)‖4L4(0,T ;L4(Ω)) + ‖v0(t)‖4L4(0,T ;L4(Ω))

)
.

Имеем в итоге

‖K(vm)−K(v0)‖2L2(0,T ;V −1) � 2
√
2C2‖vm−v0‖2L4(0,T ;L4(Ω))

(
‖vm‖4L4(0,T ;L4(Ω)) + ‖v0‖4L4(0,T ;L4(Ω))

)1/2
�

� 2
√
2C2‖vm − v0‖2L4(0,T ;L4(Ω))

(
‖vm‖2L4(0,T ;L4(Ω)) + ‖v0‖2L4(0,T ;L4(Ω))

)
.

Так как правая часть неравенства стремится к нулю при m → +∞, то стремится к нулю и левая
часть. А это и значит, что отображение K : L4(0, T ;L4(Ω)) → L2(0, T ;V

−1) непрерывно.

3. Для доказательства нам потребуется следующий результат (см. [13]):

Теорема 3.1. Пусть V,H, V ∗—тройка гильбертовых пространств, таких что V ⊂ H ≡
H∗ ⊂ V ∗. Здесь вложения непрерывны, H∗ и V ∗— сопряженные пространства, простран-
ства H и H∗ отождествлены по теореме Рисса. Если функция v принадлежит пространству
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L2(0, T ;V ), а ее производная v′ принадлежит L2(0, T ;V
∗), то функция v почти всюду равна

некоторой непрерывной функции из [0, T ] в H (то есть функции из C([0, T ],H)).

В силу данной леммы каждая функция v ∈ W2 принадлежит C([0, T ];V 0). Поэтому каждая
функция из W2 принадлежит не только L2(0, T ;V

2), но и L2(0, T ;V
2) ∩ L∞(0, T ;V 0). Далее за-

метим, что имеет место вложение (см., например, [22]): L2(0, T ;V
2)∩L∞(0, T ;V 0) ⊂ L4(0, T ;V

1).
Таким образом, для пространства W2 имеет место вложение:

W2 ⊂ Y = {v : v ∈ L4(0, T ;V
1), v′ ∈ L2(0, T ;V

−1)}.
Опять воспользуемся следующим результатом из [13]:

Теорема 3.2. Пусть X0, F,X1 —тройка банаховых пространств, удовлетворяющих условию
X0 ⊂ F ⊂ X1. Здесь вложения непрерывны, пространства X0,X1— рефлексивны, вложение
X0 → F — компактно. Пусть T > 0—фиксированное число и α0, α1 — два конечных числа, та-
ких что αi > 1, i = 0, 1. Предположим, что Y = {v : v ∈ Lα0(0, T ;X0); v

′ ∈ Lα1(0, T ;X1)}—
пространство с нормой ‖v‖Y = ‖v‖Lα0 (0,T ;X0) + ‖v′‖Lα1 (0,T ;X1). Тогда вложение пространства Y
в пространство Lα0(0, T ;X0) компактно.

В силу последней теоремы имеет место компактное вложение: Y → L4(0, T ;L4(Ω)). Таким
образом, действие отображения K можно представить следующим образом:

W2 ⊂ Y → L4(0, T ;L4(Ω))
K−→ L2(0, T ;V

−1) ⊂ L2(0, T ;V
−2).

Здесь первое и последнее вложения непрерывны, второе вложение вполне непрерывно, и отобра-
жение K : L4(0, T ;L4(Ω)) → L2(0, T ;V

−1) непрерывно в силу пункта 2 леммы 3.2. Таким образом,
отображение K : W2 → L2(0, T ;V

−1) вполне непрерывно.
Оценим теперь ‖K(v)‖L2(0,T ;V −2). Имеем:

|〈K(v), ϕ〉| =
∣∣∣∣∣∣

n∑

i,j=1

∫

Ω

(Δ−1
α v)ivj

∂ϕj

∂xi
dx

∣∣∣∣∣∣
�

n∑

i,j=1

∫

Ω

|(Δ−1
α v)i||vj |

∣∣∣∣
∂ϕj

∂xi

∣∣∣∣ dx �

�
n∑

i,j=1

‖vi‖L4(Ω)‖vj‖L4(Ω)

∣∣∣∣

∣∣∣∣
∂ϕj

∂xi

∣∣∣∣

∣∣∣∣
L4(Ω)

� C‖v‖L4(Ω)‖v‖V 0‖ϕ‖V 2 ,

откуда для любой функции v ∈ W2 при почти всех t ∈ (0, T ) имеет место оценка:

‖K(v)(t)‖V −2 � C‖v(t)‖L4(Ω)‖v(t)‖V 0 .

Возводя это неравенство в квадрат и интегрируя полученное неравенство по отрезку [0, T ],
получим:

T∫

0

‖K(v)(t)‖2V −2dt � C2

T∫

0

‖v(t)‖2L4(Ω)‖v(t)‖2V 0dt �

� C2‖v‖2L∞(0,T ;V 0)

T∫

0

‖v(t)‖2L4(Ω)dt � C‖v‖2L∞(0,T ;V 0)‖v‖2L2(0,T ;V 1),

откуда следует требуемое неравенство (3.4).

Лемма 3.3. Для оператора Bδ имеют место следующие свойства:
1. Для любой функции v ∈ L2(0, T ;V

1) функция Bδ(v) принадлежит L2(0, T ;V
−2), оператор

Bδ : L2(0, T ;V
1) → L2(0, T ;V

−2) непрерывен, и имеет место оценка

‖Bδ(v)(t)‖L2(0,T ;V −2) � C, (3.7)

где C — константа, не зависящая от функция v и δ.
2. Для любой функции v ∈ W2 функция Bδ(v) принадлежит L2(0, T ;V

−2), и оператор Bδ :
W2 → L2(0, T ;V

−2) вполне непрерывен.
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Доказательство.
1. Для любой функции v ∈ L2(0, T ;V

1) при любом ϕ ∈ V 2 при почти всех t ∈ (0, T ) имеем

|〈Bδ(v)(t), ϕ〉| =
∣∣∣∣∣∣
τ∗

n∑

i,j=1

∫

Ω

Eij(v)(t)
max(δ, |E(v)(t)|)Eij(ϕ)dx

∣∣∣∣∣∣
� τ∗

n∑

i,j=1

∫

Ω

|Eij(v)(t)|
max(δ, |E(v)(t)|) |Eij(ϕ)|dx �

� τ∗
n∑

i,j=1

∫

Ω

|E(v)(t)|
max(δ, |E(v)(t)|) |E(ϕ)|dx � τ∗C‖ϕ‖V 2 .

Здесь мы воспользовались неравенством
|b|

max(δ, |b|) � 1. Следовательно, при почти всех t ∈
(0, T ) имеет место неравенство

‖Bδ(v)(t)‖V −2 � τ∗C.
Возводя последнее неравенство в квадрат и интегрируя по t от 0 до T, мы и получим, что

B(v) ∈ L2(0, T ;V
−2) и имеет место требуемая оценка (3.7). Докажем непрерывность оператора

Bδ : L2(0, T ;V
1) → L2(0, T ;V

−2).
Пусть последовательность vn сходится к некоторой функции v0 в L2(0, T ;V

1). Тогда при почти
всех t ∈ (0, T ) для произвольного ϕ ∈ V 2 получим:

|〈Bδ(vn)(t)−Bδ(v0)(t), ϕ〉| =

=

∣∣∣∣∣∣
τ∗

n∑

i,j=1

∫

Ω

Eij(vn)(t)
max(δ, |E(vn)(t)|)Eij(ϕ)dx − τ∗

n∑

i,j=1

∫

Ω

Eij(v0)(t)
max(δ, |E(v0)(t)|)Eij(ϕ)dx

∣∣∣∣∣∣
�

� τ∗
n∑

i,j=1

∣∣∣∣∣∣

∫

Ω

( Eij(vn)(t)
max(δ, |E(vn)(t)|) −

Eij(v0)(t)
max(δ, |E(vn)(t)|)

)
Eij(ϕ)dx

∣∣∣∣∣∣
+

+τ∗
n∑

i,j=1

∣∣∣∣∣∣

∫

Ω

( Eij(v0)(t)
max(δ, |E(vn)(t)|) −

Eij(v0)(t)
max(δ, |E(v0)(t)|)

)
Eij(ϕ)dx

∣∣∣∣∣∣
�

� τ∗
n∑

i,j=1

∫

Ω

|Eij(vn)(t)− Eij(v0)(t)|
max(δ, |E(vn)(t)|) |Eij(ϕ)|dx+

+τ∗
n∑

i,j=1

∫

Ω

|Eij(v0)(t)|
∣∣∣∣

1

max(δ, |E(vn)(t)|) −
1

max(δ, |E(v0)(t)|)
∣∣∣∣ |Eij(ϕ)|dx �

� τ∗

δ

n∑

i,j=1

∫

Ω

|E(vn − v0)(t)||E(ϕ)|dx +
τ∗

δ

n∑

i,j=1

∫

Ω

| |E(v0)(t)| − |E(vn)(t)||| E(ϕ)|dx �

� 2τ∗

δ

n∑

i,j=1

∫

Ω

|E(vn − v0)(t)||E(ϕ)| � 2τ∗C
δ

‖vn(t)− v0(t)‖V 1‖ϕ‖V 2 .

Отсюда в силу произвольности ϕ получаем, что

‖Bδ(vn)(t)−Bδ(v0)(t)‖V −2 � 2τ∗C
δ

‖vn(t)− v0(t)‖V 1 .

Возведя в квадрат и проинтегрировав, получим:

‖Bδ(vn)−Bδ(v0)‖L2(0,T ;V −2) �
2τ∗C
δ

‖vn − v0‖L2(0,T ;V 1).

То есть Bδ(vn) → Bδ(v0) в L2(0, T ;V
−2).

2. Аналогично доказательству пункта 3 леммы 3.2 имеем компактное вложение W2 ⊂ Y ⊂
L2(0, T ;V

1). Тогда действие оператора Bδ : W2 → L2(0, T ;V
−2) можно представить в виде следу-

ющей композиции: W2 ⊂ Y ⊂ L2(0, T ;V
1)

Bδ−−→ L2(0, T ;V
−2). Здесь первое вложение непрерывно,
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второе вложение компактно, а отображение Bδ в силу первого пункта теоремы непрерывно. Та-
ким образом, отображение Bδ : W2 → L2(0, T ;V

−2) непрерывно как суперпозиция непрерывного
и вполне непрерывного отображения.

Введем также операторы L и N с помощью равенств

L : W2 → L2(0, T ;V
−1)× V 1, L(u) = (v′ + δA3 + μAv, v|t=0),

N : W2 → L2(0, T ;V
−1)× V 1, N(v) = (Bδ(v)−K(v), 0).

Лемма 3.4. Операторы L и N имеют следующие свойства:
1. оператор L : W2 → L2(0, T ;V

−2)× V 1 непрерывно обратим;
2. оператор N : W2 → L2(0, T ;V

−2)× V 1 компактен.

Доказательство.
1. Непрерывная обратимость оператора следует из приведенной ниже теоремы о разрешимости

абстрактной параболической задачи.

Теорема 3.3. Для любой правой части f ∈ L2(0, T ;V
−1) и начального условия v0 ∈ V 1 задача

{
v′ + δA3v + μAv = f,

v(0) = v0

имеет единственное решение v в пространстве

W3 = {v : v ∈ L2(0, T ;V
4), v′ ∈ L2(0, T ;V

−2)},
непрерывно зависящее от f и v0. Для решения также имеет место оценка

δ‖v‖L2(0,T ;V 4) �
√
2δ + 1

(‖v0‖V 1 + ‖f‖L2(0,T ;V −1)

)
. (3.8)

Доказательство этой теоремы проводится на основе аппроксимационно-топологического под-
хода к исследованию задач гидродинамики (см. [9]). Сначала рассматриваемая задача аппрок-
симируется (в уравнение добавляется член εA3v′) и доказывается существование решения при-
ближенного уравнения в пространстве {v : v ∈ C([0, T ];V 4), v′ ∈ L2(0, T ;V

4)}. Затем на основе
априорных оценок решений, не зависящих от ε, показывается, что из последовательности реше-
ний можно извлечь подпоследовательность, сходящуюся слабо к решению исходной задачи при
ε → 0. Единственность решения получается на основе неравенства Гронуола—Беллмана.

Полное изложение доказательства здесь не приводится в силу своего объема.

2. Компактность оператора N : W2 → L2(0, T ;V
−2) × V 1 непосредственно вытекает из ком-

пактности его первой компоненты (каждое слагаемое компактно).

4. Априорные оценки

Помимо вспомогательной задачи 3.1, рассмотрим семейство операторных уравнений

v′ + δA3v + μAv + λBδ(v)− λK(v) = λf, ∀λ ∈ [0, 1], (4.1)

решение которых удовлетворяет начальному условию v(0) = λv0. Заметим, что при λ = 1 за-
дача (4.1) совпадает с (3.1). Тогда задача (4.1) с начальным условием v(0) = λv0 может быть
переписана в виде

v = λL−1((f, v0)−N(v)), где λ ∈ [0, 1]. (4.2)

Теорема 4.1. Для решения v ∈ W2 семейства (4.2) имеют место следующие оценки:

‖v‖2L∞(0,T ;V 0) �
C

μ
‖f‖2L2(0,T ;V −1) + ‖v0‖2V 0 , (4.3)

μ‖v‖2L2(0,T ;V 1) �
C

μ
‖f‖2L2(0,T ;V −1) + ‖v0‖2V 0 , (4.4)

‖v‖Lr(0,T ;W 1+q
2 (Ω)) � C, (4.5)

δ‖v‖L2(0,T ;V 4) � C, (4.6)

‖v′‖L2(0,T ;V −2) � C. (4.7)
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Доказательство. Пусть v ∈ W2 —решение (4.2). Тогда в силу приведенных выше рассуждений
v является решением (4.1) и удовлетворяет начальному условию v(0) = λv0.

Применим обе части (4.1) к функции v ∈ W2. Имеем

〈v′ + δA3v + μAv − λK(v) + λBδ(v), v〉 = 〈λf, v〉.
Вспоминая определения операторов, получаем следующее равенство:

〈v′, v〉+ δ

∫

Ω

A2vAv dx+ μ

∫

Ω

∇v : ∇v dx− λ

n∑

i,j=1

∫

Ω

(Δ−1
α v)ivj

∂vj
∂xi

dx+

+ λτ∗
n∑

i,j=1

∫

Ω

Eij(v)Eij(v)
max(δ, |E(v)|) dx = λ〈f, v〉.

Преобразуем слагаемые в последнем равенстве:

〈v′, v〉 = 1

2

d

dt
‖v‖2V 0 ; μ

∫

Ω

∇v : ∇v dx = μ‖v‖2V 1 ;

δ

∫

Ω

A2vAv dx = −δ

∫

Ω

Δ(Av)Av dx = δ

∫

Ω

∇(Av) : ∇(Av) dx = δ‖v‖2V 3 ;

−
n∑

i,j=1

∫

Ω

(Δ−1
α v)ivj

∂vj
∂xi

dx = −λ

2

n∑

i,j=1

∫

Ω

(Δ−1
α v)i

∂(vjvj)

∂xi
dx =

=
λ

2

n∑

j=1

∫

Ω

∂(Δ−1
α v)i

∂xi
vjvjdx =

λ

2

n∑

j=1

∫

Ω

div u vjvjdx = 0.

Таким образом, получим:

1

2

d

dt
‖v‖2V 0 + δ‖v‖2V 3 + μ‖v‖2V 1 + λτ∗

n∑

i,j=1

∫

Ω

E2
ij(v)

max{δ, |E(v)|}dx = λ〈f, v〉.

Воспользуемся в правой части неравенствами Юнга и Коши:

λ〈f, v〉 = λ‖f‖V −1‖v‖V 1 � λ
‖f‖2V −1

2μ
+

λμ

2
‖v‖2V 1 � 1

2μ
‖f‖2V −1 +

μ

2
‖v‖2V 1 .

Заметим, что

λτ∗
n∑

i,j=1

∫

Ω

E2
ij(v)

max{δ, |E(v)|}dx � 0.

Тогда получаем оценку

1

2

d

dt
‖v‖2V 0 + δ‖v‖2V 3 +

μ

2
‖v‖2V 1 � 1

2μ
‖f‖2V −1 .

Проинтегрировав последнее неравенство от 0 до t ∈ [0, T ], получим следующую оценку:

1

2
‖v(t)‖2V 0 − 1

2
‖v(0)‖2V 0 + δ

t∫

0

‖v(s)‖2V 3ds+
μ

2

t∫

0

‖v(s)‖2V 1ds �

� 1

2μ

t∫

0

‖f(s)‖2V −1ds �
1

2μ

T∫

0

‖f(s)‖2V −1ds =
1

2μ
‖f‖2L2(0,T ;V −1),
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которую можно переписать в виде:

1

2
‖v(t)‖2V 0 + δ

t∫

0

‖v(s)‖2V 3ds+
μ

2

t∫

0

‖v(s)‖2V 1ds �
1

2μ
‖f‖2L2(0,T ;V −1) +

1

2
‖v0‖2V 0 .

Так как каждое слагаемое в левой части последнего неравенства неотрицательно, то получаем
следующие оценки:

‖v(t)‖2V 0 � 1

μ
‖f‖2L2(0,T ;V −1) + ‖v0‖2V 0 � C

μ
‖f‖2L2(0,T ;V 0) + ‖v0‖2V 0 �

C‖f‖2L2(0,T ;V −1)

μ
+ ‖v0‖2V 0 ;

μ

t∫

0

‖v(s)‖2V 1ds � 1

μ
‖f‖2L2(0,T ;V −1) + ‖v0‖2V 0 �

C‖f‖2L2(0,T ;V −1)

μ
+ ‖v0‖2V 0 .

Правые части этих неравенств не зависят от t, поэтому можно перейти к max по t ∈ [0, T ] в
левой части:

ess supt∈[0,T ] ‖v(t)‖2V 0 �
C‖f‖2L2(0,T ;V −1)

μ
+ ‖v0‖2V 0 ;

μ

T∫

0

‖v(s)‖2V 1ds �
C‖f‖2L2(0,T ;V −1)

μ
+ ‖v0‖2V 0 .

Отсюда следуют требуемые неравенства (4.3) и (4.4).
Теперь применим к уравнению (4.1) пробную функцию Av. Получим:

〈v′, Av〉+ δ

∫

Ω

A2vA2vdx+ μ

∫

Ω

∇v : ∇Avdx− λ

n∑

i,j=1

∫

Ω

(Δ−1
α v)ivj

∂Δvj
∂xi

dx+

+ λτ∗
n∑

i,j=1

∫

Ω

Eij(v)
max(δ, |E(v)|)Eij(Δv)dx = λ〈f,Av〉.

Преобразуем и оценим слагаемые в последнем равенстве:

〈v′, Av〉 = 〈A1/2v′, A1/2v〉 = 1

2

d

dt
‖v‖2V 1 ; δ

∫

Ω

A2vA2vdx = δ‖v‖2V 4 ;

μ

∫

Ω

∇v : ∇Avdx = μ

∫

Ω

∇v∇vdx = μ‖v‖2V 2 ;

λ〈f,Av〉 = λ‖f‖V 0‖Av‖V 0 � ‖f‖V 0‖v‖V 2 � μ

2
‖v‖2V 2 +

‖f‖2V 0

2μ
;

−
n∑

i,j=1

∫

Ω

(Δ−1
α v)ivj

∂Δvj
∂xi

dx =

n∑

i,j=1

∫

Ω

∂(Δ−1
α v)i

∂xi
vjΔvjdx+

n∑

i,j=1

∫

Ω

(Δ−1
α v)i

∂vj
∂xi

Δvjdx =

=
n∑

i,j=1

∫

Ω

(div u)vjΔvjdx−
n∑

i,j,k=1

∫

Ω

∂(Δ−1
α v)i

∂xk

∂vj
∂xi

∂vj
∂xk

dx−
n∑

j=1

∫

Ω

(Δ−1
α v)i

∂2vj
∂xi∂xk

∂vj
∂xk

dx =

= −
n∑

i,j,k=1

∫

Ω

∂(Δ−1
α v)i

∂xk

∂vj
∂xi

∂vj
∂xk

dx− 1

2

n∑

i,j,k=1

∫

Ω

(Δ−1
α v)i

∂

∂xi
(
∂vj
∂xk

∂vj
∂xk

)dx =

= −
n∑

i,j,k=1

∫

Ω

∂(Δ−1
α v)i

∂xk

∂vj
∂xi

∂vj
∂xk

dx+
1

2

n∑

i,j,k=1

∫

Ω

(div u)
∂vj
∂xk

∂vj
∂xk

dx = −
n∑

i,j,k=1

∫

Ω

∂(Δ−1
α v)i

∂xk

∂vj
∂xi

∂vj
∂xk

dx.
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Отсюда в силу непрерывности вложения W 1
1 (Ω) ⊂ L3/2(Ω) получаем:

λ

n∑

i,j=1

∫

Ω

(Δ−1
α v)ivj

∂Δvj
∂xi

dx = λ

n∑

i,j,k=1

∫

Ω

∂(Δ−1
α v)i

∂xk

∂vj
∂xi

∂vi
∂xk

dx �

�
n∑

i,j,k=1

⎛

⎝
∫

Ω

∣∣∣∣
∂(Δ−1

α v)i
∂xk

∣∣∣∣
3

dx

⎞

⎠
1/3⎛

⎝
∫

Ω

∣∣∣∣
∂vj
∂xi

∣∣∣∣
3

dx

⎞

⎠
1/3⎛

⎝
∫

Ω

∣∣∣∣
∂vi
∂xk

∣∣∣∣
3

dx

⎞

⎠
1/3

� ‖∇v‖3L3(Ω) =

= ‖|∇v|2‖3/2L3/2(Ω) � C‖∇|∇v|2‖3/2L1(Ω) � C‖∇2v‖3/2L2(Ω) · ‖∇v‖3/2L2(Ω) �
3μ

4
‖v‖2V 2 +

C4

4μ3
‖v‖6V 1 .

Далее рассмотрим следующее слагаемое:

−λτ∗
n∑

i,j=1

∫

Ω

Eij(v)
max{δ, |E(v)|} Eij(Δv)dx = −λτ∗

n∑

i,j,k=1

∫

Ω

Eij(v)
max{δ, |E(v)|}

∂2

∂x2k
Eij(v)dx =

= λτ∗
n∑

i,j,k=1

∫

Ω

∂

∂xk

Eij(v)
max{δ, |E(v)|}

∂

∂xk
Eij(v)dx.

Дифференцируя функцию
Eij(v)

max{δ, |E(v)|} как сложную функцию от E(v) (суперпозицию функ-

ции f(x) =
x

max{δ, x} и функции g(v) = E(v)), получим:

λτ∗
n∑

i,j,k=1

∫

Ω

∂

∂xk

Eij(v)
max{δ, |E(v)|}

∂Eij(v)
∂xk

dx = λτ∗
n∑

i,j,k,p,q=1

∫

Ω

∂

∂Epq
Eij(v)

max{δ, |E(v)|}
∂Epq(v)
∂xk

∂Eij(v)
∂xk

dx.

Рассмотрим два случая. Первый случай δ � |E(v)|:

λτ∗
n∑

i,j,k,p,q=1

∫

Ω

∂

∂Epq
Eij(v)

max{δ, |E(v)|}
∂Epq(v)
∂xk

∂Eij(v)
∂xk

dx =
λτ∗

δ

n∑

i,j,k,p,q=1

∫

Ω

∂Eij(v)
∂Epq

∂Epq(v)
∂xk

∂Eij(v)
∂xk

dx =

=
λτ∗

δ

n∑

i,j,k,p,q=1

∫

Ω

δijpq
∂

∂xk
Epq(v) ∂

∂xk
Eij(v)dx =

λτ∗

δ
‖∇E(v)‖2L2(Ω) � 0.

Второй случай δ � |E(v)|:

λτ∗
n∑

i,j,k,p,q=1

∫

Ω

∂

∂Epq
Eij(v)

max{δ, |E(v)|}
∂Epq(v)
∂xk

∂Eij(v)
∂xk

dx =

= λτ∗
n∑

i,j,k,p,q=1

∫

Ω

∂

∂Epq
Eij(v)
|E(v)|

∂Epq(v)
∂xk

∂Eij(v)
∂xk

dx =

= λτ∗
n∑

i,j,k,p,q=1

∫

Ω

1

|E(v)|
(
δijpq −

EijEpq
|E(v)|2

)
∂Epq(v)
∂xk

∂Eij(v)
∂xk

dx � 0.

В итоге получим:

λτ∗
n∑

i,j=1

∫

Ω

Eij(v)
max{δ, |E(v)|} Eij(Δv)dx � 0.

Таким образом, получаем оценку

1

2

d

dt
‖v‖2V 1 + μ‖v‖2V 2 + δ‖v‖2V 4 � 3μ

4
‖v‖2V 2 +

C4

4μ3
‖v‖6V 1 +

μ

8
‖v‖2V 2 +

2‖f‖2V 0

μ
;

1

2

d

dt
‖v‖2V 1 +

μ

8
‖v‖2V 2 � 2

μ
‖f‖2V 0 +

C4

4μ3
‖v‖6V 1 . (4.8)
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Разделим это неравенство на (1 + ‖v‖2V 1)
2. Получим:

1

2

d
dt‖v‖2V 1

(1 + ‖v‖2
V 1)2

+
μ

8

‖v‖2V 2

(1 + ‖v‖2
V 1)2

� 2

μ

‖f‖2V 0

(1 + ‖v‖2
V 1)2

+
C4

4μ3

‖v‖6V 1

(1 + ‖v‖2
V 1)2

.

Так как
‖f‖2V 0

(1 + ‖v‖2
V 1)2

� ‖f‖2V 0 и
‖v‖6V 1

(1 + ‖v‖2
V 1)2

�
‖v‖2V 1‖v‖4V 1

(1 + ‖v‖2
V 1)2

� ‖v‖2V 1 , то полученное неравен-

ство можно переписать в виде:

1

2

d
dt‖v(t)‖2V 1

(1 + ‖v(t)‖2
V 1)2

+
μ

8

‖v(t)‖2V 2

(1 + ‖v(t)‖2
V 1)2

� 2

μ
‖f‖2V 0 +

C4

4μ3
‖v‖2V 1 .

Проинтегрируем последнее неравенство по t от 0 до T :

1

2

T∫

0

d
dt‖v(t)‖2V 1

(1 + ‖v(t)‖2
V 1)2

dt+
μ

8

T∫

0

‖v(t)‖2V 2

(1 + ‖v(t)‖2
V 1)2

dt � 2

μ

T∫

0

‖f(t)‖2V 0dt+
C4

4μ3

T∫

0

‖v(t)‖2V 1dt �

� 2

μ
‖f‖2L2(0,T ;V −1) +

C4

4μ2

(
1

μ2
‖f‖2L2(0,T ;V −1) +

1

μ
‖v(t)‖2V 0

)
.

Воспользуемся тем, что
1

2

1

(1 + ‖v(T )‖2
V 1)2

� 1

2
и

1

2

T∫

0

d
dt‖v(t)‖2V 1

(1 + ‖v(t)‖2
V 1)2

dt = −1

2

(
1

(1 + ‖v(T )‖2
V 1)2

− 1

(1 + ‖v(0)‖2
V 1)2

)
=

=
1

2

1

(1 + ‖v(0)‖2
V 1)2

− 1

2

1

(1 + ‖v(T )‖2
V 1)2

.

Получим неравенство
T∫

0

‖v(t)‖2V 2

(1 + ‖v(t)‖2
V 1)2

dt � C, (4.9)

где C =
8

μ

(
2

μ
‖f‖2L2(0,T ;V −1) +

C4

4μ2

(
1

μ
‖f‖2L2(0,T ;V −1) + ‖v0‖2V 0

)
+ 1

)
.

Теперь выберем r, p, q так, чтобы: q ∈
(
0,

1

2

)
, r =

2

1 + 2q
, а p =

2

r(1− q)
, 1 =

1

p
+

1

p′
. По

интерполяционному неравенству и неравенству Гельдера получаем:

T∫

0

‖v‖r
W 1+q

2

dx �
T∫

0

‖v‖qr
W 2

2
‖v‖r(1−q)

W 2
2

dx �

⎛

⎝
T∫

0

‖v‖rp(1−q)

W 2
2

dx

⎞

⎠
1/p⎛

⎝
T∫

0

‖v‖qr′r
W 2

2
dx

⎞

⎠
1/p′

.

Рассмотрев коэффициенты так, что rp(1− q) = 2 и rqp′ =
2

3
, получим:

T∫

0

‖v‖
2
3

W 2
2
dx � C

⎛

⎝
T∫

0

‖v‖2V 2

(1 + ‖v(s)‖2
V 1)2

ds

⎞

⎠
1/3⎛

⎝
T∫

0

(1 + ‖v‖2V 2)ds

⎞

⎠
2/3

.

Первый множитель ограничен вследствие (4.9), второй из-за (4.8). Отсюда получаем оценку:

‖v‖Lr(0,T ;W 1+q
2 ) � C.

Для получения оценок (4.6) и (4.7) заметим, что если v является решением операторного урав-
нения (3.1), то имеет место равенство:

v′ + δA3v + μAv = −λBδ(v) + λK(v) + λf.

Следовательно:

‖v′ + δA3v + μAv‖L2(0,T ;V −2) = ‖ − λBδ(v) + λK(v) + λf‖L2(0,T ;V −2). (4.10)
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В силу неравенства (3.8), левую часть можно оценить следующим образом:

δ‖v‖L2(0,T ;V 4) �
√
2δ + 1

(‖v0‖V 1 + ‖v′ + δA3v + μA‖L2(0,T ;V 2)

)
,

откуда

‖v′ + δA3v + μA‖L2(0,T ;V −2) �
δ√

2δ + 1
‖v‖L2(0,T ;V 4) − ‖v0‖V 1 .

Правую часть (4.10) в силу неравенств (3.3), (3.7) можно оценить следующим образом:

‖ − λBδ(v) + λK(v) + λf‖L2(0,T ;V −2) � λ‖Bδ(v)‖L2(0,T ;V −2) + λ‖K(v)‖L2(0,T ;V −2)+

+λ‖f‖L2(0,T ;V −2) � ‖Bδ(v)‖L2(0,T ;V −2) + ‖K(v)‖L2(0,T ;V −2) + ‖f‖L2(0,T ;V −2) � C + C‖v‖L∞(0,T ;V 0)+

+‖v‖L2(0,T ;V 1) + C‖f‖L2(0,T ;V 0) � C +
C√
μ

(
C‖f‖2L2(0,T ;V −1)

μ
+ ‖v0‖2V 0

)
+ C‖f‖L2(0,T ;V −1).

Следовательно,

δ√
2δ + 1

‖v‖L2(0,T ;V 4) � C +
C√
μ

(
C
‖f‖2L2(0,T ;V −1)

μ
+ ‖v0‖2V 0

)
+ C‖f‖L2(0,T ;V −1) + |v0‖V 1 .

Умножая последнее неравенство на
√
2δ + 1, получим

δ‖v‖L2(0,T ;V 4) �
√
2δ + 1

(
C +

C√
μ

(
C
‖f‖2L2(0,T ;V −1)

μ
+ ‖v0‖2V 0

)
+ C‖f‖L2(0,T ;V −1) + ‖v0‖V 1

)
�

�
√
3

(
C +

C√
μ

(
C
‖f‖2L2(0,T ;V −1)

μ
+ ‖v0‖2V 0

)
+ C‖f‖L2(0,T ;V −1) + ‖v0‖V 1

)
.

Здесь мы воспользовались тем, что δ � 1. Обозначив последнюю часть неравенства через C,
мы получаем требуемое неравенство (4.6).

Аналогично v′ = −δA3v − μAv − λBδ(v) + λK(v) + λf. Отсюда

‖v′‖L2(0,T ;V −2) = ‖ − δA3v − μAv − λBδ(v) + λK(v) + λf‖L2(0,T ;V −2) � δ‖v‖L2(0,T ;V 4) +

+ μC‖v‖L2(0,T ;V 1) + C +
C√
μ

(
C‖f‖2L2(0,T ;V −1)

μ
+ ‖v0‖2V 0

)
+ C‖f‖L2(0,T ;V −1) �

� C + μC

√
C

μ
‖f‖2

L2(0,T ;V −1)
+ ‖v0‖2V 0 +

C√
μ

(
C‖f‖2L2(0,T ;V −1)

μ
+ ‖v0‖2V 0

)
.

Обозначив правую часть последнего неравенства через C, мы получим требуемую оценку
на (4.7). Отметим, что константа C в этой оценке не зависит от δ.

5. Доказательство существования решений аппроксимационной задачи

Теперь мы готовы сформулировать теорему о существовании решений операторного уравне-
ния (3.1). Для ее доказательства будет использоваться теория топологической степени Лере—
Шаудера для вполне непрерывных векторных полей.

Теорема 5.1. Для операторного уравнения (3.1) существует хотя бы одно решение v ∈ W2.

Доказательство. По теореме 4.1 все решения семейства операторных уравнений (4.2) удовлетво-
ряют априорным оценкам (4.6) и (4.7). Из оценок (4.6) и (4.7) следует, что ‖v‖W2 � C, где C > 0—
некоторая постоянная. Тогда все решения операторного уравнения лежат в шаре BR ⊂ W2 с цен-
тром в нуле и радиусом R = C + 1.

По лемме 3.4 оператор L : W2 → L2(0, T ;V
−2)×V 1 непрерывно обратим, тогда ни одно решение

семейства уравнений (4.2) не принадлежит границе того же шара BR.
В силу лемм 3.2, 3.3, 3.4 и доказанных свойств операторов K(v), Bδ , N(v), оператор I −

λL−1((f, v0)−N(v)) : L2(0, T ;V
−2)× V 1 → W2 является вполне непрерывным.
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Таким образом, вполне непрерывное векторное поле v− λL−1((f, v0)−N(v)) не вырождено на
границе шара BR, а значит, для этого векторного поля определена степень Лере—Шаудера

degLS(I − λL−1((f, v0)−N(v)), BR, 0).

По свойствам гомотопической инвариантности и нормировки степени получаем, что

degLS(I − L−1((f, v0)−N(v)), BR, 0) = degLS(I,BR, 0) = 1.

Так как эта степень отлична от нуля, то существует хотя бы одно решение v ∈ W2 операторного
уравнения (3.1). Таким образом, из вышеприведенных рассуждений следует, что аппроксимаци-
онная задача 3.1 имеет хотя бы одно решение v ∈ W2.

6. Предельный переход

В этом разделе мы перейдем в аппроксимационной задаче 3.1 к пределу при δ → 0. Тем самым
будет доказана теорема 2.1.

В силу теоремы 5.1 для каждого δ > 0 существует решение аппроксимационной задачи 3.1. То
есть существует v ∈ W2, которая для любого ϕ ∈ V 2 удовлетворяет интегральному равенству

〈v′δ, ϕ〉 −
n∑

i,j=1

∫

Ω

(Δ−1
α vδ)i(vδ)j

∂ϕj

∂xi
dx+ μ

∫

Ω

∇vδ : ∇ϕdx+ τ∗
n∑

i,j=1

∫

Ω

Eij(vδ)Eij(ϕ)
max{δ, |E(vδ)|}dx+

+ δ

∫

Ω

A2vδAϕdx =

∫

Ω

fδϕdx

и начальному условию vδ(0) = v0.
В силу априорных оценок (4.3)–(4.7) имеют место следующие сходимости:

vδ → v слабо в L2(0, T ;V
1); vδ → v сильно в L2(0, T ;L4(Ω));

vδ → v сильно в Lr(0, T ;V
1); v′δ → v′ слабо в L2(0, T ;V

−2);

δvδ → u слабо в L2(0, T ;V
4).

Из указанных сходимостей и в силу непрерывности оператора Δ−1
α : L2(0, T ;V

1) → L2(0, T ;V
3)

получим, что:

〈v′δ, ϕ〉 → 〈v, ϕ〉 при δ → 0;
n∑

i,j=1

∫

Ω

(Δ−1
α vδ)i(vδ)j

∂ϕj

∂xi
dx →

n∑

i,j=1

∫

Ω

(Δ−1
α v)ivj

∂ϕj

∂xi
dx при δ → 0;

μ

∫

Ω

∇vδ : ∇ϕdx → μ

∫

Ω

∇v : ∇ϕdx при δ → 0;

δ

∫

Ω

A2vAϕdx →
∫

Ω

A2wAϕdx при δ → 0.

Однако в смысле распределений δA2v сходится к нулю. Отсюда, в силу единственности преде-
ла, w = 0.

Далее, так как
Eij(vδ)

max{δ, |E(vδ)|} ограничено сверху константой, не зависящей от δ, то это выра-

жение сходится к некоторой функции w слабо, например, в Lp(0, T ;Lp(Ω)) для любого 1 < p < ∞.
Покажем теперь, что на самом деле

μ

∫

Ω

∇vδ : ∇ϕdx+
n∑

i,j=1

∫

Ω

Eij(vδ)Eij(ϕ)
max{δ, |E(vδ)|}dx →

∫

Ω

σ : E(ϕ)dx

при δ → 0 для функции σ ∈ L2(0, T ;L2(Ω), удовлетворяющей при почти всех (t, x) ∈ [0, T ] × Ω
реологическому соотношению (1.4).
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Для этого введем последовательность функций

σδ = 2μE(vδ) + τ∗E(vδ)
max{δ, |E(vδ)|}

и покажем, что она сходится в некотором смысле к функции σ = 2μE(v) + τ∗

|E(v)|E(v).
В силу поточечной сходимости имеем, что при E(vδ) �= 0 последовательность σδ → σ.
Рассмотрим множество A = {[0, T ]×Ω}∩{|E(v)| = 0}∩{|σ| > τ∗} и предположим, что mes A =

m > 0. Определим QT = [0, T ]× Ω:

χij =
σij
|σ| 1A ∈ L∞(QT ), Iδ =

∫

QT

σδ
ijχijdxdt, I =

∫

QT

σijχijdxdt.

Обозначим v0 = I − mτ∗ и заметим, что v0 > 0. Так как Iδ → I (в силу слабой сходимости
σδ → σ), то существует такое δ0, что для любого δ < δ0 выполнено Iδ >

v0
2

+ mτ∗. Обозначим

δ1 = min
{
δ0,

v0
24μ|Q|

}
. Разделим A на три подобласти:

A1 = Q ∩ {|E(vδ)| � δ}, A2 = Q ∩ {δ < |E(vδ)| � δ1}, A3 = Q ∩ {|E(vδ)| > δ1}.

Разобьем интеграл Iδ на три части Iδ =
3∑

k=1

∫

Ak

σ : χdx =
3∑

k=1

Ik и рассмотрим их по отдельности:

I1 =

∫

A1

(
2μ+

τ∗

δ

)
E(vδ) : χdxdt, |I1| � 2μδ1mes Q+ τ∗mes A1 ∩A,

I2 =

∫

A2

(
2μ +

τ∗

|E(v)|
)
E(vδ) : χdxdt, |I2| � 2μδ1mes Q+ τ∗mes A2 ∩A,

I3 =

∫

A3

σδ : χdxdt, |I3| � C(1 + ‖vδ‖V 1)I(δ1, δ),

где I(δ1, δ) = (mes(A ∩A3))
1/2.

Заметим, что Iδ >
v0
2

+ μτ∗ и |Iδ| �
∑
k

|Ik|, получим

v0
2

+ μτ∗ < |Iδ| � 4μδ1mes Q+ CI(δ1, δ) +mτ∗ � CI(δ1, δ) +mτ∗ +
v0
6
.

Получили противоречие с тем, что I(δ1, δ) → 0 при δ → 0, что следует из того, что |E(vδ)| → 0
почти всюду на A, следовательно, |E(vδ)| → 0 по мере. Итак, |σ| � τ∗ при |E(v)| = 0.

Положим B = QT ∩ {E(v) �= 0}. В силу выбора σδ имеем, что σδ → σ почти всюду на B. Для
любого измеримого множества Q′ ⊂ QT и χij ∈ L∞(QT ) такого, что χij |QT \B = 0, имеем

∣∣∣∣∣∣∣

∫

Q′

σδ : χdxdt

∣∣∣∣∣∣∣
� ‖χ‖L∞(QT )(mes(Q′))1/2(1 + ‖vδ‖L2(0,T ;V 1)).

Следовательно, по теореме Витали
∫

B

σδ : χdxdt →
∫

B

σ : χdxdt.

С другой стороны, σδ → σ слабо в L2(QT ). Отсюда и следует выполнение реологического
соотношения при |E(v)| �= 0.
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Таким образом, переходя к пределу при δ → 0 в каждом из интегралов, получим, что пара
(v, σ) удовлетворяет при почти всех t ∈ (0, T ) для любого ϕ ∈ V 2 равенству

〈v′, ϕ〉 −
n∑

i,j=1

∫

Ω

(Δ−1
α v)ivj

∂ϕj

∂xi
dx+

∫

Ω

σ : E(ϕ)dx =

∫

Ω

fϕdx,

и реологическому соотношению

σ =

⎧
⎨

⎩
2μE(v) + τ∗

E(v)
|E(v)| , если |E(v)| �= 0,

|σ| � τ∗, если |E(v)| = 0.

Это и завершает доказательство теоремы 2.1.

7. Сходимость решений при α → 0

В данном разделе рассмотрим вопрос сходимости решений альфа-модели Бингама. Поскольку
при α = 0 рассматриваемая модель должна совпадать с исходной моделью Бингама, естественно
ожидать и сходимости решений альфа-модели к решениям исходной модели при α → 0. Прежде
чем непосредственно перейти к исследованию данного вопроса, мы введем необходимые понятия.
Рассмотрим следующую начально-краевую задачу, соответствующую исходной модели Бингама:

∂v

∂t
+

n∑

i=1

vi
∂v

∂xi
+∇p−Div σ = f, (7.1)

σ =

⎧
⎨

⎩
2μE(v) + τ∗

E(v)
|E(v)| , если |E(v)| �= 0,

|σ| � τ∗, если |E(v)| = 0,
(7.2)

div v(t, x) = 0, v|∂Ω = 0, v|t=0 = v0. (7.3)

Пусть f ∈ L2(0, T ;V
−1) и v0 ∈ V 1. Сформулируем определение слабого решения для начально-

краевой задачи (7.1)–(7.3).

Определение 7.1. Пара функций (v, σ) ∈ W1 × L2(0, T ;L2(Ω)) называется слабым решением
начально-краевой задачи (7.1)–(7.3) для альфа-модели Бингама, если для всех ϕ ∈ V 1 и почти
всех t ∈ (0, T ) она удовлетворяет равенству

〈v′, ϕ〉 −
n∑

i,j=1

∫

Ω

vivj
∂ϕj

∂xi
dx+

∫

Ω

σ : E(ϕ)dx =

∫

Ω

fϕdx,

а также реологическому соотношению (7.2) и начальному условию v|t=0 = v0.

Таким образом, в силу теоремы 2.1 при каждом фиксированном α задача (1.3)–(1.7) имеет
слабое решение. Основная цель данного раздела — изучить сходимость слабых решений зада-
чи (1.3)–(1.7) к слабым решениям задачи (7.1)–(7.3) при α → 0. Для этого рассмотрим последо-
вательность чисел αm таких, что αm → 0 при m → ∞, и еще одно семейство вспомогательных
задач, зависящих от параметра αm:

∂vm

∂t
+

n∑

i=1

umi
∂vm

∂xi
+∇p−Div σm = f, (7.4)

σm =

⎧
⎨

⎩
2μE(vm) + τ∗

E(vm)

|E(vm)| , если |E(vm)| �= 0,

|σm| � τ∗, если |E(vm)| = 0,
(7.5)

um = (I − α2
mΔ)−1vm, (7.6)

div vm = 0, vm|∂Ω = 0, vm|t=0 = v0. (7.7)



ИССЛЕДОВАНИЕ РАЗРЕШИМОСТИ АЛЬФА-МОДЕЛИ БИНГАМА 621

По доказанной теореме 2.1 при каждом αm существует слабое решение (vm, σm) вспомогатель-
ной задачи (7.4)–(7.7). Тогда для всех ϕ ∈ V 2 при почти всех t ∈ (0, T ) имеет место равенство

〈(vm)′, ϕ〉 −
n∑

i,j=1

∫

Ω

(Δ−1
α v)mi vmj

∂ϕi

∂xj
dx+

∫

Ω

σm : E(ϕ)dx =

∫

Ω

fϕdx. (7.8)

В предельном переходе (пункт 6) при доказательстве теоремы 2.1 получаем, что полученное
решение v задачи (1.3)–(1.7) удовлетворяет оценкам (4.3), (4.4), (4.7), из которых следует, что
при m → ∞

vm → v∗ слабо в L2(0, T ;V
1), vm → v∗ слабо в L∞(0, T ;V 0),

(vm)′ → (v∗)′ слабо в L4/3(0, T ;V
−1).

Используя эти сходимости, перейдем к пределу в равенстве (7.8). Рассмотрим отдельно слага-
емое с оператором K.

|〈K(vm), ϕ〉 − 〈K(v∗), ϕ〉| =
∣∣∣∣∣∣

∫

Ω

n∑

i,j=1

umi vmj
∂ϕj

∂xi
dx−

∫

Ω

n∑

i,j=1

v∗i v
∗
j

∂ϕj

∂xi
dx

∣∣∣∣∣∣
=

=

∣∣∣∣∣∣

∫

Ω

n∑

i,j=1

(
(umi − vmi )vmj + (vmi − v∗i )v

m
j + (vmj − v∗j )v

∗
i

)∂ϕj

∂xi
dx

∣∣∣∣∣∣
�

�

∣∣∣∣∣∣

∫

Ω

n∑

i,j=1

(umi − umi + α2
mΔumi )vmj

∂ϕj

∂xi
dx

∣∣∣∣∣∣
+

+

∣∣∣∣∣∣

∫

Ω

n∑

i,j=1

(vmi − v∗i )v
m
j

∂ϕj

∂xi
dx
∣∣∣+
∣∣∣
∫

Ω

n∑

i,j=1

(vmj − v∗j )v
∗
i

∂ϕj

∂xi
dx

∣∣∣∣∣∣
.

Отдельно оценим каждое слагаемое. Используя неравенство Гельдера, а также непрерывность
вложения V 1 ⊂ L4(Ω), для всех ϕ ∈ V 2 получим

∣∣∣∣∣∣

∫

Ω

n∑

i,j=1

α2
mΔumi vmj

∂ϕj

∂xi
dx

∣∣∣∣∣∣
� αm

n∑

i,j=1

⎛

⎝
∫

Ω

|αmΔumi |2dx
⎞

⎠
1/2⎛

⎝
∫

Ω

∣∣∣∣v
m
j

∂ϕj

∂xi

∣∣∣∣
2

dx

⎞

⎠
1/2

�

� αm

n∑

i,j=1

‖αmΔumi ‖L2(Ω)‖vmj ‖L4(Ω)

∥∥∥∥
∂ϕj

∂xi

∥∥∥∥
L4(Ω)

� Cαm

n∑

i,j=1

‖αmΔumi ‖L2(Ω)‖vmj ‖V 1

∥∥∥∥
∂ϕj

∂xi

∥∥∥∥
V 1

�

� Cαm‖αmΔum‖L2(Ω)‖vm‖V 1‖ϕ‖V 2 .

Остальные слагаемые оцениваются аналогичным образом. Таким образом,

|〈K(vm), ϕ〉 − 〈K(v∗), ϕ〉| � C
(
αm‖αmΔum‖L2(Ω)‖vm‖V 1‖ϕ‖V 2 + ‖vm − v∗‖L4(Ω)‖vm‖L4(Ω)‖ϕ‖V 1 +

+ ‖vm − v∗‖L4(Ω)‖v∗‖L4(Ω)‖ϕ‖V 1

)
� C

(
αm‖αmΔum‖L2(Ω)‖vm‖V 1 + ‖vm − v∗‖L4(Ω)‖vm‖V 1 +

+ ‖vm − v∗‖L4(Ω)‖v∗‖V 1

)‖ϕ‖V 2 .

Следовательно,

‖K(vm)−K(v∗)‖V −2 � C
(
αm‖αmΔum‖L2(Ω)‖vm‖V 1 +

+ ‖vm − v∗‖L4(Ω)‖vm‖V 1 + ‖vm − v∗‖L4(Ω)‖v∗‖V 1

)
.

Проинтегрируем обе части последнего неравенства по t в пределах от 0 до T. Применив нера-
венство Гельдера, заключаем, что

T∫

0

‖K(vm)−K(v∗)‖V −2dt � αmC

T∫

0

‖αmΔum‖L2(Ω)‖vm‖V 1dt+ C

T∫

0

‖vm − v∗‖L4(Ω)‖vm‖V 2dt+
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+ C

T∫

0

‖vm − v∗‖L4(Ω)‖v∗‖V 1dt � αmC

⎛

⎝
T∫

0

‖αmΔum‖2L2(Ω)dt

⎞

⎠
1/2⎛

⎝
T∫

0

‖vm‖2V 1dt

⎞

⎠
1/2

+

+C‖vm − v∗‖L2(0,T ;L4(Ω))‖vm‖L2(0,T ;V 1) + C‖vm − v∗‖L2(0,T ;L4(Ω))‖v∗‖L2(0,T ;V 1). (7.9)

Так как vm → v∗ слабо в L2(0, T ;V
1) и (vm)′ → (v∗)′ слабо в L4/3(0, T ;V

−1), то в силу тео-
ремы Обена—Симона [26] vm → v∗ сильно в L2(0, T ;L4(Ω)). Таким образом, получаем, что два
слагаемых в неравенстве (7.9) стремятся к нулю. Напомним, что

‖v‖2V 1 = ‖u− α2Δu‖2V 1 = ‖u‖2V 1 + 2‖α∇u‖2L2(Ω) + α4‖Δu‖2L2(Ω).

Поэтому
T∫

0

‖αΔu‖2L2(Ω)dt �
1

2

T∫

0

‖v‖2V 1dt �
C

2
(‖f‖2L2(0,T ;V −1) + 1). (7.10)

Таким образом, в силу неравенств (7.9) и (7.10), а также указанных сходимостей, получим
T∫

0

‖K(vm)−K(v∗)‖V −2dt � αm
C

2
(‖f‖2L2(0,T ;V −1) + 1) → 0

при αm → 0. Следовательно, K(vm) → K(v∗) сильно в L1(0, T ;V
−2), а значит, и в пространстве

D′(0, T ;V −2).
Для установления сходимостей в остальных слагаемых равенства (7.8) мы полностью повторим

рассуждения, которые были проведены при доказательстве предельного перехода в предыдущем
разделе. Все эти слагаемые сходятся в пространстве L4/3(0, T ;V

−1), а значит, и в пространстве
D′(0, T ;V −2).

Таким образом, переходя в равенстве (7.8) к пределу при m → ∞ получим, что предельные
функции v∗ и σ∗ удовлетворяют равенству

〈(v∗)′, ϕ〉 −
∫

Ω

n∑

i,j=1

v∗i v
∗
j

∂ϕj

∂xi
dx+

∫

Ω

σ∗ : E(ϕ)dx = 〈f, ϕ〉.

Следовательно, пара (v∗, σ∗) согласно определению 7.1 является слабым решением начально-
краевой задачи (7.1)–(7.3) для пробной функции ϕ ∈ V 2. Однако, заметим, что функция v∗ в
силу полученных сходимостей удовлетворяет оценкам (4.3), (4.4), (4.7). Следовательно, каждое
слагаемое последнего равенства выполнено и для произвольной пробной функции ϕ ∈ V 1. Та-
ким образом, доказана сходимость слабых решений альфа-модели (7.4)–(7.7) к слабым решениям
начально-краевой задачи (7.1)–(7.3). Теорема 2.2 доказана.
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