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Аннотация. В классических работах уравнения для полей гравитации и электромагнетизма
предлагаются без вывода правых частей. Здесь мы даём вывод правых частей и анализ тен-
зора энергии импульса в рамках уравнений Власова—Максвелла—Эйнштейна и рассматриваем
космологические модели типа Милна—МакКри и Фридмана. Это позволяет поставить Общую
теорию относительности (ОТО) на строгую математическую основу: вывести замкнутую систему
уравнений ОТО из принципа наименьшего действия и дать строгое определение космологических
решений. На основе этого объясняется ускоренное расширение Вселенной без лямбды Эйнштейна,
тёмной энергии и фантастических новых полей, как простой релятивистский эффект.
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1. Введение

Общая теория относительности (ОТО) является привлекательной и красивейшей физико-
математической теорией [2,18,22,28,41,47,65], но новейшее её развитие, связанное с ускоренным
расширением Вселенной, поставило новые вопросы как перед физиками, так и перед матема-
тиками. Ставки оказались очень высоки: хорошо подтверждённый эксперимент с Нобелевской
премией 2011 года показывал ускоренное расширение Вселенной, что противоречило закону все-
мирного тяготения. Чтобы хоть как-то объяснить это, были предприняты буквально героические
усилия: лямбда-член, обеспечивающий слабое отталкивание на коротких расстояниях и основ-
ной вклад на далёких. Вводили тёмную энергию, новые поля и новые частицы. Этот вызов всей
теоретической физике и математике потребовал пересмотра космологической части ОТО. Мы
следуем схеме Милна—МакКри, выводя их результаты, обосновывая и обобщая их с помощью
уравнения Власова—Пуассона и перенося на релятивистский случай.
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Обзор построен следующим образом. В разделе 2 и 3 даём схему вывода уравнений типа Вла-
сова на примере релятивистской гравитации и электродинамики, выводя уравнения Власова—
Максвелла—Эйнштейна из принципа наименьшего действия. В разделе 4 предлагается общема-
тематическая конструкция: переход от кинетического описания к гидродинамическому и в смысле
Гамильтона—Якоби. В разделе 5 эти идеи разделов 2, 3, 4 применяются к получению космологиче-
ских решений в нерелятивистском случае, обобщая и проясняя схему Милна—МакКри. Наконец,
в разделе 6 перенесение метода Милна—МакКри на релятивистский случай с примерами в раз-
делах 7, 8, 9, 10 показывает принципиальную возможность объяснения ускоренного расширения
Вселенной, являясь триумфом ОТО и её подтверждением.

2. Действие в Общей теории относительности и уравнения для полей

Пусть f(t,x,v,m, e)—функция распределения частиц по пространству x ∈ R
3, по скоростям

v ∈ R
3, массам и заряду e ∈ R в момент времени t ∈ R. Это означает, что число частиц в объёме

dxdvdmde равно f(t,x,v,m, e)dxdvdmde. Отметим, что в теории вероятностей для этой величины
используется термин плотности распределения, а мы пользуемся терминологией, устоявшейся в
кинетической теории и статистической физике. Рассмотрим действие:

S[gμν , Aμ] = −c

∫
mf(t,x,v,m, e)

√
gμνuμuνd

3xd3vdmdedt −

− 1

c

∫
ef(t,x,v,m, e)Aμu

μd3xd3vdmdedt + k1

∫
(R + Λ)

√−gd4x+ k2

∫
FμνF

μν√−gd4x, (2.1)

где c— скорость света. Здесь u— это четырёхмерная скорость, нулевая компонента которой — это
скорость света u0 = c, а три другие совпадают с трёхмерной, как это принято в теории относи-
тельности [2, 18, 22, 28, 41, 47, 65]: ui = vi (i = 1, 2, 3)— трёхмерная скорость, x0 = ct и xi (латин-
ские индексы i = 1, 2, 3) — координаты, gμν(x, t)—метрика (греческие индексы μ, ν = 0, 1, 2, 3),

Aμ(x, t)— 4-потенциал электромагнитного поля, Fμν(x, t) =
∂Aμ(x, t)

∂xν
− ∂Aν(x, t)

∂xμ
— электромаг-

нитные поля, R—полная кривизна, Λ—лямбда-член Эйнштейна (или просто лямбда) — знаме-

нитая лямбда Эйнштейна1, k1 = − c3

16πγ
и k2 = − 1

4πc
—константы [2, 18, 22, 28, 41, 47, 65], g—

определитель метрики gμν , γ —постоянная тяготения. По повторяющимся индексам, как обыч-
но, идёт суммирование. В действии (2.1) интегрирование ведётся, как обычно, по всей области
изменения параметров, т. е. по пространству x ∈ R

3, по скоростям v ∈ R
3, массам m ∈ R, m � 0,

зарядам e ∈ R и времени t ∈ R. Варьирование ведётся обычным способом [2, 18, 22, 28, 41, 47, 65].
Вид действия (2.1) удобен для получения уравнений Эйнштейна и Максвелла при варьиро-

вании по полям gμν и Aμ. Такой способ вывода уравнений Власова—Максвелла и Власова—
Эйнштейна из действия (2.1) использовался в работах [3, 9, 10, 12, 59, 61]. При варьировании (2.1)
по gμν получим уравнение Эйнштейна:

k1

(
Rμν − 1

2
gμν(R + Λ)

)√−g =

=

∫
m
f(t,x,v,m, e)

2
√

gαβuαuβ
uμuνvdm+ k2

(
−2F βνFαμgαβ +

1

2
FαβF

αβgμν
)√−g. (2.2)

Первое слагаемое правой части этого уравнения и является по определению тензором энергии-
импульса материи (оно выведено впервые в таком виде, видимо, в работах [3,9,12,61]), второе —

1Её Эйнштейн считал главной ошибкой своей жизни, но сейчас это пока — основной способ объяснять ускоренное
расширение Вселенной (хорошо проверенный эксперимент с Нобелевской премией 2011 года). Против введения,
в частности, лямбды и такого объяснения и направлен этот обзор.
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электромагнитная составляющая тензора энергии-импульса (известно [2,18,22,28,41,47,65]). По-
пытки выписать тензор энергии-импульса через функцию распределения предпринимались, на-
сколько нам известно, только в релятивистской кинетической теории для уравнения Власова—
Эйнштейна [3,9,10,12,16,23,33,34,37,38,50, 53, 59,61]. Уравнение электромагнитных полей полу-
чается варьированием (2.1) по Aμ и называется системой уравнений Максвелла:

k2
∂
√−gFμν

∂xν
=

1

c2

∫
euμf(t,x,v,m, e)d3vdmde. (2.3)

Мы получили из действия (2.1) уравнения для полей (2.2), (2.3). Чтобы получить замкнутые
уравнения, нужно выписать уравнение на функцию распределения, которая появилась в урав-
нениях (2.2), (2.3) из действия (2.1). Для этого нужно вывести уравнения движения частицы в
заданных полях. Соответствующее действие хорошо известно [2,18,22,28,41,47,65]. Отметим, что
это действие для частиц можно получить, подставив в первых двух слагаемых действия (2.1)
функцию распределения в виде δ-функции:

f(t,x,v,m, e) = δ(x − x(t))δ(v − dx(t)

dt
)δ(m −m′)δ(e − e′). (2.4)

Получаем, опуская штрихи, стандартное действие для частиц [2, 18, 22, 28, 41, 47, 65]:

S[x(t)] = −cm

∫ √
gμν(x(t), t)uμuνdt− e

c

∫
Aμ(x(t), t)u

μdt. (2.5)

При такой подстановке подразумевается, что трёхмерная скорость входит в четырёхмерную u,
как и раньше, формулой u = (c, v1, v2, v3), где c— скорость света. Кроме того, предполагается,

что трёхмерная скорость есть производная координаты по времени v =
dx

dt
, поэтому в левой

части (2.5) стоит только эта координата, по которой и нужно варьировать, как положено, по
Лагранжу. Обычное варьирование приводит к уравнениям Эйлера—Лагранжа, а потом к урав-
нениям для функции распределения.

3. Уравнения движения частиц в заданных полях, уравнение Лиувилля
и уравнение Власова—Максвелла—Эйнштейна

Воспользуемся инвариантностью первых двух слагаемых уравнения (2.5) относительно за-
мены t = φ(λ). Здесь λ—произвольный параметр. Такая инвариантность хорошо извест-
на [2,18,22,28,41,47,65], но представляется загадкой (и подарком) природы: самые фундаменталь-
ные взаимодействия — гравитационные и электромагнитные — обладают этим свойством, будучи
описываемыми лагранжианами (2.5) первой степени по скоростям. Перепишем с помощью этой
замены действие частиц (2.5):

S = −cm

∫ √
gμνuμuνdλ− e

c

∫
Aμu

μdλ (3.1)

и, варьируя по x(λ), получаем уравнение Эйлера—Лагранжа:

cm
d

dλ

[
gμνu

ν√
gηξuηuξ

+
e

c
Aμ

]
= cm

√
gηξuηuξ

∂gσν
∂xμ

uσuν +
e

c

∂Aν

∂xμ
uν . (3.2)

Уравнение (3.2) перепишем, обозначив через I = gηξ
∂xη

∂λ

∂xξ

∂λ
интеграл движения:

d2xμ

dλ2
+ Γμ

νη

dxη

dλ

dxν

dλ
=

e

mc2

√
IFμ

ν

dxnu

dλ
, (3.3)

здесь Γμ
νη — символ Кристоффеля:

Γμ
νη =

1

2
gμm

(
∂gmk

∂xν
+

∂gmν

∂xk
+

∂gkν
∂xm

)
.

Уравнение (3.3) отличается от приведённых в руководствах [2,18,22,28,41,47,65] наличием
√
I в

правой части: в этих руководствах дифференцирование идёт по собственному времени ds = dλ
√
I.

Это неудобно, так как для каждой частицы это собственное время индивидуально. Далее будет
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использована формула (3.3), которая обладает симметрией при замене x −→ αx, λ −→ αλ, что и
позволяет понизить её порядок. Для этого перепишем уравнение (3.3) в виде⎧⎪⎪⎨

⎪⎪⎩

dxμ

dλ
= wμ,

dwμ

dλ
= −Γμ

νηw
ηwν +

e
√
I

mc2
Fμ
ν w

ν .

(3.4)

Избавляемся от λ, поделив остальные уравнения на первое из уравнений системы (3.4). Так

как x0 = ct пропорционально времени, обозначим
wμc

w0
=

dxμ

dt
= uμ —четырёхмерная скорость,

где u0 = c. При этом из-за симметрии, описанной выше, можно избавиться от уравнения
dw0

dt
и

написать уравнения по xi, ui (i = 1, 2, 3). Такое понижение порядка описано для гравитации в
книгах Фока [28,41] и Вайнберга [2,65]. Там этот переход в уравнениях приведён для гравитации,
где уравнения не отличаются для параметра λ и собственного времени s.Однако если добавляется
электромагнетизм, то отличие заключается как раз в появлении корня в правой части (3.3),
который обеспечивает необходимую симметрию: вторую степень по скоростям в правой части
второго уравнения (3.4). Это понижение переходом к собственному времени нам необходимо, так
как наша цель — получить уравнение на функцию распределения f(t,x,v,m, e). Тогда⎧⎪⎪⎨

⎪⎪⎩

dxi

dt
= vi,

dvi

dt
= Gi,

(3.5)

где через Gi обозначено следующее выражение:

Gi = −Γi
ηνu

ηuν +
vi

c
Γ0
ηνu

ηuν +
e
√
J

mc2

[
F i
ηu

η − vi

c
F 0
η u

η

]
,

J = gνξu
νuξ, u = (c,v), v = (v1, v2, v3)— трёхмерная скорость.

Мы получили уравнения движения заряженных частиц в электромагнитных и гравитационных
полях в релятивистской форме из принципа наименьшего действия.
В заключение выпишем уравнение Лиувилля для функции распределения f(t,x,v,m, e) и си-

стемы (3.5):
∂f

∂t
+ vi

∂f

∂xi
+

∂(Gif)

∂vi
= 0. (3.6)

Уравнения (3.6), (2.2) и (2.3) образуют систему уравнений Власова—Максвелла—Эйнштейна.
Это замкнутая система уравнений релятивистской электродинамики и гравитации. Общий смысл
уравнений типа Власова именно таков: они позволяют замкнуть систему электродинамики (урав-
нение Власова—Максвелла) и гравитации (уравнение Власова—Эйнштейна) и вывести их из прин-
ципа наименьшего действия.

4. Общий переход к гидродинамике

Общий переход рассмотрен в [9, 10, 59]. Рассмотрим произвольную систему нелинейных обык-

новенных дифференциальных уравнений:
dx

dt
= v(x), x ∈ R

n, v(x) ∈ C1(Rn). Перепишем её в

виде x = (q, p), q ∈ R
m, p ∈ R

n−m:
dq

dt
= w(q, p),

dp

dt
= g(q, p)

Выпишем уравнение Лиувилля для функции распределения f(t, q, p):
∂f

∂t
+

∂(wif)

∂qi
+

∂(gjf)

∂pj
= 0.

Выполним гидродинамическую подстановку

f(t, q, p) = ρ(q, t)δ(p −Q(q, t)). (4.1)
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Получаем:
∂f

∂t
=

∂ρ(q, t)

∂t
δ(p −Q(q, t))− ρ(q, t)

∂δ(p −Q(q, t))

∂pi

∂Qi(q, t)

∂t
,

∂(wi(q, p)f)

∂qi
=

∂(wi(q,Q)ρ(q, t))

∂qi
δ(p −Q(q, t))− ρ(q, t)wi(q,Q(q, t))

∂δ(p −Q(q, t))

∂pk

∂Qk(q, t)

∂qi
,

∂gj(q, p)f

∂pj
= ρ(q, t)gj(q,Q(q, t))

∂δ(p −Q(q, t))

∂pj
.

При дифференцировании мы воспользовались правилами дифференцирования обобщённых
функций [15]. Собирая множители при дельта-функции и её производных, получаем систему
уравнений: ⎧⎪⎪⎨

⎪⎪⎩

∂ρ

∂t
+

∂(ρwi(q,Q))

∂qi
= 0,

ρ(q, t)

(
∂Qj(q, t)

∂t
+ wi(q,Q(q, t))

∂Qj(q, t)

∂qi
− gj(q,Q(q, t))

)
= 0.

(4.2)

Гидродинамическая подстановка была изобретена в рамках уравнений Власова [16], а для про-
извольных систем обыкновенных дифференциальных уравнений введена в [9, 10, 59]. Для га-
мильтоновых систем из неё получается уравнение Гамильтона—Якоби естественным способом:
проходит подстановка для скоростей в виде градиента функции, которая оказывается действи-
ем [3, 12, 19, 20, 23, 48, 61].
А именно, уравнение Лиувилля в гамильтоновом случае имеет вид:

∂f

∂t
+

(
∂H

∂p
,
∂f

∂x

)
−

(
∂H

∂x
,
∂f

∂p

)
= 0.

Гидродинамическая подстановка (4.1) даёт систему (4.2), где wi(q, p) =
∂H(q, p)

∂pi
, gj(q, p) =

−∂H(q, p)

∂qj
. Полагая Q(t,x) = ∇W (t,x), получаем уравнения неразрывности и Гамильтона—

Якоби ⎧⎪⎨
⎪⎩

∂ρ

∂t
+ div(ρ∇W ) = 0,

∂W

∂t
+H(∇W,x) = 0.

Уравнения (4.2) были названы В.В. Козловым в гамильтоновом случае уравнениями Лэм-
ба [19, 20], из них и были получены уравнения Гамильтона—Якоби Маделунгом [48] в частном
случае нерелятивистского гамильтониана и В.В. Козловым [19, 20] в общем случае гамильтоно-
вых систем. Общая подстановка (4.1) с разными размерностями и отождествление системы (4.2)
с уравнениями с одинаковой главной частью в терминах Куранта [39] — видимо, недавняя ис-
тория [3, 12, 61]. Подстановка (4.1) и уравнения (4.2) имеют яркий геометрический смысл: это
движение m-мерных поверхностей в n-мерном пространстве в силу исходной динамической си-
стемы в эйлеровых координатах. Так механика помогает геометрии, проясняется и общая теория
УрЧП: полностью описан класс уравнений, где работает метод характеристик — это уравнения с
одинаковой главной частью. Получен и простейший вывод уравнений Гамильтона—Якоби, кото-
рый мы используем для прояснения и обоснования метода Милна—МакКри в разделе 5 в нереля-
тивистском случае, а в релятивистском случае в разделе 6. Это позволит обосновать ускоренное
расширение Вселенной.

5. Уравнение Власова—Пуассона, космологические решения
и нерелятивистская гидродинамика с лямбда-членом

Воспроизведём простейшее нерелятивистское космологическое решение Милна—МакКри с до-
бавкой лямбда-члена в форме уравнения Власова—Пуассона. Нерелятивистский случай для тя-
готения соответствует действию [22,47]

S[U ] =

∫ [
mv2

2
−mU

]
f(t,x,v,m)dxdvdmdt − 1

8πγ

∫ (
(∇U)2 − 2λU

)
dxdt. (5.1)
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Варьируя по U, получаем уравнения Пуассона с лямбда-членом:

�U = 4πγ

∫
mf(t,x,v,m)dvdm − λ. (5.2)

Мы видим, что для получения замкнутой системы уравнений нужно получить уравнение
для функции распределения, появившейся в уравнении Пуассона (5.2). Действие для одной ча-
стицы получается из первого слагаемого в (5.1) при выборе f(t,x,v,m, e) = δ(m − M)δ(x −
y(t))δ

(
v − dy

dt

)
. Этa формальная подстановка — правило для получения правильных лагранжи-

анов из действия (5.1), работает для вывода любых систем типа Власова, и мы широко пользо-
вались этим [3,6,7,9,10,12,14,57–63] и будем пользоваться в дальнейшем. Получаем стандартное
действие:

S1[y] =

∫ [
My′2

2
−MU(y)

]
dt.

Варьируем, как обычно в механике, и получаем уравнение Ньютона:

y′′ − ∂U

∂y
= 0.

Переходим к уравнению Лиувилля для соответствующей системы обыкновенных дифференци-
альных уравнений: {

ẏ = v,

v̇ = −∂U

∂x
,

и тогда получаем уравнение на функцию распределения, дополняя уравнение (5.2):
∂f

∂t
+

(
v,

∂f

∂x

)
−

(
∂U

∂x
,
∂f

∂v

)
= 0. (5.3)

Система (5.2), (5.3) и есть система уравнений Власова—Пуассона для гравитации с лямбда-
членом, который и призван описать ускоренное расширение.
Мы провели подробный вывод уравнения Власова—Пуассона в простейшем случае, который

иллюстрирует правильность вывода уравнений типа Власова и в более сложных релятивистских
и слаборелятивистских случаях. Этот способ вывода уравнений типа Власова отрабатывался в
статьях [3, 6, 7, 9, 10, 12, 14, 57–63] и является пока единственным способом получать в замкнутой
форме уравнения электродинамики и гравитации из принципа наименьшего действия. По сути
он следует всем учебникам по теории поля (см., например, [2, 18, 22, 28, 41, 47, 65]), где вводятся
два действия: для полей и для частиц. Наша небольшая добавка с уравнениями типа Власова [9,
10, 59] связала эти два действия подстановкой дельта-функции в одну сторону и переходом к
интегрированию с помощью функции распределения в обратную.
Этот переход аналогичен связи лагранжевых и эйлеровых координат в кинетической теории.

Это позволило заодно получать правые части в уравнениях для полей (тензор энергии-импульса
в уравнениях Эйнштейна). Это поставило на математическую платформу ОТО, упрощая её и
давая замкнутую систему уравнений из принципа наименьшего действия (2.1), (2.3). Это упро-
стило и сделало математически строгой и всю гравитацию и электродинамику именно с помощью
уравнения Власова.
Правильность такой схемы вывода уравнений типа Власова была сначала проверена на уравне-

ниях Власова—Пуассона и уравнениях Власова—Максвелла, где ответ был известен, хотя правые
части уравнений для полей не были выведены, и только после этого схема вывода была перенесена
на уравнение Власова—Эйнштейна. Это важно, потому что как зарубежные так, и наши исследо-
ватели брали тензор энергии-импульса необоснованно, что приводило к заведомо неправильным
уравнениям для полей. Более того, сравнение релятивистских действий с нерелятивистскими и
слаборелятивистскими позволило твёрдо установить все коэффициенты действия (2.1), а потому
и уравнения для полей.
Дальнейшая наша цель — получение космологических решений, и сейчас мы выведем урав-

нения Милна—МакКри [49] из уравнения Власова. Система (5.2), (5.3) имеет точное гидроди-
намическое следствие, т. к. допускается (согласно более общей теории раздела 4) гидродина-
мический вид функции распределения как точное следствие (5.2), (5.3). Пусть f(t,x,v,m) =
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ρ(t,x,m)δ(v −w(t,x,m)). Тогда

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+ div(ρw) = 0,

∂wk

∂t
+ wi

∂wk

∂xi
+

∂U

∂xk
= 0,

�U = 4πγ

∫
mρdm− λ.

Это означает, что если ρ(t,x,m), w(t,x,m) и U(t,x) удовлетворяют этой системе уравнений,
то f(t,x,v,m) = ρ(t,x,m)δ(v −w(t,x,m)) и U(t,x) удовлетворяют системе уравнений Власова—
Пуассона (5.2), (5.3).

Пусть wk(t,x,m) =
∂W

∂xk
. Такая подстановка проходит, также согласно общей теории из разде-

ла 3, и получается точное следствие Гамильтона—Якоби системы Власова—Пуассона (5.2), (5.3)
с лямбда-членом:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+ div(ρ∇W ) = 0,

∂W

∂t
+

(∇W )2

2
+ U = 0,

�U = 4πγ

∫
mρdm− λ.

(5.4)

Эта система уравнений обобщает систему Милна—МакКри [49], где она приведена сразу в
изотропном случае с функциями, зависящими только от радиуса, но и c зависимостью плотности
и константы Хаббла от массы. Мы вывели эту систему из системы Власова—Пуассона, которую
мы получили из принципа наименьшего действия: таким образом, мы обосновали и обобщили
систему Милна—МакКри [49], которая признанным образом даёт космологические решения в
нерелятивистском случае. Этим мы подготовили почву для перехода к релятивизму ОТО.
Отметим, что если W есть функция только радиуса, то скорость даёт как раз обобщенный

разлёт Хаббла: w = ∇W = W ′(r)
x

r
. Скорость разбегания

W ′(r)
r

называется постоянной Хаббла.
Обратное тоже верно: любой разлёт по Хабблу, если скорость пропорциональна расстоянию, озна-
чает, что скорость есть градиент некоторой функции. Этим космологическое расширение связыва-
ется с гидродинамическим и даже следствием Гамильтона—Якоби уравнения Власова—Пуассона.
В космологических решениях плотность не зависит от пространственной координаты. Тогда в пер-

вом уравнении неразрывности переменные разделяются, и из него получаем
1

ρ

∂ρ

∂t
= −3H(m, t),

а также �W = 3H(m, t). Мы покажем ниже, что H(m, t) =
W ′(r)

r
совпадает с постоянной Хабб-

ла. Из третьего уравнения имеем уравнение: �U = 4πγ
∫
mρ(m, t)dm − λ. Решая два последних

уравнения в случае, когда U и W зависят только от радиуса, имеем

W (r,m, t) =
H(m, t)

2
r2 +

A(m, t)

r
+B(m, t),

U(r, t) =
4πγ

∫
mρ(m, t)dm− λ

6
r2 +

C(t)

r
+D(t).

Мы видим, дифференцируя W (r,m, t), что H(m, t) =
W ′(r)

r
, т. е. что это действительно постоян-

ная Хаббла. Здесь A(m, t), B(m, t), C(t), D(t)—произвольные функции. Получаем, подставляя
эти выражения во второе уравнение системы (5.4):

1

2

∂H

∂t
r2 +

1

r

∂A

∂t
+

∂B

∂t
+

H2

2
r2 − AH

r
+

A2

2r4
+

4πγ
∫
mρ(m, t)dm− λ

6
r2 +

C

r
+D = 0
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Приравнивая коэффициенты при степенях радиуса (как это делали Милн и МакКри [49]),

получаем A(m, t) = 0, C(t) = 0,
∂B

∂t
+D(t) = 0. Получаем систему уравнений

⎧⎪⎪⎨
⎪⎪⎩

∂ρ(m, t)

∂t
+ 3H(m, t)ρ(m, t) = 0,

∂H(m, t)

∂t
+H2 +

4πγ

3

∫
mρ(t,m)dm− λ

3
= 0.

(5.5)

Так как скорость разбегания �w = ∇W = H�r, имеем:

1) условие расширения Вселенной: H � 0;

2) условие ускоренного расширения:
∂H(m, t)

∂t
� 0, т. е. H2 +

4πγ

3

∫
mρ(m, t)dm− λ

3
.

Из второго условия видим определяющую роль лямбды для ускоренного расширения. Мы
также видим: так как ρ(m, t) обязано, вообще говоря, зависеть от массы, то и «постоянная»
Хаббла H(m, t), вообще говоря, зависит от массы.
Мы получили систему уравнений (5.5), которая в принципе объясняет как изменение посто-

янной Хаббла, так и её «напряжения» («Constant Hubble Tension» [36]) именно зависимостью от
времени и от массы: уравнения (5.5) можно считать точным уравнением константы Хаббла с
лямбда-членом в не релятивистском случае.
Если, однако, H не зависит от массы (что второе из уравнений (5.5) допускает, как это и пред-

полагали Милн и МакКри в [49]), мы можем свести систему (5.5) к системе двух обыкновенных

уравнений. Обозначим K(t) =
4πγ

3

∫
mρ(m, t)dm и получим:

⎧⎪⎨
⎪⎩

dK

dt
+ 3HK = 0,

dH

dt
+H2 +K − λ

3
= 0.

(5.6)

Первое из уравнений (5.6) есть в точности уравнение (2.4) Милна—МакКри [49], а второе из
уравнений (5.6) — это их уравнение (3.2) (с лямбда-членом), но полученное без всяких предпо-
ложений из принципа наименьшего действия как его точное следствие. Система (5.6) решается
точно (делением и исключением времени оно сводится к уравнению Бернулли), но нам достаточ-
но и фазового портрета, который исследовался в [61,63]. Условия ускоренного расширения — это

узкая область под параболой H � 0, K � 0, H2 +K − λ

6
� 0.

Система (5.5) сводится к системе обыкновенных дифференциальных уравнений и в более об-
щем случае, когда H(m, t) кусочно-постоянна на конечном числе интервалов Ii. Пусть значение

H(m, t) на этом интервале равно H(i, t), i = 1 . . . r. Обозначая m(i, t) =
4πγ

3

∫
Ii

mρ(m, t)dm, полу-

чаем систему 2r обыкновенных дифференциальных уравнений
⎧⎪⎪⎨
⎪⎪⎩

dm(i, t)

dt
+ 3H(i, t)m(i, t) = 0, i = 1 . . . r,

dH(i, t)

dt
+H(i, t)2 +Σk=1...rm(k, t)− λ

3
= 0.

В литературе широко обсуждается напряжение константы Хаббла («Constant Hubble Tension»,
см. [36]), оно выражает несоответствие постоянной Хаббла наблюдениям и вопросам, от чего
она вообще может зависеть. Получение точного решения следствия действия (2.1) для постоян-
ной Хаббла в принципе может убрать это несоответствие. Наша цель — аналог теории Милна—
МакКри для динамики в релятивистском случае: этот метод приведёт к построению космоло-
гических решений и объяснит ускоренное расширение Вселенной без введения лямбды и тёмной
энергии.
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6. Общая теория космологических решений: вместо тёмной энергии
и лямбда-члена ясная классическая математика

и простая гамильтонова механика

Перенесём теорию Милна—МакКри из предыдущего раздела на случай общего гамильтониана
H(p, x). Выпишем уравнение Лиувилля:

∂f

∂t
+

(
∂H

∂p
,
∂f

∂x

)
−

(
∂H

∂x
,
∂f

∂p

)
= 0.

Сделаем гидродинамическую подстановку сразу в градиентной форме f(t,x, p) = ρ(t,x)δ(v −
∇W (t,x)). Отметим, что именно в такой форме её отметил В.П. Маслов (см. [23, с. 29]). Получаем
при этом уравнения неразрывности и Гамильтона—Якоби⎧⎪⎨

⎪⎩

∂ρ

∂t
+ div(ρ∇W ) = 0,

∂W

∂t
+H(∇W,x) = 0.

Если плотность не зависит от времени (общепринятое космологическое предположение), то пе-
ременные в уравнении неразрывности разделяются, и появляется постоянная Хаббла:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂ρ(t)

∂t
+ 3h(t)ρ(t) = 0,

�W = 3h(t),

∂W

∂t
+H(∇W,x) = 0.

Последние два уравнения — обобщенная система Гурса. Для них можно выписать условия сов-

местности: 3
∂h(t)

∂t
+�H(∇W,x) = 0.

Пусть гамильтониан H(p, x) зависит от этих аргументов через изотропные переменные p2

и (p, x): H(p, x) = H((p, x), p2) (это инвариантность относительно вращений). Тогда при под-
становке Гамильтона—Якоби p = ∇W, W = W (r) гамильтониан приобретает вид H(p, x) =

H((p, x), p2) = H(rWr,W
2
r ). Скорости имеют вид vi =

∂H

∂pi
=

∂H

∂Wr

xi

r
. Это хаббловское расши-

рение. Вывод: это — весьма общий и при этом общематематический факт, который справедлив
даже без «космологического» предположения об однородности пространства (когда плотность не
зависит от пространственной переменной): тогда константа Хаббла тоже зависит от простран-

ственной координаты и имеет явный вид h(r, t) =
∂H

∂Wr

1

r
. Это обобщение может быть полезно,

так как иногда наблюдают константу Хаббла, зависящую от радиуса.
1. Уравнение неразрывности принимает вид

∂ρ

∂t
+

∂

∂xi

(
ρ
∂H

∂pi

)
= 0 или

∂ρ

∂t
+

∂

∂xi

(
ρ
∂H

∂Wr

xi

r

)
= 0.

2. В космологическом случае, когда плотность ρ = ρ(m, t) не зависит от пространственной
координаты, переменные разделяются, и появляется «постоянная» интегрирования h(t), которая
называется постоянной Хаббла и совпадает с появившейся выше:

∂ρ

∂t
+ 3ρh = 0,

∂

∂xi

(
∂H

∂Wr

xi

r

)
= 3h.

3. Уравнение
∂

∂xi

(
∂H

∂Wr

xi

r

)
= 3h имеет общее решение

∂H

∂Wr
= hr +

A(t)

r2
.

4. В космологических моделях «постоянную» A(t) можно положить равной нулю, исключая

особенность в нуле. При этом, подставляя это выражение для скоростей vi =
∂H

∂pi
=

∂H

∂Wr

xi

r
из

раздела 3, получаем vi = h(t)xi, что полностью соответствует общепризнанному представлению
о «постоянной Хаббла» h: чем дальше галактика, тем быстрее она убегает. Мы видим, что такое
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разбегание — общематематический факт из гамильтоновой динамики инвариантных гамильтони-
анов.
5. Решая уравнение разделов 5, 6

∂H

∂Wr
= hr относительно Wr, получаем Wr = F (hr), где F —

это функция, обратная к
∂H

∂Wr
(теорема об обратной функции).

6. Получаем следующую систему уравнений (задача Гурса):⎧⎨
⎩

Wr = F (hr),

−∂W

∂t
= H(P, x) = H((p, x), p2) = H(rWr,W

2
r ) = H(rF (hr), F (hr)2).

7. Переписывая все уравнения вместе, получаем следующую систему уравнений:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+ 3ρh = 0,

∂W

∂r
= F (hr),

∂W

∂t
+H(rF (hr), F (hr)2) = 0.

(6.1)

8. Выпишем условие совместности последних двух уравнений (это обычный ход в системе
Гурса). Это условие совместности имеет вид

∂2W

∂r∂t
=

∂2W

∂t∂r
, − ∂

∂t
F (hr) =

∂

∂r
H(rF (hr), F (hr)2).

Мы должны применить эти выкладки в случае ОТО для изотропной метрики

gαβ =

⎛
⎜⎜⎝

e(r, t) a(r, t)x a(r, t)y a(r, t)z
a(r, t)x b(r, t) + d(r, t)x2 d(r, t)xy d(r, t)xz
a(r, t)y d(r, t)xy b(r, t) + d(r, t)y2 d(r, t)yz
a(r, t)z d(r, t)xz d(r, t)yz b(r, t) + d(r, t)z2

⎞
⎟⎟⎠ .

Нам потребуется и обратная матрица: частицы в импульсах описываются метрикой с верхними
индексами, а поля — нижними:

gαβ = K ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b+ d(x2 + y2 + z2) −ax −ay −az

−ax g11
a2xy − edxy

b

a2xz − edxz

b

−ay
a2xy − edxy

b
g22

a2yz − edyz

b

−az
a2xz − edxz

b

a2yz − edyz

b
g33

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Здесь

K =
1

be− (a2 − ed)(x2 + y2 + z2)
,

g11 =
1

b
(−a2y2 − a2z2 + eb+ edy2 + edz2),

g22 =
1

b
(−a2x2 − a2z2 + eb+ edx2 + edz2),

g33 =
1

b
(−a2x2 − a2y2 + eb+ edx2 + edy2).

Как известно в ОТО, гамильтониан вычисляется по массовому соотношению gαβpαpβ = (mc)2

по формуле −H(x, p) = cp0. Поэтому решим квадратное уравнение относительно p0:

g00p20 + 2gi0pip0 + gijpipj = (mc)2.

Физический смысл имеет корень, взятый с минусом [2, 18, 22, 28, 41, 47, 65]:

p0 =
1

e

(
−2a(p1x+ p2y + p3z)−

√
(a2 − ed)(p1x+ p2y + p3z)2 + e((mc)2)− bp2

)
.
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Здесь использовано обозначение p2 = p21+p22+p23. Сделаем подстановку p = ∇W (r, t), Wt =
∂W

∂t
=

−H(x, p) = cp0 и выпишем уравнение Гамильтона—Якоби:

Wt = −H =
c

e

(
−arWr −

√
W 2

r (a
2r2 − eb− dr2e) + e(mc)2

)
.

Получаем следующую систему уравнений для этого известного [2, 18, 22, 28, 41, 47, 65] гамильто-
ниана ОТО—частный случай системы (6.1):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+ 3hρ = 0,

μ∂W
∂r√

e(mc)2 + μ
(
∂W
∂r

)2 = K,

∂W

∂t
+

c

e

∂W

∂r
ar +

c

e

√
e(mc)2 + μ

(
∂W

∂r

)2

= 0,

(6.2)

где μ(r, t) = r2(a2 − de)− be, K(m, r, t) =
(e
c
h− a

)
r—безразмерный радиус-вектор r.

Эту систему уравнений следует дополнить уравнениями Эйнштейна для полей в изотропном
случае, т. е. на метрические коэффициенты a, b, d, e. Но выведем следствия уравнений (6.2). Ре-
шаем среднее уравнение системы (6.2) относительно Wr, получаем

Wr =
Kemc√

e(μ2 −K2μ)
.

Подставляя это выражение в нижнее уравнение (Гамильтона—Якоби), получаем

Wt = −mc2(arK + μ)√
e(μ2 −K2μ)

.

Тогда, приравнивая вторые частные производные (условие совместности):
∂2W

∂r∂t
=

∂2W

∂t∂r
. Пере-

пишем выражения в удобном виде: t =
mcT

Z
, Wr =

mcQ

Z
, где Z = e(μ2 −K2μ), T = −c(arK + μ),

Q = eK, K =
(e
c
h− a

)
r, μ(r, t) = r2(a2 − de)− be. Упростим T :

T = e(cd − ah)r2 + ebc. (6.3)

Здесь все компоненты метрики суть функции (r, t) радиус-вектора и времени, а постоянная Хаб-
бла есть, вообще говоря, функция (m, t) времени и массы. Получаем уравнение

2ZQt −QZt = 2ZTr − TZr. (6.4)

Это и есть общее соотношение на коэффициенты метрики в изотропном случае, которое дают
космологические решения.
Все три функции этого уравнения суть полиномы по r, если коэффициенты метрики — сами

полиномы по r. Тогда можно приравнять коэффициенты при степенях r, что и будет обобщением
метода Милна—МакКри.

7. Пример. Коэффициенты метрики —функции только времени

Рассмотрим случай, когда коэффициенты метрики есть функции только от времени: Z = z4r
4+

z2r
2 + z0, T = t2r

2 + t0, Q = q1r. Получаем три уравнения при пятой, третьей и первой степенях:

2z4q1t − z4tq1 = 0,
2z2q1t − z2tq1 = 2z2t2 − 4z4t0,
2z0q1t − z0tq1 = 4z0t2 − 2z2t0.

(7.1)

Первое уравнение интегрируется:
q1√
z4

= const = I(m), (7.2)
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где I(m)— безразмерный интеграл, причём q1 =
e2

c
h−ae, z4 = e(a2 − de)2 − e(a2 − de)

(e
c
h− a

)2
.

Остальные коэффициенты в (7.1): z2 = −2be2(a2 − de) + be2
(e
c
h− a

)2
, z0 = e(be)2, t2 = −c(a2 −

de) − ca
(e
c
h− a

)
= cde− ca2 − aeh+ ca2 = e(cd− ah), t0 = cbe.

Особый интерес представляет последнее из уравнений (7.1), т. к. оно содержит уравнение на
постоянную Хаббла, имеющее вид

∂h

∂t
+ h2 = λ(a, b, d, e, h).

Отклонение от свободного движения (метрики Минковского и модели Фридмана) λ(a, b, d, e, h)
должно дать ускоренное расширение в терминах метрики, если оно положительно. Для следую-
щего примера метрики, обобщающей модель Фридмана—Леметра—Робертсона—Уокера (ФЛРУ),

λ(a, b, d, e, h) =
hbt
b
.

Итак, мы построили общую теорию движения материи в космологических решениях в изо-
тропной метрике. Для окончания нужны ещё движения полей в заданной метрике по уравнениям
Эйнштейна.
Рассмотрение частных случаев представляет значительный интерес: мы свели задачу к иссле-

дованию знака λ(a, b, d, e, h). Это и есть общее соотношение на коэффициенты метрики в изотроп-
ном случае, которые дают космологические решения. Если коэффициенты метрики — полиномы
по r, то все коэффициенты уравнения (3.3) тоже полиномы, и можно приравнять коэффициенты
при степенях r, что и будет обобщением метода Милна—МакКри.
В работе [4,56] рассмотрен случай, когда метрика есть функция только от времени. Здесь огра-

ничимся случаем, когда b(t) и d(t)—произвольные функции времени, но a = 0, e = 1. Отсылаем
за подробностями в общем случае к работе [4, 56].

8. Пример. Обобщённая модель Фридмана—Леметра—Робертсона—Уокера
(ФЛРУ)

Найдём обратную матрицу, обозначая её соответствующие компоненты большими буквами,

получим E = 1, A = 0, D = − d

b(b+ dr2)
, B =

1

b
. Это обобщает случай ФЛРУ [2,18,22,28,41,47,65].

Мы видим, что если уравнения для полей описываются метрическим тензором с нижними
индексами, которые входят в действие (2.1) (здесь это соответствует коэффициентам с большими
буквами), то необходимые уравнения для материи — с метрикой с верхними индексами. Получим
для движения материи уравнения (7.1) (см. [4, 56]):

2d2ht − h(d2)t − dt

(
h

c

)2

h = 0,

4bdht − 2(bd)th− bt
h3

c2
+ 2bdh2 = 0,

bht − bth+ bh2 = 0.

(8.1)

9. Пример. Диагонализация ФЛРУ

Приводя систему к диагональному виду относительно производных, получаем простую систе-
му, эквивалентную системе (8.1) (см. [8]):

dt = 2
d2c2

h
,

ht = −(2dc2 + h2),

bt = −(2dc2)
b

h
.

(9.1)

Из первого и третьего уравнения следует, что bdt − dbt = 0,
d

b
= −k—интеграл кривизны

(b = −a2 в обычных обозначениях для модели Фридмана). Мы автоматически оказались в случае
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постоянной кривизны k-модели Фридмана. При ускоренном расширении вселенной из второго
уравнения следует d ≺ 0. Так как b ≺ 0, имеем следствие k ≺ 0. Это пространство Лобачевского.
Итак, мы получили, что знак кривизны определяется из эксперимента и точного следствия

уравнений, получающихся из принципа наименьшего действия. Мы не только получили простое
объяснение ускоренного расширения Вселенной на основе системы (3.5) без введения лямбды
Эйнштейна, полей, темной энергии, но и впервые получили возможность надежно говорить о
знаке кривизны на основе хорошо проверенного эксперимента об ускоренном расширении Все-
ленной.
Удобно переписать систему (9.1), используя соотношение

d

b
= −k и обозначая b = −a2, где a—

параметр Фридмана:

ht + h2 = −2a2kc2,

at = −kc2
a3

h
.

(9.2)

В таком виде явно входит кривизна k = −d

b
— откуда из первого уравнения хорошо видно,

что кривизна должна быть отрицательна для ускоренного расширения Вселенной. Можно ис-
кать частное решение системы (9.1) в виде d = Ah2, откуда находим из условия совпадения двух

первых уравнений (9.1) A = − 1

c2
. Это решение является сепаратрисой двух режимов: под этой

параболой решения стартуют из начала координат, над ней решения начинаются вблизи верти-
кальной оси на плюс бесконечности и около. Уравнение на константу Хаббла принимает особенно
простой вид ht = h2. Уход на бесконечность за конечное время. Тот же ответ получается и из
уравнения (9.2), где подстановка уже должна выглядеть по-другому: a = Ah.
Где живёт наша Вселенная? Представляет значительный интерес изучить этот вопрос, а также

последовательно обобщать эти уравнения, добавляя оставшиеся коэффициенты и обобщая модель
Фридмана, сравнивая его и эти обобщения с экспериментальными данными. Первые прикидки
показывают хорошие результаты, устраняя проблему «Constant Hubble Tension» [36].
Подчеркнём, что (9.2) — это точное следствие уравнений Эйнштейна для космологического

движения релятивистских частиц в заданных полях, поэтому (9.2) является триумфальным обос-
нованием ОТО и объяснением ускоренного расширения Вселенной одновременно. Уместно про-
цитировать В.Л. Гинзбурга (его известный обзор 1999 года [17, 43]): «Эйнштейн счёл введение
лямбда-члена “неудовлетворительным с теоретической точки зрения” и отбросил его. Паули, в
примечании к своей известной книге, изданной по-английски в 1958 г., “целиком присоединился к
точке зрения Эйнштейна”. Л.Д. Ландау даже слышать не хотел о лямбда-члене, но добиться
от него причины такой позиции мне не удалось».
Интуиция не подвела великих физиков, как видно из этой статьи. Дело в том, что (9.2) яв-

ляется одновременно продвижением и 21-й проблемы Гинзбурга (экспериментальное подтвер-
ждение ОТО: эксперимент здесь — как раз ускоренное расширение), и 23-й проблемы (космо-
логическая проблема, лямбда-член). Можно сказать, глядя на первое из уравнений (9.2), что в
качестве лямбда-члена выступает метрика, умноженная на кривизну и квадрат скорости света,
а отрицательная кривизна обеспечивает отталкивание, как бы растягивая, расталкивая части-
цы: геодезические в пространствах отрицательной кривизны, как известно, разбегаются. Можно
назвать (9.2)) геометрическим объяснением отталкивания и ускоренного расширения.
Сразу возникают новые вопросы: как сопрячь ньютоново притяжение с геометрическим оттал-

киванием? Ясно, что здесь нужно расширять систему уравнений, включая уравнения для полей
по аналогии с нерелятивистским решением Милна—МакКри.
Ещё один интересный и актуальный вопрос: какова наша Вселенная с глобальной точки зре-

ния? Ибо известны многочисленные пространства отрицательной кривизны (в частности, гео-
дезические на пространствах отрицательной кривизны называются системами Д.В. Аносова и
обладают свойствами разбегания и перемешивания). Это позволило объяснить результаты по
ускоренному расширению Вселенной [52,54], за которые и была присуждена нобелевская премия
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в 2011 году. Результаты позволили завершить попытки вывода уравнений гравитации и электро-
динамики из принципа наименьшего действия [2,16,18,22,28,37,38,41,47,65]. В работах [4,8,56] бы-
ли получены уравнения, позволившие уверенно говорить о возможности объяснения ускоренного
расширения без лямбды, тёмной энергии, дополнительных полей на основе классической ОТО.

10. Пример. Диагонализация ФЛРУ с не равными нулю другими коэффициентами

Система принимает вид:

dt = −2
d2c2

he
+

4a2c2d

he2
− a4c2

he3
+

2aat
e

− a2et
e2

,

ht + h2 = −2dc2 + 2a2
c2

e2
− het

2e
,

bt = −2dc2b

eh
+

2ba2c2

he2
+

2bac

e
.

(10.1)

Отметим, что если a = 0, то кривизна по-прежнему — интеграл. Нужно дополнить эту систему
уравнениями Эйнштейна (2.2), но для импульсов: тогда мы сможем использовать и там форму
Гамильтона—Якоби, приведшую к (8.1), (9.1), (9.2), (10.1). Мы получаем выражение для импуль-
сов:

pμ =
∂L

∂uμ
= −mc

gμαu
α√

gηξuηuξ
. (10.2)

Переходя к верхним индексам умножением на обратную матрицу gμβ , получаем pβ =

−mc
uβ√

gηξuηuξ
. Теперь требуется обратить эту формулу, выразив скорости через импульсы, что-

бы написать действие через импульсы. Для этого в последней формуле поделим β-ю компо-

ненту на нулевую
pβ

p0
=

uβ

c
. В последней формуле необходимо исключить импульс с нуле-

вой компонентой через массовое уравнение pαpβg
αβ = (mc)2 и его решение относительно p0:

p0 = (−b ± √
b2 − 4aC)/(2a), где a = g00, b = 2pig

0i, C = pipjg
ij − (mc)2. При этом для со-

гласования с нерелятивистской динамикой берётся знак минус. Массовое уравнение получается
подстановкой тех же соотношений для исключения скоростей с учетом u0 = c pβ/p0 = uβ/c в
формулу (10.2) при μ = 0 (ср. [2, 18, 22, 28, 41, 47, 65]).
Уравнение для полей останется тем же самым (2.2) с заменой на интегрирование по импульсам

с использованием формул f(t,x,v,m)dvdm = f(t,x,p,m)dpdm. Каждая из двух этих величин —
это число частиц в элементе объёма, что является инвариантом при замене переменных. Урав-
нение Эйнштейна (2.2) упрощается и переписывается:

k1

(
Rμν − 1

2
gμν(R +Λ)

)√−g = c

∫
m
f(t,x,p,m)

2
√
gμνuμuν

uμuνdpdm. (10.3)

Выражение в импульсах:

k1

(
Rμν − 1

2
gμν(R+ Λ)

)√−g =
c

2

∫
f(t,x,v,m)

pμpν√
(p0)2

dpdm. (10.4)

Выражение в нижних индексах, имея в виду связь с функцией Гамильтона—Якоби:

k1

(
Rμν − 1

2
gμν(R+ Λ)

)√−g =
c

2

∫
f(t,x,p,m)

pμpν√
(p0)2

dpdm. (10.5)

Получается следующий план действий. Написать систему уравнений Власова—Эйнштейна в
импульсах, рассмотреть её изотропную форму и постараться решить эту систему. Сделаем гид-
родинамическую подстановку f(t,x,p,m) = ρ(m, t)δ(p −P(t,x,m)). Получаем из (10.5)

k1

(
Rμν − 1

2
gμν(R+ Λ)

)√−g =
c

2

∫
ρ(m, t)

PμPν√
(P 0)2

dm. (10.6)
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Теперь полагаем Pμ =
∂W

∂xμ
, W = W (t, r). Получаем

k1

(
Rμν − 1

2
gμν(R + Λ)

)√−g =
c

2

∫
∂W

∂xμ
∂W

∂xν
ρ(m, t)√
(P 0)2

dm. (10.7)

Здесь
∂W

∂xi
= Wr

xi

r
, i = 1, 2, 3. Из (10.7) следует, что нужно аккуратно посчитать P 0 с учётом (6.3)

и вообще учесть (6.3), переходя от изотропного случая (10.7) к космологическому изотропному
случаю уравнений Эйнштейна:

P 0 = Pμg
μ0 =

∂W

∂xμ
gμ0 =

∂W

∂x0
e+

∂W

∂xk
axk = mcT

e

c
√
Z

+
∂W

∂r
axk

xk
r

= mcT
e

c
√
Z

+mcQ
ar√
Z

=

=
1√
Z
(meT +mcQar) =

1√
Z
(−mec(aK + μ) +mceKar) = − 1√

Z
mecμ,

∂W

∂x0
=

1√
Z
meT,

∂W

∂xk
=

∂W

∂r

xk
r

= mceK
1√
Z

xk
r
. (10.8)

Мы получаем вместо (10.7) в изотропном случае следующий вариант уравнений Эйнштейна в
космологическом изотропном случае:

k1

(
R00 − 1

2
g00(R+ Λ)

)√−g =
c

2

∫
∂W

∂x0
∂W

∂x0
ρ(m, t)√
(P 0)2

dm =
c

2

∫
1√
Z
(meT )2

ρ(m, t)√
(mecμ)2

dm =

=
1

2

∫
1√
Z

(c(aK + μ))2 e
mρ(m, t)√

(μ)2
dm =

c2e

2
√

(μ)2

∫
1√
Z

(aK + μ)2 mρ(m, t)dm =

=
c2

2
√

(e(cd − ah)r2 + ebc)2

∫ (
e(cd − ah)r2 + ebc

)2
e
mρ(m, t)√

Z
dm =

=
c2

2
√

(e(cd − ah)r2 + ebc)2

∫ (
e(cd − ah)r2 + ebc

)2
e

mρ(m, t)√
μ2e− μK2e

dm,

k1

(
R0k − 1

2
g0k(R+ Λ)

)√−g =
c

2

∫
∂W

∂x0
∂W

∂xk
ρ(m, t)√
(P 0)2

dm =

=
c

2

∫
1√
Z
(meT )

(
mceK

xk
r

) ρ(m, t)√
(mecμ)2

dm =
c2exk

2r
√

(μ)2

∫
1√
Z
(aK + μ)Kmρ(m, t)dm,

k1

(
Rmk − 1

2
gmk(R + Λ)

)√−g =
c

2

∫
∂W

∂xm
∂W

∂xk
ρ(m, t)√
(P 0)2

dm =

=
c

2

∫
1√
Z

(
mceK

xm
r

)(
mceK

xk
r

) ρ(m, t)√
(mecμ)2

dm =
c2exk

2r
√

(μ)2

∫
1√
Z
K2mρ(m, t)dm. (10.9)

У нас уже есть выражения (6.3) для Wr и Wt через метрику. Осталось написать левую часть.
Мы получили выражение для правой части уравнений Эйнштейна, из которых видно, что удоб-

но всё делать в сферических координатах. При этом независимых уравнений оказывается как раз
два, причём справа стоят полиномы четвёртой степени по r. Поэтому способ решения этих урав-
нений — разложение по r в квадрате должно оборваться и дать замкнутую систему уравнений.
Такой же метод применим и к уравнениям (6.4) для частиц. Такова программа дальнейших ис-
следований.

11. Заключение

Уравнения (8.1), (9.1), (9.2) убедительно показывают, что ускоренное расширение — это про-
стой релятивистский эффект, так как они являются точными космологическими следствиями
классического лагранжиана Эйнштейна ОТО для движения частиц в заданных полях.
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Кроме того, ускоренное расширение даёт однозначно, что наша Вселенная — это пространство
Лобачевского. Это завершает усилия многих поколений учёных [2,17,18,22,28–30,32,40–43,47,65]
и ставит новые задачи.
Возникают вопросы и теоретические по уточнению модели Фридмана, и вопросы сравнения с

экспериментом [2–18,22, 23, 28–34,36–43,47, 49–54,56–65]. В частности, в этих работах напряжен-
но обсуждаются вопросы о несоответствии константы Хаббла экспериментам («Constant Hubble
Tension»), которые предлагаемыми результатами выводятся на новый уровень.
Но мы решили и ещё несколько задач «по дороге». ОТО поставлено на твердую математиче-

скую основу: уравнения ОТО в форме уравнений Власова—Эйнштейна выведены из принципа
наименьшего действия и имеют замкнутую форму. Строго определены космологические реше-
ния метода Милна—МакКри и получены общематематические гидродинамические следствия и
следствия Гамильтона—Якоби уравнений как Лиувилля, так и типа Власова.
Предъявленное обоснование ускоренного расширения Вселенной требует дальнейших как тео-

ретических и чисто математических исследований, связанных с изотропной версией уравнений
Эйнштейна, так и тщательного сравнения с экспериментами, обещая стать самым точным под-
тверждением классической Общей теории относительности.
Мы по сути сделали только первые шаги: в рамках модели Фридмана способ Милна—МакКри

дал замкнутую систему обыкновенных дифференциальных уравнений, но как это согласуется
с уравнениями для полей? Требуется в идеале получить решения полной системы уравнений
Власова—Эйнштейна в изотропном случае, как это удалось Милну и МакКри в ньютоновом
случае (уравнение Власова—Пуассона для тяготения). Но даже если бы концы с концами сошлись
в случае метрики, зависящей от времени (полной или даже с a = 0), это было бы хорошим
продвижением.
Предложенное приложение уравнения Власова к гравитации и космологии с объяснением

ускоренного расширения Вселенной и выводом уравнения Власова—Максвелла—Эйнштейна и
Власова—Пуассона из принципа наименьшего действия показывает его повышенную фундамен-
тальность. Но уравнение Власова является также основой теории плазмы, где имеются уже как
признанные успехи типа затухания Ландау, расчётов плазменных приборов типа диода Ленгмюра
и плазменных двигателей, так и приложения к исследованиям токамаков [1,21,24–27,35,44–46,55].

СПИСОК ЛИТЕРАТУРЫ

1. Беляева Ю.О. Стационарные решения уравнений Власова для высокотемпературной двукомпонент-
ной плазмы// Соврем. мат. Фундам. направл. — 2016. — 62. — С. 19–31.

2. Вайнберг С. Гравитация и космология.—M.: Платон, 2000.
3. Веденяпин В.В. О выводе уравнений электродинамики и гравитации из принципа наименьшего дей-

ствия, методе Гамильтона—Якоби и космологических решениях// Докл. РАН. Сер. Мат. Инф. Проц.
упр. — 2022. — 504. — С. 51–55.—DOI: 10.31857/S2686954322330013.

4. Веденяпин В.В. Математическая теория расширения Вселенной на основе принципа наименьше-
го действия// Журн. выч. мат. и мат. физ. — 2024. — 64, № 11.— С. 2110–2127.— DOI: 10.31857/
S0044466924110076.

5. Веденяпин В.В. Математика ускоренного расширения Вселенной и пространство Лобачевского// До-
кл. РАН. Сер. Мат. Инф. Проц. упр. — 2025.— 522. — С. 11–18.— DOI: 10.31857/S2686954325020038.

6. Веденяпин В.В., Аушев В.М., Гладков А.О., Измайлова Ю.А., Реброва А.А. Математическая
теория ускоренного расширения Вселенной на основе принципа наименьшего действия и моде-
ли Фридмана и Милна—МакКри// Препринты ИПМ им. М.В. Келдыша. — 2024. —№ 3. —DOI:
10.20948/prepr-2024-3.

7. Веденяпин В.В., Бай А.А., Петров А.Г. О выводе уравнений гравитации из принципа наименьшего
действия, релятивистских решениях Милна—МакКри и о точках Лагранжа// Докл. РАН. Сер. Мат.
Инф. Проц. упр. — 2023. — 514, № 1. —С. 69–73.— DOI: 10.31857/S2686954323600532.

8. Веденяпин В.В., Батищева Я.Г., Сафронов Ю.А., Богданов Д.И. Расширение Вселенной в случае
обобщённой метрики Фридмана—Леметра—Робертсона—Уокера// Препринты ИПМ им. М.В. Кел-
дыша. — 2025.— 14.

9. Веденяпин В.В., Воронина М.Ю., Руссков А.А. О выводе уравнений электродинамики и грави-
тации из принципа наименьшего действия// Докл. РАН. — 2020.— 495. — С. 9–139.— DOI: 10.31857/
S268674002006019X.

https://doi.org/10.31857/S2686954322330013
https://doi.org/10.31857/S0044466924110076
https://doi.org/10.31857/S0044466924110076
https://doi.org/10.31857/S2686954325020038
https://doi.org/10.20948/prepr-2024-3
https://doi.org/10.31857/S2686954323600532
https://doi.org/10.31857/S268674002006019X
https://doi.org/10.31857/S268674002006019X


578 В.В. ВЕДЕНЯПИН и др.

10. Веденяпин В.В., Негматов М.А. О топологии стационарных решений гидродинамических и вихре-
вых следствий уравнения Власова и метод Гамильтона—Якоби// Докл. РАН. — 2013.— 449, № 5. —
С. 521–526.—DOI: 10.7868/S086956521311008X.

11. Веденяпин В.В., Негматов М.А. О выводе и классификации уравнений типа Власова и магнитной
гидродинамики. Тождество Лагранжа, форма Годунова и критическая масса// Соврем. мат. Фундам.
направл. — 2013. — 47. — С. 5–17.

12. Веденяпин В.В., Парёнкина В.И., Свирщевский С. Р. О выводе уравнений электродинамики и грави-
тации из принципа наименьшего действия//Журн. выч. мат. и мат. физ. — 2022. — 62, № 6. — С. 1016–
1029. —DOI: 10.31857/S0044466922060163.

13. Веденяпин В.В., Фимин Н.Н. Метод Гамильтона—Якоби в негамильтоновой ситуации и гид-
родинамическая подстановка// Докл. РАН. — 2015.— 461, № 2. —С. 136–139.— DOI: 10.7868/
S0869565215080083.

14. Веденяпин В.В., Фимин Н.Н., Чечеткин В.М. Уравнения типа Власова—Максвелла—Эйнштейна
и их следствия. Приложения к астрофизическим задачам// Теор. мат. физ. — 2024. — 218, № 2. —
С. 258–279.—DOI: 10.4213/tmf10551.

15. Владимиров В.С., Жаринов В. В. Уравнения математической физики: Учебник для вузов. —М.: Физ-
матлит, 2004.

16. Власов А.А. Статистические функции распределения. —М.: Наука, 1966.
17. Гинзбург В.Л. Какие проблемы физики и астрофизики представляются сейчас особенно важными

и интересными (тридцать лет спустя, причем уже на пороге ХХI века)?// Усп. физ. наук. — 1999.—
169. — С. 419–441.—DOI: 10.3367/UFNr.0169.199904d.0419.

18. Дубровин Б.А., Новиков С.П., Фоменко А.Т. Современная геометрия. Методы и приложения. —М.:
Наука, 1986.

19. Козлов В. В. Гидродинамика гамильтоновых систем// Вестн. Моск. ун-та. Сер. 1. Мат. Мех. — 1983.—
№ 6. —С. 10–22.

20. Козлов В. В. Общая теория вихрей. —Ижевск: Изд-во Удмуртского ун-та, 1998.
21. Козлов В. В. Обобщенное кинетическое уравнение Власова// Усп. мат. наук. — 2008. — 63, № 4. —

С. 93–130.— DOI: 10.4213/rm9216.
22. Ландау Л.Д., Лифшиц Е.М. Теория поля. —М.: Наука, 1988.
23. Маслов В.П. Комплексные марковские цепи и интеграл Фейнмана. —М.: Наука, 1976.
24. Сидоров Н.А., Синицын А.В. Исследование точек бифуркации и нетривиальных ветвей решений

стационарной системы Власова—Максвелла// Мат. заметки. — 1997.— 62, № 2. — С. 268–292.
25. Скубачевский А.Л. Уравнения Власова—Пуассона для двукомпонентной плазмы в однородном маг-

нитном поле// Усп. мат. наук. — 2014. — 69, № 2. —С. 107–148.—DOI: 10.4213/rm9579.
26. Степин С.А., Тарасов А. Г. Дисперсионное соотношение в кинетической модели бесстолкновительной

плазмы// Теор. мат. физ. — 2022.— 210, № 3. —С. 442–454.—DOI: 10.4213/tmf10175.
27. Сулейманова С.Ш., Юшканов А.А. Электрическое поле вблизи поверхности плазмы с произвольной

степенью вырождения как отклик на внешнее переменное электрическое поле// Теор. мат. физ. —
2020. — 204, № 1. —С. 76–94.— DOI: 10.4213/tmf9827.

28. Фок В.А. Теория пространства, времени и тяготения.—М.: ЛКИ, 2007
29. Фридман А.А. О кривизне пространства// Журн. Русск. физ.-хим. о-ва. — 1924.— 56, № 1. —С. 59.
30. Фридман А.А. О кривизне пространства// Усп. физ. наук. — 1963. — 80, № 3. —C. 439–446.
31. Чернин А.Д. Тёмная энергия и всемирное антитяготение// Усп. физ. наук. — 2008. — 178, № 3. —

С. 267–300.—DOI: 10.3367/UFNr.0178.200803c.0267.
32. Эйнштейн А. Замечание к работе А. Фридмана «О кривизне пространства»// Усп. физ. наук. —

1963. — 80, № 3. — С. 453-453.—DOI: 10.3367/UFNr.0080.196307g.0453.
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Abstract. In classical works, the equations for gravitational and electromagnetism fields are proposed
without deriving the right-hand sides. Here, we derive the right-hand sides and analyze the energy–
momentum tensor within the framework of the Vlasov–Maxwell–Einstein equations and consider
cosmological models such as Milne–McCrea and Friedmann. This allows us to place General Relativity
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