Contemporary Mathematics. Fundamental Directions.

ISSN 2413-3639 (print), 2949-0618 (online)

УДК 517.956.25

DOI: 10.22363/2413-3639-2025-71-1-125-146

EDN: UQKNFN

ЛОКАЛЬНЫЕ РЕНОРМАЛИЗОВАННЫЕ РЕШЕНИЯ ЭЛЛИПТИЧЕСКИХ УРАВНЕНИЙ С ПЕРЕМЕННЫМИ ПОКАЗАТЕЛЯМИ В НЕОГРАНИЧЕННЫХ ОБЛАСТЯХ

Л. М. Кожевникова^{1,2}

 1 Стерлитамакский филиал Уфимского университета науки и технологий, Стерлитамак, Россия 2 Елабужский Институт Казанского Федерального университета, Елабуга, Россия

Аннотация. В работе рассматривается квазилинейное эллиптическое уравнение второго порядка с переменными показателями нелинейностей и локально суммируемой правой частью. Установлено свойство устойчивости и как следствие доказано существование локального ренормализованного решения задачи Дирихле в произвольной неограниченной области.

Ключевые слова: квазилинейное эллиптическое уравнение, переменный показатель роста, неограниченная область, задача Дирихле, устойчивость решения, локальное ренормализованное решение.

Заявление о конфликте интересов. Автор заявляет об отсутствии конфликта интересов.

Благодарности и финансирование. Автор заявляет об отсутствии финансовой поддержки.

Для цитирования: Л. М. Кожевникова. Локальные ренормализованные решения эллиптических уравнений с переменными показателями в неограниченных областях// Соврем. мат. Фундам. направл. 2025. Т. 71, № 1. С. 125—146. http://doi.org/10.22363/2413-3639-2025-71-1-125-146

Введение

Пусть Ω — произвольная область пространства $\mathbb{R}^n = \{\mathbf{x} = (x_1, x_2, \dots, x_n)\}, \ \Omega \subset \mathbb{R}^n, \ n \geqslant 2.$ Для квазилинейного эллиптического уравнения второго порядка с переменным ростом и локально суммируемой функцией f рассматривается задача Дирихле

$$-\operatorname{div} \mathbf{a}(\mathbf{x}, \nabla u) + b(\mathbf{x}, u) = f, \quad \mathbf{x} \in \Omega, \tag{0.1}$$

$$u\Big|_{\partial\Omega} = 0. \tag{0.2}$$

Понятие ренормализованных решений является мощным инструментом для изучения широких классов вырождающихся эллиптических уравнений с данными в виде меры. Первоначальное определение приведено в работе [6] для уравнения

$$-\operatorname{div} \mathbf{a}(\mathbf{x}, \nabla u) = \mu \tag{0.3}$$

и распространено М.-Ф. Бидо-Верон [4] в локальную и очень полезную форму для уравнения с p-лапласианом, поглощением и мерой Радона μ :

$$-\Delta_p u + |u|^{p_0 - 2} u = \mu, \quad p \in (1, n), \quad 0
$$(0.4)$$$$

В частности, М.-Ф. Бидо-Верон доказала существование в пространстве \mathbb{R}^n локального ренормализованного решения уравнения (0.4) с $\mu \in L_{1,\text{loc}}(\mathbb{R}^n)$. В монографии [13] Л. Верон обобщил понятие локального ренормализованного решения для уравнения со степенными нелинейностями вида

$$-\operatorname{div} \mathbf{a}(\mathbf{x}, \nabla u) + b(\mathbf{x}, u, \nabla u) = \mu.$$

Следует отметить, что в работе [10] доказана эквивалентность а-супергармонических функций и локально ренормализованных решений уравнения (0.3) в случае неотрицательных мер Радона μ .

В настоящей работе понятие локального ренормализованного решения адаптируется на уравнение (0.1) с переменными показателями роста. В качестве примера можно привести уравнение

$$-\Delta_{p(\mathbf{x})}u + |u|^{p_0(\mathbf{x})-2}u = f, \quad 0 < p(\cdot) - 1 < p_0(\cdot), \quad f \in L_{1,\text{loc}}(\overline{\Omega}).$$

Автором установлено свойство устойчивости локальных ренормализованных решений задачи (0.1), (0.2). Следствием результата устойчивости является теорема существования локального ренормализованного решения задачи (0.1), (0.2) в произвольной неограниченной области Ω .

1. ПРОСТРАНСТВА ЛЕБЕГА, СОБОЛЕВА С ПЕРЕМЕННЫМИ ПОКАЗАТЕЛЯМИ

В этом разделе будут приведены необходимые сведения из теории пространств с переменными показателями. Пусть $Q \subseteq \Omega$ (Q может совпадать с Ω).

Обозначим

$$L_{\infty}^{+}(Q) = \{ p \in L_{\infty}(Q) \mid 1 \leqslant p_{-} \leqslant p_{+} < +\infty \},$$

где $p_-= {
m vrai}\inf_{{
m x}\in Q}p({
m x}), \ p_+= {
m vrai}\sup_{{
m x}\in Q}p({
m x}).$ Пусть $p(\cdot)\in L_\infty^+(Q),$ определим лебегово пространство $L_{p(\cdot)}(Q)$ с переменным показателем как множество измеримых на Q вещественнозначных

$$\rho_{p(\cdot),Q}(v) = \int_{Q} |v(\mathbf{x})|^{p(\mathbf{x})} d\mathbf{x} < \infty,$$

с нормой Люксембурга

функций v таких, что:

$$||v||_{L_{p(\cdot)}(Q)} = ||v||_{p(\cdot),Q} = \inf \{k > 0 \mid \rho_{p(\cdot)}(v/k) \le 1 \}.$$

Для $v \in L_{p(\cdot)}(Q)$ справедливы следующие соотношения:

$$||v||_{p(\cdot),Q}^{p_{-}} - 1 \le \rho_{p(\cdot),Q}(v) \le ||v||_{p(\cdot),Q}^{p_{+}} + 1.$$

Ввиду выпуклости имеет место неравенство:

$$|y+z|^{p(x)} \le 2^{p_+-1}(|y|^{p(x)}+|z|^{p(x)}), \quad z,y \in \mathbb{R}, \quad x \in Q.$$
 (1.1)

При $p_- > 1$ справедливо неравенство Юнга:

$$|zy| \leqslant |y|^{p(\mathbf{x})} + |z|^{p'(\mathbf{x})}, \quad z, y \in \mathbb{R}, \quad p'(\cdot) = \frac{p(\cdot)}{p(\cdot) - 1}, \quad \mathbf{x} \in Q,$$
(1.2)

и неравенство Гельдера

$$\left| \int_{Q} u(\mathbf{x})v(\mathbf{x})d\mathbf{x} \right| \leq 2\|u\|_{p'(\cdot),Q}\|v\|_{p(\cdot),Q}, \quad u \in L_{p'(\cdot)}(Q), \ v \in L_{p(\cdot)}(Q).$$
 (1.3)

Определим пространство Соболева с переменным показателем

$$W_{p(\cdot)}^{1}(Q) = \{ v \in L_{p(\cdot)}(Q) \mid |\nabla v| \in L_{p(\cdot)}(Q) \}$$

с нормой

$$||v||_{p(\cdot),Q}^1 = ||v||_{p(\cdot),Q} + ||\nabla v||_{p(\cdot),Q}.$$

Пространство $\mathring{W}^1_{p(\cdot)}(Q)$ определим как пополнение пространства $C_0^\infty(Q)$ по норме $\|\cdot\|_{W^1_{p(\cdot)}(Q)}$. Пространства $L_{p(\cdot)}(Q),\ W^1_{p(\cdot)}(Q),\ \mathring{W}^1_{p(\cdot)}(Q)$ являются сепарабельными, банаховыми и рефлексивными для $p_->1$ (см. [7, Ch. 3, §3.2, §3.4, §8.1]).

Интересная особенность пространства Соболева с переменным показателем

$$\mathring{\mathcal{W}}^1_{p(\cdot)}(Q) = \{ v \in \mathring{W}^1_1(Q) : \rho_{p(\cdot),Q}(|\nabla v|) < \infty \}$$

заключается в том, что гладкие функции не плотны в нем без дополнительных предположений о степени $p(\cdot)$. Это было отмечено В. В. Жиковым [2] в связи с эффектом Лаврентьева. Однако, если модуль непрерывности показателя $p(\cdot)$ удовлетворяет логарифмическому условию:

$$|p(x) - p(y)| \le -\frac{K}{\ln|x - y|}, \quad x, y \in Q, \quad |x - y| \le \frac{1}{2},$$

то гладкие функции плотны в пространстве $\mathring{\mathcal{W}}^1_{p(\cdot)}(Q)$.

В настоящей работе предполагаем, что $p \in C^+(\overline{Q}) = \{p \in C(\overline{Q}) \mid 1 < p_- \leqslant p_+ < +\infty\}$, где $p_- = \inf_{\mathbf{x} \in \overline{Q}} p(\mathbf{x}), \quad p_+ = \sup_{\mathbf{x} \in \overline{Q}} p(\mathbf{x})$. Для двух ограниченных функций $q(\cdot), \ r(\cdot) \in C(\overline{Q})$ будем писать $q(\cdot) < r(\cdot), \ \text{если} \ \inf_{\mathbf{x} \in \overline{Q}} (r(\mathbf{x}) - q(\mathbf{x})) > 0.$

Лемма 1.1 (см. [8]). Пусть Q ограничена, $p(\cdot), q(\cdot) \in C^+(\overline{Q}), p_+ < n, q(\cdot) < p^*(\cdot) = \frac{np(\cdot)}{n-p(\cdot)}.$ Тогда имеет место непрерывное и компактное вложение $W^1_{p(\cdot)}(Q) \hookrightarrow L_{q(\cdot)}(Q)$.

2. Предположения и определение ренормализованного решения

Условие *P*. Предполагаем, что функции

$$\mathbf{a}(\mathbf{x},\mathbf{s}) = (a_1(\mathbf{x},\mathbf{s}), \dots, a_n(\mathbf{x},\mathbf{s})) : \Omega \times \mathbb{R}^n \to \mathbb{R}^n, \quad b(\mathbf{x},s_0) : \Omega \times \mathbb{R} \to \mathbb{R},$$

входящие в уравнение (0.1), каратеодориевы. Пусть существуют неотрицательная функция $\Phi \in L_{p'(\cdot),\operatorname{loc}}(\overline{\Omega})$, положительные числа \widehat{a},\overline{a} такие, что при п.в. $\mathbf{x} \in \Omega$, для всех $\mathbf{s},\mathbf{t} \in \mathbb{R}^n$ справедливы неравенства:

$$|\mathbf{a}(\mathbf{x}, \mathbf{s})| \leqslant \widehat{a}\left(|\mathbf{s}|^{p(\mathbf{x})-1} + \Phi(\mathbf{x})\right); \tag{2.1}$$

$$(a(x,s) - a(x,t)) \cdot (s-t) > 0, \quad s \neq t;$$
 (2.2)

$$\mathbf{a}(\mathbf{x}, \mathbf{s}) \cdot \mathbf{s} \geqslant \overline{\mathbf{a}}|\mathbf{s}|^{p(\mathbf{x})}.\tag{2.3}$$

Здесь
$$\mathbf{s} \cdot \mathbf{t} = \sum_{i=1}^{n} s_i t_i$$
, $\mathbf{s} = (s_1, \dots, s_n)$, $\mathbf{t} = (t_1, \dots, t_n)$.

Кроме того, пусть существуют неотрицательная функция $\Phi_0 \in L_{1,\text{loc}}(\overline{\Omega})$, непрерывная неубывающая функция $\hat{b}: \mathbb{R}^+ \to \mathbb{R}^+$, положительное число \bar{b} такие, что при п.в. $\mathbf{x} \in \Omega$, для всех $s_0 \in \mathbb{R}$ справедливы неравенства:

$$|b(\mathbf{x}, s_0)| \leqslant \widehat{b}(|s_0|)\Phi_0(\mathbf{x}); \tag{2.4}$$

$$b(\mathbf{x}, s_0)s_0 \geqslant \overline{b}|s_0|^{p_0(\mathbf{x})+1}, \quad p(\cdot) - 1 < p_0(\cdot).$$
 (2.5)

При этом предполагаем, что функции $p, p_0 \in C^+(\overline{\Omega})$ и $p_+ < n$.

Следуя [3, 12], введем обозначения:
$$q_0(\cdot) = \frac{p^*(\cdot)}{p'_+}, q_3(\cdot) = \frac{q_0(\cdot)}{p(\cdot) - 1}, q_1(\cdot) = \frac{q_0(\cdot)}{q_0(\cdot) + 1}p(\cdot), q_2(\cdot) = \frac{q_0(\cdot)}{q_0(\cdot) + 1}$$

$$\frac{q_0(\cdot)}{q_0(\cdot)+1}p'(\cdot),\ q_4(\cdot)=\frac{p_0(\cdot)}{1+p_0(\cdot)}p'(\cdot),\ \text{где }p'_+=\frac{p_-}{p_--1}.$$
 Пусть выполнено дополнительное условие

$$p(\cdot) - 1 < q_0(\cdot). \tag{2.6}$$

Тогда можно определить $q_2'(\cdot) = \frac{q_0(\cdot)p(\cdot)}{q_0(\cdot) + 1 - p(\cdot)}$.

Определим срезку $T_k(r) = \max(-k, \min(k, r))$. Через $\text{Lip}_0(\mathbb{R})$ обозначим пространство всех липшицевых непрерывных функций на \mathbb{R} , производная которых имеет компактный носитель.

Определение 2.1. Пусть область Ω ограничена. Измеримая конечная почти всюду функция $u:\Omega\to\mathbb{R}$ называется ренормализованным решением задачи (0.1), (0.2) с $f\in L_1(\Omega)$, если выполняются следующие условия:

а)
$$T_k(u) \in \mathring{W}^1_{p(\cdot)}(\Omega)$$
 при любом $k > 0$;

- b) $b(\mathbf{x}, u) \in L_1(\Omega);$
- c) $|\nabla u|^{p(\cdot)-1} \in L_{q(\cdot)}(\Omega), 1 \leqslant q(\cdot) < q_2(\cdot);$
- d) $|u|^{p(\cdot)-1} \in L_{q(\cdot)}(\Omega), 1 \le q(\cdot) < q_3(\cdot);$
- е) для любой функции $h\in \mathrm{Lip}_0(\mathbb{R})$ и любой $\varphi\in W^1_{r(\cdot)}(\Omega),\ r(\cdot)>q_2'(\cdot),$ такой, что $\varphi h(u)\in \mathring{W}^1_{n(\cdot)}(\Omega),$ имеем

$$\int_{\Omega} (b(\mathbf{x}, u) - f)h(u)\varphi d\mathbf{x} + \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla u) \cdot (\nabla u h'(u)\varphi + \nabla \varphi h(u))d\mathbf{x} = 0.$$
 (2.7)

Определим $L_{\infty,\mathrm{loc}}(\overline{\Omega}),\ L_{1,\mathrm{loc}}(\overline{\Omega}),\ \mathring{W}^{1}_{p(\cdot),\mathrm{loc}}(\overline{\Omega})$ как пространства, состоящие из функций v, определенных в Ω , для которых при любой ограниченной $Q\subsetneq\Omega$ имеет место принадлежность $v\in L_{\infty}(Q),\ L_{1}(Q),\ \mathring{V}^{1}_{p(\cdot)}(Q)=\mathring{W}^{1}_{p(\cdot)}(\Omega)\cap W^{1}_{p(\cdot)}(Q)$, соответственно.

Определение 2.1-loc. Измеримая конечная почти всюду функция $u:\Omega\to\mathbb{R}$ называется локальным ренормализованным решением задачи (0.1), (0.2) с $f\in L_{1,\mathrm{loc}}(\overline{\Omega})$, если выполняются следующие условия:

- а-loc) $T_k(u) \in \mathring{W}^1_{p(\cdot),\operatorname{loc}}(\overline{\Omega})$ при любом k > 0;
- b-loc) $b(\mathbf{x}, u) \in L_{1,\text{loc}}(\overline{\Omega});$
- c-loc) $|\nabla u|^{p(\cdot)-1} \in L_{q(\cdot),\text{loc}}(\overline{\Omega}), \ 1 \leqslant q(\cdot) < q_2(\cdot);$
- d-loc) $|u|^{p(\cdot)-1} \in L_{q(\cdot),\operatorname{loc}}(\overline{\Omega}), 1 \leqslant q(\cdot) < q_3(\cdot);$
- e-loc) для любой функции $h\in \mathrm{Lip}_0(\mathbb{R})$ и любой $\varphi\in W^1_{r(\cdot)}(\Omega),\, r(\cdot)>q_2'(\cdot)$ с компактным носителем такой, что $\varphi h(u)\in \mathring{W}^1_{p(\cdot)}(\Omega),$ справедливо тождество (2.7).

Отметим, что в работе [3] впервые для уравнения с $p(\cdot)$ -ростом было сформулировано определение ренормализованного решения и доказано его существование.

Пусть u — локальное ренормализованное решение задачи (0.1), (0.2). Для любого k > 0 имеем

$$\nabla T_k(u) = \chi_{\{\Omega: |u| \le k\}} \nabla u \in (L_{p(\cdot), \text{loc}}(\overline{\Omega}))^n.$$
(2.8)

Применяя (1.1), из неравенства (2.1) выводим оценку:

$$|a(x,s)|^{p'(x)} \le \widehat{A}|s|^{p(x)} + \Psi(x)$$
 (2.1')

с неотрицательной функцией $\Psi \in L_{1,\mathrm{loc}}(\overline{\Omega})$. Из (2.8), (2.1') следует, что для любого k>0

$$\chi_{\{\Omega:|u|\leqslant k\}}\mathbf{a}(\mathbf{x},\nabla u) = \chi_{\{\Omega:|u|\leqslant k\}}\mathbf{a}(\mathbf{x},\nabla T_k(u)) \in (L_{p'(\cdot),\mathrm{loc}}(\overline{\Omega}))^n.$$
(2.9)

Замечание 2.1. Каждый интеграл в (2.7) корректно определен. Пусть $\operatorname{supp} \varphi \cap \Omega = K$. Несложно проверить, что $q_2'(\cdot) \geqslant n$, поэтому справедливы вложения $W^1_{r(\cdot)}(K) \subset W^1_{q_2'(\cdot)}(K) \subset W^1_n(K) \subset C(\overline{K})$. Действительно, первое слагаемое конечно благодаря условию b-loc), $f \in L_{1,\operatorname{loc}}(\overline{\Omega})$ и принадлежности $h(u)\varphi \in L_{\infty}(K)$. Поскольку $\operatorname{supp} h' \subseteq [-M,M]$ для некоторого M>0, то второе слагаемое может быть записано в виде

$$\int_K \mathbf{a}(\mathbf{x}, \nabla u) \cdot (\nabla u h'(u) \varphi + \nabla \varphi h(u)) d\mathbf{x} = \int_K \mathbf{a}(\mathbf{x}, \nabla T_M(u)) \cdot \nabla T_M(u) h'(u) \varphi d\mathbf{x} + \int_K \mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla \varphi h(u) d\mathbf{x}.$$

Благодаря (2.8), (2.9) и принадлежности $h \in \operatorname{Lip}_0(\mathbb{R})$, $\varphi \in C(\overline{K})$ первый интеграл определен и конечен. Поскольку $\operatorname{a}(\mathbf{x}, \nabla u) \in (L_{q(\cdot)}(K))^n$ для любого $q(\cdot) < q_2(\cdot)$ и $\nabla \varphi \in (L_{r(\cdot)}(K))^n$ для любого $r(\cdot) > q_2'(\cdot)$, получаем, что произведение $\operatorname{a}(\mathbf{x}, \nabla u) \cdot \nabla \varphi h(u)$ интегрируемо в K.

В настоящей работе доказана следующая теорема.

Теорема 2.1. Пусть выполнены условия P, последовательность функций $\{f_{\xi}\}_{{\xi}\in\mathbb{N}}\subset L_{1,{\rm loc}}(\overline{\Omega})$ сходится κ f в $L_{1,{\rm loc}}(\overline{\Omega})$, и $\{u_{\xi}\}_{{\xi}\in\mathbb{N}}$ — последовательность локальных ренормализованных решений задачи

$$-\operatorname{div} \mathbf{a}(\mathbf{x}, \nabla u) + b(\mathbf{x}, u) = f_{\xi}, \quad \mathbf{x} \in \Omega, \tag{2.10}$$

с краевым условием (0.2). Тогда существует подпоследовательность последовательности $\{u_{\xi}\}_{{\xi}\in\mathbb{N}}$ (обозначим ее так же), сходящаяся почти всюду к локальному ренормализованному решению задачи (0.1), (0.2).

Следствием теоремы 2.1 является теорема 2.2.

Теорема 2.2. Пусть $f \in L_{1,loc}(\overline{\Omega})$, выполнены условия P, тогда существует локальное ренормализованное решение задачи (0.1), (0.2).

В работе [11] в пространстве \mathbb{R}^n рассмотрено нелинейное анизотропное эллиптическое уравнение вида (0.1) с переменными показателями нелинейностей и локально интегрируемой функцией f. Ф. Мохтари доказано существование локального слабого решения u уравнения (0.1) в пространстве \mathbb{R}^n . Для сравнения сформулируем результат регулярности градиента для изотропного уравнения. При дополнительном ограничении $p(\cdot) > 2 - 1/n$ установлена локальная суммируемость ∇u с показателем $1 \leqslant q(\cdot) < \frac{(p(\cdot)-1)n}{n-1}$, а также при дополнительном ограничении $p(\cdot) > 1 + 1/p_0(\cdot)$ установлена локальная суммируемость ∇u с показателем $1 \leqslant q(\cdot) < \frac{p_0(\cdot)p(\cdot)}{1+p_0(\cdot)} = q_4(\cdot)(p(\cdot)-1)$. Заметим, что в настоящей работе аналогичные оценки установлены в утверждении 3.2 (см. (3.17)), причем оценка с показателем $q_4(\cdot)$ получена без дополнительных ограничений.

3. Подготовительные сведения

Меру Лебега измеримого множества Q будем обозначать meas (Q). Через $D^+(\mathbb{R}^n)$ обозначим пространство функций $C_0^\infty(\mathbb{R}^n)$ с положительными значениями внутри компактного носителя. Все постоянные, встречающиеся ниже в работе, положительны.

Утверждение 3.1. Пусть u — локальное ренормализованное решение задачи (0.1), (0.2), положим $\widehat{R}_0 = \sup_{\mathbf{x} \in \overline{\Omega}} \frac{p_0(\mathbf{x})p(\mathbf{x})}{p_0(\mathbf{x}) + 1 - p(\mathbf{x})}$. Тогда для любых $\alpha < 0, \ \phi \in D^+(\mathbb{R}^n)$ справедливы оценки

$$\int_{\Omega} (|u|+1)^{p_0(\mathbf{x})} \phi^R d\mathbf{x} \leqslant C_1 \left(\int_{\Omega} (1+\Phi^{p'(\mathbf{x})}+|f|) \phi^R d\mathbf{x} + \int_{\Omega} |\nabla \phi|^R d\mathbf{x} \right), \quad R > \widehat{R}_0, \tag{3.1}$$

$$\int_{\Omega} (|u|+1)^{\alpha-1} |\nabla u|^{p(x)} \phi^R dx \leq C_2 \left(\int_{\Omega} (1 + \Phi^{p'(x)} + |f|) \phi^R dx + \int_{\Omega} |\nabla \phi|^R dx \right), \quad R > \widehat{R}_0, \quad (3.2)$$

c постоянными $C_1(\widehat{a}, \overline{a}, \overline{b}, n, R, \operatorname{supp} \phi, p, p_0), C_2(\widehat{a}, \overline{a}, \overline{b}, \alpha, n, R, \operatorname{supp} \phi, p, p_0),$ не зависящими от u.

Доказательство. Пусть $\rho > 0$, $\alpha < 0$ и $h(\varrho) = (1 - (|\varrho| + 1)^{\alpha}) \operatorname{sign} \varrho$, $h_{\rho}(\varrho) = h(T_{\rho}(\varrho))$, $\varrho \in \mathbb{R}$, тогда $h'_{\rho}(\varrho) = |\alpha| (|T_{\rho}(\varrho)| + 1)^{\alpha - 1} \chi_{\{|\varrho| < \rho\}}$. Положив в (2.7) $h = h_{\rho}$, применяя оценку (2.1), для $\varphi \in D^{+}(\mathbb{R}^{n})$ будем иметь

$$|\alpha| \int_{\Omega} (|T_{\rho}(u)| + 1)^{\alpha - 1} a(x, \nabla u) \cdot \nabla T_{\rho}(u) \varphi dx + \int_{\Omega} b(x, u) \varphi h_{\rho}(u) dx =$$

$$= -\int_{\Omega} a(x, \nabla u) \cdot \nabla \varphi h_{\rho}(u) dx + \int_{\Omega} \varphi f h_{\rho}(u) dx \leqslant$$

$$\leq \widehat{a} \int_{\Omega} |\nabla T_{\rho}(u)|^{p(x) - 1} |\nabla \varphi| dx + \int_{\{\Omega: |u| > \rho\}} |\nabla u|^{p(x) - 1} |\nabla \varphi| dx + \widehat{a} \int_{\Omega} \Phi |\nabla \varphi| dx + \int_{\Omega} \varphi |f| dx.$$
(3.3)

Далее, используя (1.2), выводим

$$I = \widehat{a} \int_{\Omega} |\nabla T_{\rho}(u)|^{p(x)-1} |\nabla \varphi| dx \leqslant \frac{|\alpha| \overline{a}}{2} \int_{\Omega} |\nabla T_{\rho}(u)|^{p(x)} (|T_{\rho}(u)| + 1)^{\alpha-1} \varphi dx + C |\nabla T_{\rho}(u)|^{p(x)} |\nabla$$

$$+ C_3(\alpha, \widehat{a}, \overline{a}) \int_{\Omega} |\nabla \varphi|^{p(\mathbf{x})} (|T_{\rho}(u)| + 1)^{(1-\alpha)(p(\mathbf{x})-1)} \varphi^{1-p(\mathbf{x})} d\mathbf{x}.$$

Положим $-\alpha^* = \inf_{\overline{\Omega}} \frac{p_0(\mathbf{x})}{p(\mathbf{x}) - 1} - 1 > 0$ и $\tau_{\alpha}(\mathbf{x}) = \frac{p_0(\mathbf{x})}{(p(\mathbf{x}) - 1)(1 - \alpha)} > 1$ для $\alpha \in (\alpha^*, 0)$. Снова применяя (1.2), получаем

$$I \leqslant \frac{|\alpha|\overline{a}}{2} \int_{\Omega} |\nabla T_{\rho}(u)|^{p(x)} (|T_{\rho}(u)| + 1)^{\alpha - 1} \varphi dx +$$
(3.4)

$$+\varepsilon\int_{\Omega} (|T_{\rho}(u)|+1)^{p_0(x)}\varphi dx + C_4(\varepsilon,\alpha,\widehat{a},\overline{a})\int_{\Omega} |\nabla\varphi|^{p(x)\tau'_{\alpha}(x)}\varphi^{1-p(x)\tau'_{\alpha}(x)}dx.$$

Соединяя (3.3), (3.4), применяя (2.3), (2.5), выводим неравенство

$$\overline{a} \frac{|\alpha|}{2} \int_{\Omega} (|T_{\rho}(u)| + 1)^{\alpha - 1} |\nabla T_{\rho}(u)|^{p(x)} \varphi dx + \int_{\Omega} |b(x, u)| \varphi |h_{\rho}(u)| dx \leq
\leq \varepsilon \int_{\Omega} (|u| + 1)^{p_{0}(x)} \varphi dx + C_{4} \int_{\Omega} |\nabla \varphi|^{p(x)\tau_{\alpha}'(x)} \varphi^{1 - p(x)\tau_{\alpha}'(x)} dx +
+ \int_{\Omega} |\nabla u|^{p(x) - 1} |\nabla \varphi| dx + \widehat{a} \int_{\Omega} \Phi |\nabla \varphi| dx + \int_{\Omega} \varphi |f| dx.$$
(3.5)

Ввиду условия c-loc) $|\nabla u|^{p(\cdot)-1}\in L_{1,\mathrm{loc}}(\overline{\Omega}),$ поэтому

$$\lim_{\rho \to \infty} \int_{\{\Omega: |u| > \rho\}} |\nabla u|^{p(\mathbf{x}) - 1} |\nabla \varphi| d\mathbf{x} = 0.$$
(3.6)

Выполняя предельный переход при $\rho \to \infty$ в (3.5) с учетом (3.6), устанавливаем неравенство

$$\overline{a} \frac{|\alpha|}{2} \int_{\Omega} (|u|+1)^{\alpha-1} |\nabla u|^{p(\mathbf{x})} \varphi d\mathbf{x} + \int_{\Omega} |b(\mathbf{x},u)| \varphi |h(u)| d\mathbf{x} \leqslant
\leqslant \varepsilon \int_{\Omega} (|u|+1)^{p_0(\mathbf{x})} \varphi d\mathbf{x} + C_4 \int_{\Omega} \left(\frac{|\nabla \varphi|}{\varphi} \right)^{p(\mathbf{x})\tau_{\alpha}'(\mathbf{x})} \varphi d\mathbf{x} + \widehat{a} \int_{\Omega} \Phi |\nabla \varphi| d\mathbf{x} + \int_{\Omega} \varphi |f| d\mathbf{x}.$$

Применяя (2.5), выводим

$$\overline{a} \frac{|\alpha|}{2} \int_{\Omega} (|u|+1)^{\alpha-1} |\nabla u|^{p(x)} \varphi dx + \overline{b} \int_{\Omega} |u|^{p_0(x)} \varphi |h(u)| dx \leqslant
\leqslant \varepsilon \int_{\Omega} (|u|+1)^{p_0(x)} \varphi dx + C_4 \int_{\Omega} \left(\frac{|\nabla \varphi|}{\varphi} \right)^{p(x)\tau'_{\alpha}(x)} \varphi dx + \widehat{a} \int_{\Omega} \Phi |\nabla \varphi| dx + \int_{\Omega} \varphi |f| dx.$$
(3.7)

Для $\alpha \in (\alpha^*,0]$ рассмотрим функцию $R_{\alpha}(\mathbf{x}) = p(\mathbf{x})\tau'_{\alpha}(\mathbf{x}) = \frac{p_0(\mathbf{x})p(\mathbf{x})}{p_0(\mathbf{x}) + 1 - p(\mathbf{x}) + \alpha(p(\mathbf{x}) - 1)} : K \to \mathbb{R}^+$, где $K = \operatorname{supp} \varphi \cap \Omega$. Обозначим $\widehat{R}_{\alpha} = \max_{\mathbf{x} \in \overline{K}} R_{\alpha}(\mathbf{x})$. Очевидно, \widehat{R}_{α} непрерывна, монотонно не возрастает по $\alpha \in (\alpha^*,0]$ и ограничена снизу \widehat{R}_0 . Для любого $\alpha \in (\alpha^*,0)$ найдем \widehat{R}_{α} и зафиксируем $R > \widehat{R}_{\alpha}$.

Положим $\varphi = \phi^R$, тогда из (3.7) следует неравенство

$$\overline{a} \frac{|\alpha|}{2} \int_{\Omega} (|u|+1)^{\alpha-1} |\nabla u|^{p(\mathbf{x})} \phi^{R} d\mathbf{x} + \overline{b} \int_{\Omega} |u|^{p_{0}(\mathbf{x})} \phi^{R} |h(u)| d\mathbf{x} \leqslant
\leqslant \varepsilon \int_{\Omega} (|u|+1)^{p_{0}(\mathbf{x})} \phi^{R} d\mathbf{x} + C_{4} \int_{\Omega} \left(\phi^{R} + R^{R} |\nabla \phi|^{R} \right) d\mathbf{x} + \widehat{a} R \int_{\Omega} \Phi |\nabla \phi| \phi^{R-1} d\mathbf{x} + \int_{\Omega} \phi^{R} |f| d\mathbf{x}.$$
(3.8)

Далее, применяя неравенство (1.2), пользуясь очевидным неравенством R' < p'(x), устанавливаем

$$R\int_{\Omega} \Phi |\nabla \phi| \phi^{R-1} d\mathbf{x} \leq \int_{\Omega} \left(R^R |\nabla \phi|^R + \Phi^{R'} \phi^R \right) d\mathbf{x} \leq \int_{\Omega} \left(R^R |\nabla \phi|^R + \Phi^{p'(\mathbf{x})} \phi^R + \phi^R \right) d\mathbf{x}. \tag{3.9}$$

Соединяя (3.8), (3.9), устанавливаем

$$\int_{\Omega} (|u|+1)^{\alpha-1} |\nabla u|^{p(\mathbf{x})} \phi^R d\mathbf{x} + \int_{\Omega} |u|^{p_0(\mathbf{x})} \phi^R |h(u)| d\mathbf{x} \leqslant$$

$$\leqslant \varepsilon C_5 \int_{\Omega} (|u|+1)^{p_0(\mathbf{x})} \phi^R d\mathbf{x} + C_6 \int_{\Omega} \left(R^R |\nabla \phi|^R + \phi^R (1+|f|+\Phi^{p'(\mathbf{x})}) \right) d\mathbf{x}. \tag{3.10}$$

Для $|u|\geqslant 1$ справедлива оценка $|h(u)|=1-(|u|+1)^{\alpha}\geqslant 1-2^{\alpha}>0$. Тогда имеем следующую цепочку неравенств:

$$\int_{\Omega} (|u|+1)^{p_{0}(\mathbf{x})} \phi^{R} d\mathbf{x} \leq 2^{p_{0}+1} \int_{\Omega} (|u|^{p_{0}(\mathbf{x})}+1) \phi^{R} d\mathbf{x} \leq (3.11)$$

$$\leq 2^{p_{0}+} \int_{\{\Omega:|u|\geqslant 1\}} |u|^{p_{0}(\mathbf{x})} \phi^{R} d\mathbf{x} + 2^{p_{0}+} \int_{\{\Omega:|u|< 1\}} \phi^{R} d\mathbf{x} \leq \frac{2^{p_{0}+}}{1-2^{\alpha}} \int_{\Omega} |u|^{p_{0}(\mathbf{x})} \phi^{R} |h(u)| d\mathbf{x} + 2^{p_{0}+} \int_{\Omega} \phi^{R} d\mathbf{x}.$$

Соединяя (3.10), (3.11), выбирая $\varepsilon > 0$ достаточно малым, устанавливаем неравенство

$$\int_{\Omega} (|u|+1)^{\alpha-1} |\nabla u|^{p(x)} \phi^{R} dx + \int_{\Omega} (|u|+1)^{p_{0}(x)} \phi^{R} dx \leq
\leq C_{7} \int_{\Omega} \left(R^{R} |\nabla \phi|^{R} + \phi^{R} (1+|f|+\Phi^{p'(x)}) \right) dx.$$
(3.12)

Отсюда следует неравенство (3.1) и неравенство (3.2) для $\alpha \in (\alpha^*, 0)$; для $\alpha \leqslant \alpha^*$ неравенство (3.2) также справедливо.

Введем обозначения: $B(r) = \{ \mathbf{x} \in \mathbb{R}^n \mid |\mathbf{x}| < r \}, \ \Omega(r) = \Omega \cap B(r), \ r > 0.$ Будем рассматривать срезающую функцию $\phi_r \in C^{\infty}(\mathbb{R}^+) : \phi_r(\varrho) = 0$ при $\varrho > r + 1$ и $\phi_r(\varrho) = 1$ при $0 \leqslant \varrho \leqslant r$.

Утверждение 3.2. Пусть u — локальное ренормализованное решение задачи (0.1), (0.2), тогда для любых r, k > 0 верны оценки

$$\int_{\Omega(r)} (|u| + 1)^{p_0(x)} dx \le D_1, \tag{3.13}$$

$$\int_{\Omega(r)} (|u|+1)^{\alpha-1} |\nabla u|^{p(x)} dx \leq D_2(\alpha), \quad \alpha < 0,$$
(3.14)

$$\max(\{\Omega(r): |u| \ge k\}) \le D_1 k^{-p_{0-}}. \tag{3.15}$$

Кроме того, $|u|^{p(\cdot)-1} \in L_{s(\cdot),\operatorname{loc}}(\overline{\Omega}), \ 1 \leqslant s(\cdot) < q_3(\cdot), \ u$ справедлива оценка

$$\int_{\Omega(r)} |u|^{(p(\mathbf{x})-1)s(\mathbf{x})} d\mathbf{x} \leqslant D_3; \tag{3.16}$$

 $|\nabla u|^{p(\cdot)-1}\in L_{\sigma(\cdot),\mathrm{loc}}(\overline{\Omega}),\ 1\leqslant\sigma(\cdot)< q_2(\cdot),\ u\ cnраведлива\ оценка$

$$\int_{\Omega(r)} |\nabla u|^{(p(\mathbf{x})-1)\sigma(\mathbf{x})} d\mathbf{x} \leqslant D_4,\tag{3.17}$$

а также $|\nabla u|^{p(\cdot)-1} \in L_{\sigma(\cdot),\mathrm{loc}}(\overline{\Omega}), \ 1 \leqslant \sigma(\cdot) < q_4(\cdot), \ u$ справедлива оценка (3.17).

Здесь константы D_1 – D_4 , зависят от N, где N — набор $\widehat{a}, \overline{a}, \overline{b}, n, \Omega(r+1), p, p_0, \|\Phi\|_{p'(\cdot), \Omega(r+1)}, \|f\|_{1,\Omega(r+1)}$, не зависящий от u.

Доказательство. Перепишем оценки (3.1), (3.2) с $\phi(\mathbf{x}) = \phi_r(|\mathbf{x}|)$ и фиксированным R, получим неравенства: (3.13), (3.14). Из оценки (3.13) следует неравенство (3.15).

Пусть $\alpha \in (1-p_-,0)$ и $v=(1+|u|)^\beta$, $\beta=(\alpha+p_--1)/p_->0$. Поскольку $\beta p(\mathbf{x})< p(\mathbf{x})-1< p_0(\mathbf{x}),$ ввиду оценки (3.13) имеем

$$\int_{\Omega(r)} v^{p(\mathbf{x})} d\mathbf{x} \leqslant \int_{\Omega(r)} (1 + |u|)^{p_0(\mathbf{x})} d\mathbf{x} \leqslant D_1.$$
(3.18)

Тогда $\nabla v = \beta (1 + |u|)^{\beta - 1} \nabla u \operatorname{sign} u$ и, согласно (3.14), справедливы неравенства

$$\int_{\Omega(r)} |\nabla v|^{p(x)} dx \leq \beta^{p-} \int_{\Omega(r)} (1 + |u|)^{(\beta - 1)p(x)} |\nabla u|^{p(x)} dx \leq \int_{\Omega(r)} (1 + |u|)^{\alpha - 1} |\nabla u|^{p(x)} dx \leq D_5.$$
 (3.19)

Соединяя (3.18), (3.19), выводим оценку

$$||v||_{p(\cdot),\Omega(r)}^1 \leqslant D_6$$

из которой, ввиду леммы 1.1, получаем

$$||v||_{q(\cdot)(p(\cdot)-1),\Omega(r)} \le D_7, \quad 1 \le q(\cdot) < \frac{p^*(\cdot)}{p(\cdot)-1}.$$

Отсюда для любого $\alpha \in (1-p_-,0)$ следует неравенство

$$\int_{\Omega(r)} |u|^{\beta q(\mathbf{x})(p(\mathbf{x})-1)} d\mathbf{x} \leqslant \int_{\Omega(r)} (|u|+1)^{\beta q(\mathbf{x})(p(\mathbf{x})-1)} d\mathbf{x} \leqslant D_3.$$
(3.20)

Пусть $s(\cdot) < q_3(\cdot)$, найдем $s(\cdot) < t(\cdot) < q_3(\cdot)$, тогда $\inf_{\overline{\Omega}}(q_3(\mathbf{x}) - t(\mathbf{x})) = a > 0$. Положим $t(\mathbf{x}) = a$

$$\frac{p^*(\mathbf{x})(\alpha+p_--1)}{p_-(p(\mathbf{x})-1)}$$
, тогда $a=|\alpha|\inf_{\Omega}\frac{p^*(\mathbf{x})}{p_-(p(\mathbf{x})-1)}$. Поскольку $s(\mathbf{x})< t(\mathbf{x})=\frac{p^*(\mathbf{x})\beta}{p(\mathbf{x})-1}$, то ввиду (3.20) оценка (3.16) установлена.

Далее, применяя неравенство (1.2), для $1 \le \sigma(x) < p'(x)$ имеем:

$$\int_{\Omega(r)} |\nabla u|^{(p(\mathbf{x})-1)\sigma(\mathbf{x})} d\mathbf{x} \leqslant \int_{\Omega(r)} |\nabla u|^{p(\mathbf{x})} (|u|+1)^{\alpha-1} d\mathbf{x} + \int_{\Omega(r)} (|u|+1)^{\frac{(1-\alpha)\sigma(\mathbf{x})}{p'(\mathbf{x})-\sigma(\mathbf{x})}}.$$
 (3.21)

Первый интеграл в (3.21) оценивается благодаря (3.14), а второй с помощью (3.16) при условии $\frac{(1-\alpha)\sigma(\mathbf{x})}{p'(\mathbf{x})-\sigma(\mathbf{x})} < q_0(\mathbf{x}),$ которое выполняется для $1 \leqslant \sigma(\mathbf{x}) < \frac{p'(\mathbf{x})q_0(\mathbf{x})}{1-\alpha+q_0(\mathbf{x})}$ при малых $\alpha < 0$.

Кроме того, второй интеграл можно оценить с помощью (3.13) при условии $\frac{(1-\alpha)\sigma(\mathbf{x})}{p'(\mathbf{x})-\sigma(\mathbf{x})} < p_0(\mathbf{x}),$

которое выполняется для $1 \leqslant \sigma(\mathbf{x}) < \frac{p'(\mathbf{x})p_0(\mathbf{x})}{1-\alpha+p_0(\mathbf{x})}$ при малых $\alpha < 0$. Таким образом, оценка (3.17) установлена.

Следует отметить, что в случае ограниченной области Ω глобальные оценки вида (3.16), (3.17) для энтропийного решения установлены в [12, Proposition 3.2, 3.6, Corollary 3.5, 3.7].

Утверждение 3.3. Пусть u — локальное ренормализованное решение задачи (0.1), (0.2), тогда при всех k, r > 0, $m \geqslant 0$ справедлива оценка

$$\int_{\{\Omega(r):|u|\geqslant k+m\}} |b(\mathbf{x},u)|d\mathbf{x} + \frac{1}{k} \int_{\{\Omega(r):m\leqslant |u|< k+m\}} |\nabla u|^{p(\mathbf{x})} d\mathbf{x} \leqslant D_7,$$
(3.22)

с константой $D_7(N)$, не зависящей от u.

Доказательство. Рассмотрим функцию

$$T_{k,m}(\varrho) = \begin{cases} 0 & \text{при } |\varrho| < m, \\ \varrho - m \operatorname{sign} \varrho & \text{при } m \leqslant |\varrho| < k + m, \\ k \operatorname{sign} \varrho & \text{при } |\varrho| \geqslant k + m. \end{cases}$$

Положив в (2.7) $h(u) = T_{k,m}(u), \varphi = \phi_r$, будем иметь

$$\int\limits_{\{\Omega: m\leqslant |u|< k+m\}} \phi_r \mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla u d\mathbf{x} + \int\limits_{\{\Omega: m\leqslant |u|\}} b(\mathbf{x}, u) T_{k,m}(u) \phi_r d\mathbf{x} + \int\limits_{\{\Omega: m\leqslant |u|\}} \mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla \phi_r T_{k,m}(u) d\mathbf{x} = \int\limits_{\{\Omega: m\leqslant |u|\}} T_{k,m}(u) \phi_r f d\mathbf{x}.$$

Далее, используя (2.3), (2.5), выводим

$$\overline{a} \int_{\{\Omega: m \leqslant |u| < k+m\}} \phi_r |\nabla u|^{p(\mathbf{x})} d\mathbf{x} + k \int_{\{\Omega: |u| \geqslant k+m\}} \phi_r |b(\mathbf{x}, u)| d\mathbf{x} \leqslant k \int_{\{\Omega: |u| \geqslant m\}} \phi_r |f| d\mathbf{x} + k \widehat{a} \int_{\{\Omega: |u| \geqslant m\}} \left(|\nabla u|^{p(\mathbf{x})-1} + \Phi(\mathbf{x}) \right) |\nabla \phi_r| d\mathbf{x} \leqslant k \|f\|_{1, \Omega(r+1)} + k \widehat{a} \int_{\Omega} \left(|\nabla u|^{p(\mathbf{x})-1} + \Phi(\mathbf{x}) \right) |\nabla \phi_r| d\mathbf{x}.$$
(3.23)

Соединяя последнее неравенство с (3.17), получаем оценку (3.22).

В частности, из (3.22) при m=0 имеем оценку

$$\int_{\{\Omega(r):|u| \ge k\}} |b(\mathbf{x}, u)| d\mathbf{x} + \frac{1}{k} \int_{\{\Omega(r):|u| < k\}} |\nabla u|^{p(\mathbf{x})} d\mathbf{x} \le D_7.$$
(3.24)

Утверждение 3.4. Пусть u — локальное ренормализованное решение задачи (0.1), (0.2), тогда для любых k,r > 0 верны неравенства

meas
$$(\{\Omega(r) : |\nabla u| \geqslant k\}) \leqslant D_8(N)k^{-\gamma_0}, \quad \gamma_0 = \frac{p_{0-}p_{-}}{p_{0-}+1}.$$
 (3.25)

Доказательство. Из оценки (3.24) выводим

$$\int_{\{\Omega(r):|u|< k\}} |\nabla u|^{p(\mathbf{x})} d\mathbf{x} \leqslant D_7 k, \quad k > 0.$$
(3.26)

Положим $\Phi(k,h) = \max \{ \Omega(r) : |u| \geqslant k, \ |\nabla u|^{p(\mathbf{x})} \geqslant h \}, \ k,h > 0.$ Выше установлено (см. (3.15)), что

$$\Phi(k,0) \leqslant D_1 k^{-p_{0-}}. (3.27)$$

Поскольку функция $h \to \Phi(k,h)$ невозрастающая, то для k,h>0 справедливы неравенства

$$\Phi(0,h) \leqslant \frac{1}{h} \int_{0}^{h} \Phi(0,\varrho) d\varrho \leqslant \Phi(k,0) + \frac{1}{h} \int_{0}^{h} (\Phi(0,\varrho) - \Phi(k,\varrho)) d\varrho. \tag{3.28}$$

Отметим, что

$$\Phi(0, \varrho) - \Phi(k, \varrho) = \max \{ \Omega : |u| < k, \ |\nabla u|^{p(\mathbf{x})} \geqslant \varrho \}.$$

Поэтому из (3.26) следует, что

$$\int_{0}^{\infty} (\Phi(0,\varrho) - \Phi(k,\varrho)) d\varrho \leqslant D_7 k. \tag{3.29}$$

Теперь, соединяя (3.27)–(3.29), получаем неравенство

$$\Phi(0,h) \leqslant D_1 k^{-p_{0-}} + D_7 k/h.$$

Выбирая $k = h^{\frac{1}{p_0-+1}}$, добиваемся неравенства $\Phi(0,h) < D_8 h^{-\frac{p_0}{p_0-+1}}$. Отсюда, ввиду справедливости вложения $\{\Omega(r): |\nabla u|^{p(\mathbf{x})} \geqslant h\} \supset \{\Omega(r): |\nabla u| \geqslant h^{1/p_-}\}$, устанавливаем оценку

meas
$$(\{\Omega(r): |\nabla u| \ge h^{1/p_-}\}) \le D_8 h^{-\gamma_0/p_-}, \ h \ge 1$$

из которой следует (3.25).

Лемма 3.1. Пусть $B = L_{p(\cdot)}(Q)$ или $B = W^1_{p(\cdot)}(Q), v^j, j \in \mathbb{N}, v$ — такие функции из B, что $\{v^j\}_{j\in\mathbb{N}}$ ограничена в B и

$$v^j \to v \quad n.e. \ e \ Q, \quad j \to \infty,$$
 (3.30)

тогда

$$v^j \rightharpoonup v$$
 слабо в $B, j \to \infty$.

Лемма 3.2. Пусть функции v^j , $j \in \mathbb{N}$, $v \in L_{\infty}(Q)$ такие, что $\{v^j\}_{j \in \mathbb{N}}$ ограничена в $L_{\infty}(Q)$ и имеет место сходимость (3.30), тогда

$$v^j \stackrel{*}{\rightharpoonup} v$$
 слабо в $L_{\infty}(Q)$, $j \to \infty$.

Eсли, кроме того, h^j , $j \in \mathbb{N}$, h — такие функции из $L_{p(\cdot)}(Q)$, что

$$h^j \to h$$
 сильно в $L_{p(\cdot)}(Q)$, $j \to \infty$,

mo

$$v^j h^j \to vh$$
 сильно в $L_{p(\cdot)}(Q), \quad j \to \infty.$

Лемма 3.3 (см. [5, лемма 2]). Пусть meas $(Q) < \infty$, $\gamma : Q \to [0, +\infty]$ — измеримая функция такая, что meas $(\{x \in Q : \gamma(x) = 0\}) = 0$. Тогда для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что неравенство

$$\int_{Q'} \gamma(\mathbf{x}) d\mathbf{x} < \delta, \quad Q' \subset Q,$$

влечет meas $(Q') < \varepsilon$.

Ниже будет использоваться теорема Витали в следующей форме (см. [1, гл. III, §6, теорема 15]).

Лемма 3.4. Пусть $v^j, j \in \mathbb{N}, \ v$ — измеримые функции в области Q, meas $(Q) < \infty$, такие, что имеет место сходимость $(3.30), \ s = 1$ или $p(\cdot)$ и интегралы

$$\int\limits_{O} |v^{j}(\mathbf{x})|^{s} d\mathbf{x}, \quad j \in \mathbb{N},$$

равностепенно абсолютно непрерывны, тогда

$$v^j \to v$$
 сильно в $L_s(Q)$, $j \to \infty$.

Лемма 3.5 (см. [9, Theorem 13.47]). Пусть v^j , $j \in \mathbb{N}$, $v \in L_1(Q)$ такие, что v^j , $v \geqslant 0$ п.в. в Q, имеет место сходимость (3.30) u

$$\int\limits_{Q} v^{j}(\mathbf{x})d\mathbf{x} \to \int\limits_{Q} v(\mathbf{x})d\mathbf{x}, \quad j \to \infty,$$

тогда

$$v^j \to v$$
 сильно в $L_1(Q)$, $j \to \infty$.

Определение 3.1. Пусть область Ω ограничена. Измеримая конечная почти всюду функция $u:\Omega\to\mathbb{R}$ называется ренормализованным решением задачи (0.1), (0.2) с $f\in L_1(\Omega)$, если выполняются условия: a)-d) и для любой функции $w\in\mathring{W}^1_{p(\cdot)}(\Omega)\cap L_\infty(\Omega)$ такой, что

существуют
$$k>0, \quad w^{+\infty}, \ w^{-\infty}\in W^1_{r(\cdot)}(\Omega), \ r(\cdot)>q_2'(\cdot),$$

$$\left\{ \begin{array}{l} w=w^{+\infty} \ \text{почти всюду при } u>k, \\ w=w^{-\infty} \ \text{почти всюду при } u<-k, \end{array} \right. \eqno(3.31)$$

справедливо равенство

$$\int_{\Omega} (b(\mathbf{x}, u) - f) w d\mathbf{x} + \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla w d\mathbf{x} = 0.$$
 (3.32)

Определение 3.1-loc. Измеримая конечная почти всюду функция $u:\Omega\to\mathbb{R}$ называется локальным ренормализованным решением задачи (0.1), (0.2) с $f\in L_{1,\mathrm{loc}}(\overline{\Omega})$, если выполняются условия a-loc)-d-loc) и для любой функции $w\in\mathring{W}^{1}_{p(\cdot)}(\Omega)\cap L_{\infty}(\Omega)$ с компактным носителем и свойствами (3.31) справедливо равенство (3.32).

Замечание 3.1. Каждый интеграл в (3.32) корректно определен. Пусть $\sup w \cap \Omega = K$. Первое слагаемое в левой части конечно благодаря условию b-loc), $f \in L_{1,\text{loc}}(\overline{\Omega})$ и принадлежности $w \in L_{\infty}(K)$. Второе слагаемое можно записать

$$\int\limits_{\{K: u < -k\}} \mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla w d\mathbf{x} + \int\limits_{\{K: u > k\}} \mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla w d\mathbf{x} + \int\limits_{\{K: |u| \leqslant k\}} \mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla w d\mathbf{x}.$$

С одной стороны, из условия c-loc) и неравенства (2.1) следует, что $\mathbf{a}(\mathbf{x}, \nabla u) \in (L_{q(\cdot)}(K))^n$ для любого $q(\cdot) < q_2(\cdot)$; с другой стороны, $\nabla w = \nabla w^{-\infty}$ п.в. на множестве $\{K: u < -k\}$, поэтому $\nabla w \in (L_{r(\cdot)}(\{K: u < -k\}))^n$ для любого $r(\cdot) > q_2'(\cdot)$ и, следовательно, произведение $\mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla w$ интегрируемо на $\{K: u < -k\}$. Таким же образом доказывается интегрируемость $\mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla w$ на $\{K: u > k\}$. Наконец, благодаря (2.9) и принадлежности $w \in W^1_{p(\cdot)}(K)$ произведение $\mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla w$ интегрируемо на $\{K: |u| \leq k\}$.

Теорема 3.1. Определения 2.1-loc, 3.1-loc эквивалентны.

Эквивалентность определений 2.1, 3.1 в случае данных в виде общей меры доказана в [3], эквивалентность определений 2.1-loc, 3.1-loc устанавливается аналогично.

4. Доказательство теоремы 2.1, начало

В этом разделе будут получены некоторые априорные оценки и свойства сходимости последовательности $\{u_{\xi}\}$.

Согласно определению 2.1-loc, для любой функции $h \in \operatorname{Lip}_0(\mathbb{R})$ и любой $\varphi \in W^1_{q(\cdot)}(\Omega), r(\cdot) > q_2'(\cdot)$ с компактным носителем такой, что $\varphi h(u) \in \mathring{W}^1_{p(\cdot)}(\Omega)$, решение u_{ξ} удовлетворяет равенству

$$\int_{\Omega} (b(\mathbf{x}, u_{\xi}) - f_{\xi}) h(u_{\xi}) \varphi d\mathbf{x} + \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla u_{\xi}) \cdot (\nabla u_{\xi} h'(u_{\xi}) \varphi + \nabla \varphi h(u_{\xi})) d\mathbf{x} = 0.$$
 (4.1)

Коме того, согласно определению 3.1-loc для любой функции $w \in \mathring{W}^{1}_{p(\cdot)}(\Omega) \cap L_{\infty}(\Omega)$ с компактным носителем и со свойствами (3.31) справедливо равенство

$$\int_{\Omega} (b(\mathbf{x}, u_{\xi}) - f_{\xi}) w d\mathbf{x} + \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla u_{\xi}) \cdot \nabla w d\mathbf{x} = 0.$$
 (4.2)

Шаг 1: априорные оценки. Здесь r>0 — произвольное фиксированное. Ввиду сходимости

$$f_{\xi} \to f \text{ B } L_{1,\text{loc}}(\overline{\Omega}), \quad \xi \to \infty,$$
 (4.3)

существует положительная константа c_r такая, что

$$||f_{\xi}||_{1,\Omega(r)} \leqslant c_r, \quad \xi \in \mathbb{N}.$$
 (4.4)

Применяя оценки утверждения 3.1 с $\phi = \phi_r$ (см. (3.1), (3.2)), учитывая (4.4), выводим оценки:

$$\int_{\Omega(r)} (|u_{\xi}| + 1)^{p_0(\mathbf{x})} d\mathbf{x} \leqslant D_1, \quad \xi \in \mathbb{N},$$
(4.5)

и для любого $\alpha < 0$

$$\int_{\Omega(r)} (|u_{\xi}| + 1)^{\alpha - 1} |\nabla u_{\xi}|^{p(\mathbf{x})} d\mathbf{x} \leqslant D_2, \quad \xi \in \mathbb{N}.$$

$$(4.6)$$

Согласно утверждению 3.2, для любых k, r > 0 справедливо неравенство (см. (3.15))

$$\operatorname{meas}\left(\left\{\Omega(r):|u_{\xi}|\geqslant k\right\}\right)\leqslant D_{1}k^{-p_{0}},\quad \xi\in\mathbb{N}.\tag{4.7}$$

Кроме того, для $1 \leqslant q(\cdot) < q_3(\cdot)$ справедлива оценка (см. (3.16))

$$\int_{\Omega(r)} |u_{\xi}|^{(p(\mathbf{x})-1)q(\mathbf{x})} d\mathbf{x} \leqslant D_3, \quad \xi \in \mathbb{N};$$
(4.8)

а для $1 \leqslant q(\cdot) < q_2(\cdot)$ (или $q_4(\cdot)$) — оценка (см. (3.17))

$$\int_{\Omega(r)} |\nabla u_{\xi}|^{(p(\mathbf{x})-1)q(\mathbf{x})} d\mathbf{x} \leqslant D_4, \quad \xi \in \mathbb{N}.$$
(4.9)

Таким же образом, как в утверждении 3.3, получаем оценку (см. (3.24))

$$\int_{\{\Omega(r):|u_{\xi}|\geqslant k\}} |b(\mathbf{x},u_{\xi})| d\mathbf{x} + \frac{1}{k} \int_{\{\Omega(r):|u_{\xi}|< k\}} |\nabla u_{\xi}|^{p(\mathbf{x})} d\mathbf{x} \leqslant D_{7}, \quad \xi \in \mathbb{N}.$$

$$(4.10)$$

Из оценки (4.10) ввиду произвольности k>0 устанавливаем неравенство

$$||b(\mathbf{x}, u_{\xi})||_{1,\Omega(r)} \leqslant D_7, \quad \xi \in \mathbb{N}. \tag{4.11}$$

Далее, из оценки (4.10), пользуясь неравенством (2.1'), выводим

$$\int_{\Omega(r)} |\nabla T_k(u_{\xi})|^{p(\mathbf{x})} d\mathbf{x} \leqslant D_7 k, \quad k > 0, \ \xi \in \mathbb{N}, \tag{4.12}$$

$$\int_{\Omega(r)} |\mathbf{a}(\mathbf{x}, \nabla T_k(u_{\xi}))|^{p'(\mathbf{x})} d\mathbf{x} \leqslant D_9 k, \quad k \geqslant 1, \ \xi \in \mathbb{N}.$$
(4.13)

Далее, согласно утверждению 3.4, для любых k, r > 0 справедливо неравенство (см. (3.25))

meas
$$(\{\Omega(r): |\nabla u_{\xi}| \geqslant k\}) \leqslant D_8 k^{-\gamma_0}, \quad \gamma_0 = \frac{p_0 - p_-}{p_0 + 1}.$$
 (4.14)

Здесь и ниже константы D_i не зависят от ξ, k .

Шаг 2: сходимость подпоследовательности $\{u_{\xi}\}$ почти всюду.

Из оценок (4.7), (4.14) имеем

meas
$$(\{\Omega(r): |u_{\xi}| \geqslant h\}) \to 0$$
 равномерно по ξ , $h \to \infty$, (4.15)

$$\operatorname{meas}(\{\Omega(r): |\nabla u_{\xi}| \geqslant h\}) \to 0$$
 равномерно по ξ , $h \to \infty$. (4.16)

Установим сходимость по подпоследовательности:

$$u_{\xi} \to u$$
 п.в. в $\Omega, \quad \xi \to \infty.$ (4.17)

Пусть $\alpha \in (1-p_-,0)$, рассмотрим последовательность $v_\xi = (1+|u_\xi|)^\beta$, $\beta = (\alpha+p_--1)/p_- > 0$. Согласно (4.5), (4.6), справедливы оценки

$$\int_{\Omega(r)} |v_{\xi}|^{p(x)} dx \leqslant \int_{\Omega(r)} (1 + |u_{\xi}|)^{p_{0}(x)} dx \leqslant D_{1}, \tag{4.18}$$

$$\int_{\Omega(r)} |\nabla v_{\xi}|^{p(\mathbf{x})} d\mathbf{x} \leq \beta^{p_{-}} \int_{\Omega(r)} (1 + |u_{\xi}|)^{(\beta - 1)p(\mathbf{x})} |\nabla u_{\xi}|^{p(\mathbf{x})} d\mathbf{x} \leq \int_{\Omega(r)} (1 + |u_{\xi}|)^{\alpha - 1} |\nabla u_{\xi}|^{p(\mathbf{x})} d\mathbf{x} \leq D_{2}. \quad (4.19)^{2} |\nabla u_{\xi}|^{p(\mathbf{x})} d\mathbf{x} \leq D_{2}.$$

Рассмотрим также последовательности $v'_{\xi}=(1+u^+_{\xi})^{\beta},\ v''_{\xi}=(1+u^-_{\xi})^{\beta}.$ Очевидно, что $|\nabla v'_{\xi}|\leqslant \beta(1+|u_{\xi}|)^{(\alpha-1)/p_-}|\nabla u_{\xi}|,\ |\nabla v''_{\xi}|\leqslant \beta(1+|u_{\xi}|)^{(\alpha-1)/p_-}|\nabla u_{\xi}|.$ Из оценок (4.18), (4.19) следует ограниченность последовательностей v'_{ξ},v''_{ξ} в пространстве $W^1_{p(\cdot)}(\Omega(r))$ и, ввиду компактности вложения в пространство $L_{p(\cdot)}(\Omega(r))$, имеет место сильная сходимость в $L_{p(\cdot)}(\Omega(r))$ и сходимость $v'_{\xi}\to v',\ v''_{\xi}\to v''$ п.в. в Ω . Тогда сходимость (4.17) доказана. Применяя лемму Фату и сходимость (4.17), из оценок (4.5), (4.11) выводим $|u|^{p_0(\mathbf{x})},\ b(\mathbf{x},u)\in L_{1,\mathrm{loc}}(\overline{\Omega}).$

Из (4.17) следует, что для любого k > 0

$$T_k(u_{\xi}) \to T_k(u)$$
 п.в. в $\Omega, \quad \xi \to \infty.$ (4.20)

Кроме того, из сходимости (4.17) вытекает сходимость локально по мере, а значит, и фундаментальность $\{u_{\xi}\}$ локально по мере:

$$\operatorname{meas}\left(\left\{\Omega(r):\left|u_{\xi}-u_{\eta}\right|\geqslant\nu\right\}\right)\to0\quad\text{при}\quad\xi,\eta\to\infty\quad\text{для любых}\quad\nu,r>0. \tag{4.21}$$

Из оценки (4.12) следует ограниченность последовательности $\{T_k(u_\xi)\}\subset \mathring{W}^1_{p(\cdot),\operatorname{loc}}(\overline{\Omega})$ в пространстве $W^1_{p(\cdot)}(\Omega(r))$ при фиксированных k,r>0. Тогда можно выделить слабо сходящуюся в $W^1_{p(\cdot)}(\Omega(r))$ подпоследовательность $T_k(u_\xi) \rightharpoonup v_k, \ \xi \to \infty$, причем $v_k \in \mathring{V}^1_{p(\cdot)}(\Omega(r))$. Из сходимости (4.20) следует равенство $v_k = T_k(u) \in \mathring{V}^1_{p(\cdot)}(\Omega(r))$. Таким образом, доказана сходимость

$$T_k(u_{\xi}) \rightharpoonup T_k(u) \quad \text{B} \quad \mathring{W}^1_{p(\cdot),\text{loc}}(\overline{\Omega}), \quad \xi \to \infty.$$
 (4.22)

Шаг 3: сходимость подпоследовательности $\{\nabla u_{\xi}\}$ почти всюду. Сначала установим сходимость

$$\nabla u_{\xi} \to \nabla u$$
 локально по мере, $\xi \to \infty$. (4.23)

Для $\nu, \theta, h, r > 0$ рассмотрим множество

$$E_{\nu,\theta,h}(r) = \{\Omega(r) : |u_{\xi} - u_{\eta}| < \nu, \ |\nabla u_{\xi}| \le h, \ |\nabla u_{\eta}| \le h, \ |u_{\xi}| < h, \ |u_{\eta}| < h, \ |\nabla (u_{\xi} - u_{\eta})| \ge \theta\}.$$

Поскольку справедливо включение

$$\{\Omega(r): |\nabla(u_{\xi} - u_{\eta})| \geqslant \theta\} \subset \{\Omega(r): |\nabla u_{\xi}| > h\} \cup \{\Omega(r): |\nabla u_{\eta}| > h\} \cup \cup \{\Omega(r): |u_{\xi} - u_{\eta}| \geqslant \nu\} \cup \{\Omega(r): |u_{\xi}| \geqslant h\} \cup \{\Omega(r): |u_{\eta}| \geqslant h\} \cup E_{\nu,\theta,h}(r),$$

то в силу (4.15)-(4.16) выбором h добьемся неравенств

$$\operatorname{meas} \left\{ \Omega(r) : |\nabla(u_{\eta} - u_{\xi})| \geqslant \theta \right\} < 4\varepsilon + \operatorname{meas} E_{\nu,\theta,h}(r) + \operatorname{meas} \left\{ \Omega(r) : |u_{\eta} - u_{\xi}| \geqslant \nu \right\}, \quad \xi, \eta \in \mathbb{N}. \quad (4.24)$$

По условию монотонности (2.2) и известному факту, что непрерывная функция на компакте достигает наименьшего значения, найдется $\gamma(\mathbf{x}) > 0$ п.в. в $\Omega(r)$ такая, что meas($\{\mathbf{x} \in \Omega(r) : \gamma(\mathbf{x}) = 0\}$) = 0, и при $|\mathbf{s}| \leq h$, $|\mathbf{t}| \leq h$, $|\mathbf{s} - \mathbf{t}| \geq \theta$ справедливо неравенство

$$(\mathbf{a}(\mathbf{x}, \mathbf{s}) - \mathbf{a}(\mathbf{x}, \mathbf{t})) \cdot (\mathbf{s} - \mathbf{t}) \geqslant \gamma(\mathbf{x}), \quad \mathbf{x} \in \Omega(r). \tag{4.25}$$

Запишем равенство (4.2) дважды для u_{ξ} u_{η} с f_{ξ} и f_{η} , соответственно, и вычтем из первого второе, получим

$$\int_{\Omega} (\mathbf{a}(\mathbf{x}, \nabla u_{\xi}) - \mathbf{a}(\mathbf{x}, \nabla u_{\eta})) \cdot \nabla w d\mathbf{x} = \int_{\Omega} (f_{\xi} - f_{\eta} - b(\mathbf{x}, u_{\xi}) + b(\mathbf{x}, u_{\eta})) w d\mathbf{x}.$$

Подставляя пробную функцию $w=T_{\nu}(u_{\xi}-u_{\eta})\phi_{r}(|\mathbf{x}|)\phi_{h}(|u_{\xi}|)\phi_{h}(|u_{\eta}|),\ w^{+\infty}=w^{-\infty}=0,$ устанавливаем соотношение

$$\int_{\Omega} (\mathbf{a}(\mathbf{x}, \nabla u_{\xi}) - \mathbf{a}(\mathbf{x}, \nabla u_{\eta})) \cdot \nabla (T_{\nu}(u_{\xi} - u_{\eta})\phi_{r}(|\mathbf{x}|)\phi_{h}(|u_{\xi}|)\phi_{h}(|u_{\eta}|)) d\mathbf{x} =$$

$$= \int_{\Omega} (-b(\mathbf{x}, u_{\xi}) + b(\mathbf{x}, u_{\eta}) + f_{\xi} - f_{\eta})T_{\nu}(u_{\xi} - u_{\eta})\phi_{r}(|\mathbf{x}|)\phi_{h}(|u_{\xi}|)\phi_{h}(|u_{\eta}|)d\mathbf{x}.$$

Используя оценки (4.4), (4.11), выводим

$$\int_{\Omega} \left(\mathbf{a}(\mathbf{x}, \nabla u_{\xi}) - \mathbf{a}(\mathbf{x}, \nabla u_{\eta}) \right) \cdot \nabla \left(T_{\nu}(u_{\xi} - u_{\eta}) \phi_{r}(|\mathbf{x}|) \phi_{h}(|u_{\xi}|) \phi_{h}(|u_{\eta}|) \right) d\mathbf{x} \leqslant
\leqslant \nu (\|b(\mathbf{x}, u_{\xi})\|_{1, \Omega(r+1)} + \|b(\mathbf{x}, u_{\eta})\|_{1, \Omega(r+1)} + \|f_{\xi}\|_{1, \Omega(r+1)} + \|f_{\eta}\|_{1, \Omega(r+1)}) \leqslant D_{10}\nu.$$
(4.26)

Далее, применяя (4.25), устанавливаем

$$\int_{E_{\nu,\theta,h}(r)} \gamma(\mathbf{x}) d\mathbf{x} \leqslant \int_{E_{\nu,\theta,h}(r)} (\mathbf{a}(\mathbf{x}, \nabla u_{\xi}) - \mathbf{a}(\mathbf{x}, \nabla u_{\eta})) \cdot \nabla(u_{\xi} - u_{\eta}) d\mathbf{x} \leqslant (4.27)$$

$$\leqslant \int_{\{\Omega: |u_{\xi} - u_{\eta}| < \nu\}} \phi_{r}(|\mathbf{x}|) \phi_{h}(|u_{\xi}|) \phi_{h}(|u_{\eta}|) (\mathbf{a}(\mathbf{x}, \nabla u_{\xi}) - \mathbf{a}(\mathbf{x}, \nabla u_{\eta})) \cdot \nabla(u_{\xi} - u_{\eta}) d\mathbf{x}.$$

Соединяя (4.26), (4.27), применяя (1.2), (4.12), (4.13), получаем

$$\int_{\{E_{\nu,\theta,h}(r)\}} \gamma(\mathbf{x}) d\mathbf{x} \leqslant \int_{\{\Omega(r+1):|u_{\xi}|< h+1,|u_{\eta}|< r+1\}} (|\mathbf{a}(\mathbf{x},\nabla u_{\xi})| + |\mathbf{a}(\mathbf{x},\nabla u_{\eta})|) |T_{\nu}(u_{\xi} - u_{\eta})| d\mathbf{x} + \\
+ \int_{\{\Omega(r+1):h<|u_{\eta}|< h+1,|u_{\xi}|< h+1\}} (|\mathbf{a}(\mathbf{x},\nabla u_{\xi})| + |\mathbf{a}(\mathbf{x},\nabla u_{\eta})|) |\nabla u_{\eta}|| T_{\nu}(u_{\xi} - u_{\eta})| d\mathbf{x} + \\
+ \int_{\{\Omega(r+1):h<|u_{\xi}|< h+1,|u_{\eta}|< h+1\}} (|\mathbf{a}(\mathbf{x},\nabla u_{\xi})| + |\mathbf{a}(\mathbf{x},\nabla u_{\eta})|) |\nabla u_{\xi}|| T_{\nu}(u_{\xi} - u_{\eta})| d\mathbf{x} + D_{10}(r)\nu \leqslant \\
\leqslant \nu \left(3\rho(|\mathbf{a}(\mathbf{x},\nabla T_{h+1}(u_{\xi}))|)_{p'(\cdot),\Omega(r+1)} + 3\rho(|\mathbf{a}(\mathbf{x},\nabla T_{h+1}(u_{\eta}))|)_{p'(\cdot),\Omega(r+1)} + \right)$$

Для произвольных $\theta, \delta > 0$ при фиксированных h, r выбором ν из (4.28) устанавливаем неравенство

 $+2\rho(|\nabla T_{h+1}(u_{\xi})|)_{p(\cdot),\Omega(r+1)}+2\rho(|\nabla T_{h+1}(u_{\eta})|)_{p(\cdot),\Omega(r+1)}+D_{11}(r))\leqslant D_{12}(r,h)\nu.$

$$\int_{E_{\nu,\theta,h}(r)} \gamma(\mathbf{x}) d\mathbf{x} < \delta.$$

Применяя лемму 3.3, для любых $\theta, \varepsilon > 0$ выводим

$$\operatorname{meas}\left(E_{\nu,\theta,h}(r)\right) < \varepsilon. \tag{4.29}$$

Кроме того, согласно (4.21) можно выбрать $\xi_0(\nu,r,\varepsilon)$ такое, что

$$\operatorname{meas}\left(\left\{\Omega(r): |u_{\xi} - u_{\eta}| \geqslant \nu\right\}\right) < \varepsilon, \quad \xi, \eta \geqslant \xi_{0}. \tag{4.30}$$

Соединяя (4.24), (4.29), (4.30), в итоге для любых $\theta, \varepsilon > 0$ выводим неравенство

meas
$$(\{\Omega(r): |\nabla(u_{\varepsilon} - u_{\eta})| \geqslant \theta\}) < 6\varepsilon, \quad \xi, \eta \geqslant \xi_0.$$

Отсюда следует локальная фундаментальность по мере последовательности $\{\nabla u_{\xi}\}$, это влечет сходимость (4.23), а также сходимость по подпоследовательности:

$$\nabla u_{\xi} \to \nabla u$$
 п.в. в $\Omega, \quad \xi \to \infty.$ (4.31)

Далее, несложно установить сходимость

$$\nabla T_k(u_{\xi}) \to \nabla T_k(u)$$
 п.в. в $\Omega, \quad \xi \to \infty.$ (4.32)

Из непрерывности a(x,s) по $s \in \mathbb{R}^n$ и сходимости (4.32) следует сходимость

$$\mathbf{a}(\mathbf{x}, \nabla T_k(u_{\xi})) \to \mathbf{a}(\mathbf{x}, \nabla T_k(u)) \quad \text{п.в. в} \quad \Omega, \quad \xi \to \infty.$$
 (4.33)

Отсюда, благодаря оценке (4.13), по лемме 3.1 имеем сходимость

$$\mathbf{a}(\mathbf{x}, \nabla T_k(u_{\xi})) \rightharpoonup \mathbf{a}(\mathbf{x}, \nabla T_k(u))$$
 слабо в $(L_{p'(\cdot), \mathrm{loc}}(\overline{\Omega}))^n$, $\xi \to \infty$. (4.34)

Шаг 4: сильные сходимости

$$|u_{\xi}|^{p(\mathbf{x})-1} \to |u|^{p(\mathbf{x})-1}$$
 B $L_{q(\cdot),\mathrm{loc}}(\overline{\Omega}), \quad 1 \leqslant q(\cdot) < q_3(\cdot), \quad \xi \to \infty,$ (4.35)

$$|\nabla u_{\xi}|^{p(\mathbf{x})-1} \to |\nabla u|^{p(\mathbf{x})-1} \quad \mathbf{B} \quad (L_{q(\cdot),\mathrm{loc}}(\overline{\Omega}))^n, \quad 1 \leqslant q(\cdot) < q_2(\cdot) \; (\text{или } q_4(\cdot)), \quad \xi \to \infty, \tag{4.36}$$

$$a(x, \nabla u_{\xi}) \to a(x, \nabla u)$$
 в $(L_{q(\cdot), loc}(\overline{\Omega}))^n$, $1 \leqslant q(\cdot) < q_2(\cdot)$ (или $q_4(\cdot)$), $\xi \to \infty$, (4.37)

$$b(\mathbf{x}, u_{\xi}) \to b(\mathbf{x}, u)$$
 B $L_{1,\text{loc}}(\overline{\Omega}), \quad \xi \to \infty.$ (4.38)

Применяя лемму Фату и сходимости (4.17), (4.31), из оценок (4.8), (4.9) выводим принадлежность $|u|^{p(\cdot)-1} \in L_{q(\cdot),\mathrm{loc}}(\overline{\Omega}), \ 1 \leqslant q(\cdot) < q_3(\cdot), \ |\nabla u|^{p(\cdot)-1} \in L_{q(\cdot),\mathrm{loc}}(\overline{\Omega}), \ 1 \leqslant q(\cdot) < q_2(\cdot) \ (или \ q_4(\cdot)).$

Применяя неравенства (1.1), (2.1) и неравенство Юнга, для любого измеримого множества $Q \subset \Omega(r)$ и любого $\epsilon > 0$ устанавливаем неравенства

$$\int_{Q} |\mathbf{a}(\mathbf{x}, \nabla u_{\xi})|^{q(\mathbf{x})} d\mathbf{x} \leqslant \widehat{a}^{q_{+}} 2^{q_{+}-1} \int_{Q} \left(|\nabla u_{\xi}|^{(p(\mathbf{x})-1)q(\mathbf{x})} + \Phi^{q(\mathbf{x})}(\mathbf{x}) \right) d\mathbf{x} \leqslant
\leqslant \epsilon \int_{\Omega(r)} |\nabla u_{\xi}|^{(p(\mathbf{x})-1)\widehat{q}(\mathbf{x})} d\mathbf{x} + C(\epsilon) \operatorname{meas}(Q) + D_{13} \int_{Q} \Phi^{q(\mathbf{x})}(\mathbf{x}) d\mathbf{x},$$
(4.39)

где $1 \leqslant q(\cdot) < \widehat{q}(\cdot) < q_2(\cdot)$.

Поскольку $q_2(\cdot) < p'(\cdot)$, то $\Phi \in L_{q(\cdot)}(\Omega(r))$, $q(\cdot) < q_2(\cdot)$. Учитывая абсолютную непрерывность второго интеграла в правой части (4.39), применяя оценку (4.9), для любого $\varepsilon > 0$ найдем такое $\delta(\varepsilon)$, что: для любого Q такого, что meas $Q(\cdot) < \delta(\varepsilon)$, выполнено неравенство

$$\int\limits_{Q} |\mathbf{a}(\mathbf{x}, \nabla u_{\xi})|^{q(\mathbf{x})} d\mathbf{x} \leqslant \varepsilon, \quad \forall \, \xi \in \mathbb{N}.$$

Отсюда следует, что последовательности $\{|\nabla u_{\xi}|^{(p(\mathbf{x})-1)q(\mathbf{x})}\}$, $\{|\mathbf{a}(\mathbf{x},\nabla u_{\xi})|^{q(\mathbf{x})}\}$ имеют равностепенно абсолютно непрерывные интегралы по множеству $\Omega(r)$. По лемме 3.4 имеют место сходимости (4.36), (4.37). Сходимость (4.35) устанавливается аналогично, с помощью оценки (4.8).

Запишем оценку (3.23) для u_{ξ}, f_{ξ} для k=1:

$$\overline{a} \int_{\{\Omega(r): \rho \leqslant |u_{\xi}| < 1 + \rho\}} |\nabla u_{\xi}|^{p(\mathbf{x})} d\mathbf{x} + \int_{\{\Omega(r): |u_{\xi}| \geqslant 1 + \rho\}} |b(\mathbf{x}, u_{\xi})| d\mathbf{x} \leqslant
\leqslant \int_{\{\Omega(r+1): |u_{\xi}| \geqslant \rho\}} |f_{\xi}| d\mathbf{x} + \widehat{a} \int_{\{\Omega(r+1): |u_{\xi}| \geqslant \rho\}} \left(|\nabla u_{\xi}|^{p(\mathbf{x}) - 1} + \Phi(\mathbf{x}) \right) d\mathbf{x}.$$

Ввиду того, что f_{ξ} , $|\nabla u_{\xi}|^{p(\mathbf{x})-1}$ сходятся сильно в $L_{1,\mathrm{loc}}(\overline{\Omega})$, и абсолютной непрерывности интеграла в правой части последнего неравенства, учитывая (4.15), для любого $\varepsilon > 0$ можно выбрать достаточно большое $\widetilde{\rho}(\varepsilon) > 1$ такое, что для $\rho \geqslant \widetilde{\rho}$ справедлива оценка:

$$\overline{a} \int_{\{\Omega(r):\rho \leqslant |u_{\xi}| < 1 + \rho\}} |\nabla u_{\xi}|^{p(\mathbf{x})} d\mathbf{x} + \int_{\{\Omega(r):|u_{\xi}| \geqslant 1 + \rho\}} |b(\mathbf{x}, u_{\xi})| d\mathbf{x} < \frac{\varepsilon}{2}. \tag{4.40}$$

Для любого измеримого множества $Q \subset \Omega(r)$ имеем

$$\int_{Q} |b(\mathbf{x}, u_{\xi})| d\mathbf{x} \leqslant \int_{\{Q: |u_{\xi}| < \rho + 1\}} |b(\mathbf{x}, u_{\xi})| d\mathbf{x} + \int_{\{\Omega(r): |u_{\xi}| \geqslant \rho + 1\}} |b(\mathbf{x}, u_{\xi})| d\mathbf{x}.$$
(4.41)

Применяя (2.4), выводим:

$$\int_{\{Q:|u_{\xi}|<\rho+1\}} |b(\mathbf{x},u_{\xi})| d\mathbf{x} \leqslant \widehat{b}(\rho+1) \int_{Q} \Phi_{0}(\mathbf{x}) d\mathbf{x}.$$

Ввиду того, что $\Phi_0 \in L_1(Q)$, и абсолютной непрерывности интеграла в правой части последнего неравенства, для любого $\varepsilon > 0$ найдется такое $\alpha(\varepsilon)$, что для любого Q такого, что meas $Q < \alpha(\varepsilon)$, выполнено неравенство

$$\int_{\{Q:|u_{\xi}|<\rho+1\}} |b(\mathbf{x},u_{\xi})| d\mathbf{x} < \frac{\varepsilon}{2}, \quad \xi \in \mathbb{N}.$$
(4.42)

Объединяя (4.40)–(4.42), устанавливаем

$$\int\limits_{Q}|b(\mathbf{x},u_{\xi})|d\mathbf{x}<\varepsilon\quad\forall\ Q\quad\text{такого, что meas }Q<\alpha(\varepsilon),\quad\xi\in\mathbb{N}.$$

Отсюда следует, что последовательность $\{b(\mathbf{x}, u_{\xi})\}$ имеет равностепенно абсолютно непрерывные интегралы по множеству $\Omega(r)$. По лемме 3.4 устанавливаем сходимость

$$b(\mathbf{x}, u_{\xi}) \to b(\mathbf{x}, u)$$
 B $L_1(\Omega(r)), \quad \xi \to \infty,$

для любого r > 0. Сходимость (4.38) доказана.

Доказательство теоремы будет продолжено в разделе 6.

5. Вспомогательные леммы

Чтобы доказать сильную сходимость срезок в $\mathring{W}^1_{p(\cdot), \mathrm{loc}}(\overline{\Omega})$, установим вспомогательные леммы. Будем использовать функции вещественной переменной ϱ от одного вещественного параметра m>0:

$$G_{m}(\varrho) = \begin{cases} 0, & |\varrho| > 2m, \\ \frac{\varrho + 2m}{m}, & -2m \leqslant \varrho < -m, \\ 1, & |\varrho| \leqslant m, \\ \frac{2m - \varrho}{m}, & m < \varrho \leqslant 2m, \end{cases}$$

$$(5.1)$$

 $\tau_m(\varrho) = T_{m,m}(\varrho).$

Для положительных вещественных чисел m,ξ обозначим через $\omega(m,\xi)$ любую величину такую, что

$$\limsup_{m \to +\infty} \limsup_{\xi \to +\infty} |\omega(m,\xi)| = 0.$$

А через $\omega_m(\xi)$ обозначим величину такую, что при фиксированном m

$$\limsup_{\xi \to +\infty} |\omega_m(\xi)| = 0.$$

Лемма 5.1. Пусть $\{u_{\xi}\}$ — последовательность локальных ренормализованных решений задачи (2.10), (0.2) такая, что имеют место сходимости (4.3), (4.17), (4.22), (4.31), (4.37), (4.38). Тогда для любых m > 0 и $\phi \in D^+(\mathbb{R}^n)$ имеем

$$\frac{1}{m} \int_{\{\Omega: m \le |u_{\xi}| < 2m\}} \mathbf{a}(\mathbf{x}, \nabla u_{\xi}) \cdot \nabla u_{\xi} \phi d\mathbf{x} = \omega(m, \xi).$$
 (5.2)

Доказательство. Зафиксируем m, и пусть ξ стремится к бесконечности. Ввиду сходимости (4.17), непрерывности и ограниченности функции $\tau_m(\varrho)$, по лемме 3.2 имеем

$$\tau_m(u_{\xi}) \to \tau_m(u)$$
 II.B. B $\Omega, \quad \xi \to \infty,$ (5.3)

$$\tau_m(u_{\mathcal{E}}) \stackrel{*}{\rightharpoonup} \tau_m(u)$$
 слабо в $L_{\infty}(\Omega), \quad \xi \to \infty.$ (5.4)

Очевидно.

$$\tau_m(u) \to 0$$
 п.в. в $\Omega, m \to \infty.$ (5.5)

Ввиду ограниченности последовательности функций $\{\tau_m(\varrho)\}_{m=1}^{\infty}$, по лемме 3.2 имеем

$$\tau_m(u) \stackrel{*}{\rightharpoonup} 0$$
 слабо в $L_{\infty}(\Omega), \quad m \to \infty.$ (5.6)

Теперь в равенстве (4.1) возьмем $h = \tau_m(u_{\xi}), \varphi = \phi \in D^+(\mathbb{R}^n)$, получим

$$I_{1} + I_{21} + I_{22} = \int_{\Omega} (b(\mathbf{x}, u_{\xi}) - f_{\xi}) \phi \tau_{m}(u_{\xi}) d\mathbf{x} + \frac{1}{m} \int_{\{m \leq |u_{\xi}| < 2m\}} \mathbf{a}(\mathbf{x}, \nabla u_{\xi}) \cdot \nabla u_{\xi} \phi d\mathbf{x} + \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla u_{\xi}) \cdot \nabla \phi \tau_{m}(u_{\xi}) d\mathbf{x} = 0.$$

$$(5.7)$$

Поскольку $\phi \in D^+(\mathbb{R}^n)$, благодаря сходимостям

$$\mathbf{a}(\mathbf{x}, \nabla u_{\xi}) \to \mathbf{a}(\mathbf{x}, \nabla u)$$
 сильно в $(L_{1,\text{loc}}(\overline{\Omega}))^n$, $\xi \to 0$ (5.8)

(cm. (4.37)), (5.4), (5.6) имеем

$$I_{22} = \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla \phi \tau_m(u) d\mathbf{x} + \omega_m(\xi) = \omega(m, \xi).$$
 (5.9)

Аналогично, используя сходимости (4.38), (4.3), (5.4), (5.6), получаем

$$I_1 = \int_{\Omega} (b(\mathbf{x}, u) - f)\phi \tau_m(u) d\mathbf{x} + \omega_m(\xi) = \omega(m, \xi).$$
 (5.10)

Соединяя (5.7), (5.9)–(5.10), получаем неравенство

$$\frac{1}{m} \int_{\{\Omega: m \leqslant |u_{\xi}| < 2m\}} \mathbf{a}(\mathbf{x}, \nabla u_{\xi}) \cdot \nabla u_{\xi} \phi d\mathbf{x} \leqslant \omega(m, \xi),$$

которое влечет (5.2).

Лемма 5.2. Пусть выполнены условия леммы 5.1, тогда для k > 0 и $\phi \in D^+(\mathbb{R}^n)$ имеем

$$\int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla T_k(u_{\xi})) \cdot \nabla T_k(u_{\xi}) \phi d\mathbf{x} = \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla T_k(u)) \cdot \nabla T_k(u) \phi d\mathbf{x} + \omega(\xi). \tag{5.11}$$

Доказательство леммы 5.2 разобьем на две леммы.

Лемма 5.3. Пусть выполнены условия леммы 5.1, тогда для любых k>0 и $\phi\in D^+(\mathbb{R}^n)$ имеем

$$\int_{\Omega} (b(\mathbf{x}, u) - f) T_k(u) \phi d\mathbf{x} + \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla T_k(u_{\xi})) \cdot \nabla T_k(u_{\xi}) \phi d\mathbf{x} + \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla \phi T_k(u) d\mathbf{x} = \omega(\xi). \quad (5.12)$$

Доказательство. Выберем $h(\rho) = T_k(\rho), \ \varphi = \phi \in D^+(\mathbb{R}^n)$ в равенстве (4.1), получим:

$$I_{1} + I_{21} + I_{22} = \int_{\Omega} (b(\mathbf{x}, u_{\xi}) - f_{\xi}) T_{k}(u_{\xi}) \phi d\mathbf{x} + \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla T_{k}(u_{\xi})) \cdot \nabla T_{k}(u_{\xi}) \phi d\mathbf{x} + \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla u_{\xi}) \cdot \nabla \phi T_{k}(u_{\xi}) d\mathbf{x} = 0.$$
(5.13)

Согласно (4.20), по лемме 3.2 имеет место сходимость

$$T_k(u_{\xi}) \stackrel{*}{\rightharpoonup} T_k(u)$$
 слабо в $L_{\infty}(\Omega), \quad \xi \to \infty.$ (5.14)

Применяя (5.14), (5.8), устанавливаем:

$$I_{22} = \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla \phi T_k(u) d\mathbf{x} + \omega(\xi). \tag{5.15}$$

Благодаря (4.38), (4.3), (5.14) устанавливаем

$$I_1 = \int_{\Omega} (b(\mathbf{x}, u) - f) T_k(u) \phi d\mathbf{x} + \omega(\xi). \tag{5.16}$$

Соединяя (5.13), (5.15), (5.16), выводим (5.12).

Лемма 5.4. Пусть выполнены условия леммы 5.1, тогда для любых k>0 и $\phi\in D^+(\mathbb{R}^n)$ имеем

$$\int_{\Omega} (b(\mathbf{x}, u) - f) T_k(u) \phi d\mathbf{x} + \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla T_k(u)) \cdot \nabla T_k(u) \phi d\mathbf{x} + \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla \phi T_k(u) d\mathbf{x} = 0.$$
 (5.17)

Доказательство. Ввиду сходимости (4.17), непрерывности и ограниченности функции $G_m(\varrho)$, по лемме 3.2 имеем

$$G_m(u_\xi) \to G_m(u)$$
 п.в. в $\Omega, \quad \xi \to \infty,$
$$G_m(u_\xi) \stackrel{*}{\rightharpoonup} G_m(u)$$
 слабо в $L_\infty(\Omega), \quad \xi \to \infty.$ (5.18)

Ввиду ограниченности функции $G_m(\varrho)$ по лемме 3.2 имеем

$$G_m(u) \to 1$$
 II.B. B $\Omega, m \to \infty,$ (5.19)

$$G_m(u) \stackrel{*}{\rightharpoonup} 1$$
 слабо в $L_{\infty}(\Omega), \quad m \to \infty.$ (5.20)

Выберем $w = T_k(u)G_m(u_\xi)\phi$, $\phi \in D^+(\mathbb{R}^n)$ в качестве тестовой функции в равенстве (4.2), полагая $w^{+\infty} = w^{-\infty} = 0$; получим:

$$I_{1} + I_{21} + I_{22} + I_{23} = \int_{\Omega} (b(\mathbf{x}, u_{\xi}) - f_{\xi}) T_{k}(u) \phi G_{m}(u_{\xi}) d\mathbf{x} + \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla u_{\xi}) \cdot \nabla u_{\xi} T_{k}(u) \phi G'_{m}(u_{\xi}) d\mathbf{x} + \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla u_{\xi}) \cdot \nabla T_{k}(u) \phi G_{m}(u_{\xi}) d\mathbf{x} + \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla u_{\xi}) \cdot \nabla \phi T_{k}(u) G_{m}(u_{\xi}) d\mathbf{x} = 0.$$
 (5.21)

Благодаря неравенству (4.13) имеет место оценка:

$$\int_{\Omega(r)} |\mathbf{a}(\mathbf{x}, \nabla T_{2m}(u_{\xi})) G_m(u_{\xi})|^{p'(\mathbf{x})} d\mathbf{x} \leqslant mD_{13}.$$

Из непрерывности a(x, s) по $s \in \mathbb{R}^n$, $G_m(s_0)$ по $s_0 \in \mathbb{R}$ и сходимостей (4.17), (4.32) следует сходимость

$$\mathbf{a}(\mathbf{x}, \nabla T_{2m}(u_{\xi}))G_m(u_{\xi}) \to \mathbf{a}(\mathbf{x}, \nabla T_{2m}(u))G_m(u)$$
 II.B. B $\Omega, \quad \xi \to \infty$.

Отсюда, по лемме 3.1 имеем сходимость

$$\mathbf{a}(\mathbf{x}, \nabla T_{2m}(u_{\xi}))G_m(u_{\xi}) \rightharpoonup \mathbf{a}(\mathbf{x}, \nabla T_{2m}(u))G_m(u)$$
 слабо в $(L_{p'(\cdot), \mathrm{loc}}(\overline{\Omega}))^n$, $\xi \to \infty$. (5.22)

Поскольку $\mathbf{a}(\mathbf{x}, \nabla u_{\xi})G_m(u_{\xi}) = \mathbf{a}(\mathbf{x}, \nabla T_{2m}(u_{\xi}))G_m(u_{\xi})$, применяя (5.22), (5.20), для m > k имеем

$$I_{22} = \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla T_{2m}(u)) \cdot \nabla T_k(u) \phi G_m(u) d\mathbf{x} + \omega_m(\xi) = \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla T_k(u)) \cdot \nabla T_k(u) \phi d\mathbf{x} + \omega(m, \xi). \quad (5.23)$$

Применяя сходимости (5.8), (5.18), (5.20), получаем

$$I_{23} = \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla \phi T_k(u) G_m(u) d\mathbf{x} + \omega_m(\xi) = \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla \phi T_k(u) d\mathbf{x} + \omega(m, \xi). \tag{5.24}$$

По лемме 5.1 имеем

$$|I_{21}| \leqslant \frac{k}{m} \int_{\{\Omega: m \leqslant |u_{\xi}| < 2m\}} \mathbf{a}(\mathbf{x}, \nabla u_{\xi}) \cdot \nabla u_{\xi} \phi d\mathbf{x} = \omega(m, \xi).$$
 (5.25)

Применяя сходимости (4.38), (4.3), (5.18), (5.20), получаем

$$I_{1} = \int_{\Omega} (b(\mathbf{x}, u) - f) T_{k}(u) \phi G_{m}(u) d\mathbf{x} + \omega_{m}(\xi) = \int_{\Omega} (b(\mathbf{x}, u) - f) T_{k}(u) \phi d\mathbf{x} + \omega(m, \xi).$$
 (5.26)

Соединяя (5.21), (5.23)–(5.26), устанавливаем (5.17), поскольку все слагаемые в (5.17) не зависят от ξ и m.

Для получения (5.11) достаточно вычесть (5.17) из (5.12). Лемма 5.2 доказана.

6. Доказательство теоремы 2.1, финал

В этом разделе мы завершаем доказательство теоремы 2.1. Напомним, что $\{u_{\xi}\}$ — подпоследовательность ренормализованных решений задач (2.10), (0.2) такая, что имеют место сходимости (4.17), (4.22), (4.31), (4.37), (4.38).

Шаг 5: сильная сходимость срезок в $\mathring{W}^{1}_{n(\cdot), \mathrm{loc}}(\overline{\Omega})$.

Учитывая (4.32), (4.33), выводим

$$\mathbf{a}(\mathbf{x}, \nabla T_k(u_{\xi})) \cdot \nabla T_k(u_{\xi}) \to \mathbf{a}(\mathbf{x}, \nabla T_k(u)) \cdot \nabla T_k(u)$$
 n.b. b $\Omega, \quad \xi \to \infty.$ (6.1)

Поскольку а $(\mathbf{x}, \nabla T_k(u_{\xi})) \cdot \nabla T_k(u_{\xi})$ неотрицательны, применяя (5.11), (6.1), для $\phi \in D^+(\mathbb{R}^n)$ по лемме 3.5 устанавливаем

$$\phi_{\mathbf{a}}(\mathbf{x}, \nabla T_k(u_{\xi})) \cdot \nabla T_k(u_{\xi}) \to \phi_{\mathbf{a}}(\mathbf{x}, \nabla T_k(u)) \cdot \nabla T_k(u) \quad \text{B} \quad L_1(\Omega), \quad \xi \to \infty.$$
 (6.2)

Отсюда следует сходимость

$$\mathbf{a}(\mathbf{x}, \nabla T_k(u_{\xi})) \cdot \nabla T_k(u_{\xi}) \to \mathbf{a}(\mathbf{x}, \nabla T_k(u)) \cdot \nabla T_k(u) \quad \mathbf{B} \quad L_{1,\mathrm{loc}}(\overline{\Omega}), \quad \xi \to \infty.$$
 (6.3)

Для любого измеримого множества $Q \subset \Omega(r)$, используя неравенства (1.1), (2.3), выводим

$$\int_{Q} |\nabla T_k(u_{\xi}) - \nabla T_k(u)|^{p(\mathbf{x})} d\mathbf{x} \leq 2^{p_+ - 1} \int_{Q} \left(|\nabla T_k(u_{\xi})|^{p(\mathbf{x})} + |\nabla T_k(u)|^{p(\mathbf{x})} \right) d\mathbf{x} \leq$$

$$\leq D_{14} \int_{Q} \left(\mathbf{a}(\mathbf{x}, \nabla T_k(u_{\xi})) \cdot \nabla T_k(u_{\xi}) + \mathbf{a}(\mathbf{x}, \nabla T_k(u)) \cdot \nabla T_k(u) \right) d\mathbf{x}.$$

Ввиду сходимости (6.3) и абсолютной непрерывности интегралов в правой части последнего неравенства, для любого $\varepsilon > 0$ найдется такое $\delta(\varepsilon)$, что:

$$\int\limits_{Q} |\nabla T_k(u_\xi) - \nabla T_k(u)|^{p(\mathbf{x})} d\mathbf{x} < \varepsilon \quad \forall \ Q \quad \text{такого, что meas } (Q) < \delta(\varepsilon).$$

Таким образом, последовательность $\{|\nabla T_k(u_{\xi}) - \nabla T_k(u)|^{p(x)}\}$ имеет равностепенно абсолютно непрерывные интегралы по множеству $\Omega(r)$. Отсюда, благодаря сходимости (4.32), по лемме 3.4 имеет место сходимость

$$\nabla T_k(u_{\xi}) \to \nabla T_k(u)$$
 B $(L_{p(\cdot),\operatorname{loc}}(\overline{\Omega}))^n$, $\xi \to \infty$. (6.4)

Далее, применяя неравенства (1.1), (2.1'), (2.3), выводим

$$|\mathbf{a}(\mathbf{x}, \nabla T_{k}(u_{\xi})) - \mathbf{a}(\mathbf{x}, \nabla T_{k}(u))|^{p'(\mathbf{x})} \leq 2^{p'_{+} - 1} \left(|\mathbf{a}(\mathbf{x}, \nabla T_{k}(u_{\xi}))|^{p'(\mathbf{x})} + |\mathbf{a}(\mathbf{x}, \nabla T_{k}(u))|^{p'(\mathbf{x})} \right) \leq$$

$$\leq D_{15} \left(|\nabla T_{k}(u_{\xi})|^{p(\mathbf{x})} + |\nabla T_{k}(u)|^{p(\mathbf{x})} + \Psi(\mathbf{x}) \right) \leq$$

$$\leq D_{16} \left(\mathbf{a}(\mathbf{x}, \nabla T_{k}(u_{\xi})) \cdot \nabla T_{k}(u_{\xi}) + \mathbf{a}(\mathbf{x}, \nabla T_{k}(u)) \cdot \nabla T_{k}(u) + \Psi(\mathbf{x}) \right).$$

Отсюда, как и выше, устанавливаем, что последовательность $\{|\mathbf{a}(\mathbf{x}, \nabla T_k(u_\xi)) - \mathbf{a}(\mathbf{x}, \nabla T_k(u))|^{p'(\mathbf{x})}\}$ имеет равностепенно абсолютно непрерывные интегралы. Тогда, благодаря сходимости (4.33), по лемме 3.4 имеет место сходимость

$$\mathbf{a}(\mathbf{x}, \nabla T_k(u_{\xi})) \to \mathbf{a}(\mathbf{x}, \nabla T_k(u))$$
 сильно в $(L_{p'(\cdot), \mathrm{loc}}(\overline{\Omega}))^n$, $\xi \to \infty$. (6.5)

Шаг 6: предельная функция — ренормализованное решение.

Докажем, что предельная функция u удовлетворяет определению 2.1-loc. Условия a-loc)—d-loc) определения 2.1-loc выполнены, это доказано в конце шага 2 и начале шага 4, соответственно. Докажем равенство (2.7). Пусть $h \in \operatorname{Lip}_0(\mathbb{R})$ и φ с компактным носителем, $\varphi \in W^1_{r(\cdot)}(\Omega)$, $r(\cdot) > q_2'(\cdot)$, таковы, что $\varphi h(u) \in \mathring{W}^1_{p(\cdot)}(\Omega)$ (очевидно, что $\varphi h(u_{\xi}) \in \mathring{W}^1_{p(\cdot)}(\Omega)$). Поскольку h ограничена и непрерывна, ввиду сходимости (4.17), по лемме 3.2 устанавливаем

$$h(u_{\xi}) \to h(u)$$
 п.в. в $\Omega, \quad \xi \to \infty,$ (6.6)

$$h(u_{\xi}) \stackrel{*}{\rightharpoonup} h(u)$$
 слабо в $L_{\infty}(\Omega), \quad \xi \to \infty,$ (6.7)

$$\nabla \varphi h(u_{\xi}) \to \nabla \varphi h(u)$$
 сильно в $L_{r(\cdot)}(\Omega), \ r(\cdot) > q_2'(\cdot), \quad \xi \to \infty.$ (6.8)

Если supp $h' \subset [-M,M]$ для M>0, то для п.в. $\mathbf{x} \in \Omega$ имеем

$$|h(u_{\xi})|^{p(\mathbf{x})} + |\nabla h(u_{\xi})|^{p(\mathbf{x})} = |h(u_{\xi})|^{p(\mathbf{x})} + |\nabla u_{\xi}h'(u_{\xi})|^{p(\mathbf{x})} \leqslant D_{17} + D_{18}|\nabla T_M(u_{\xi})|^{p(\mathbf{x})}.$$

Тогда, применяя оценку (4.12), получаем ограниченность последовательности $\{h(u_{\xi})\}$ в пространстве $\mathring{W}^{1}_{p(\cdot),\text{loc}}(\overline{\Omega})$. Отсюда и из (6.6) по лемме 3.1 устанавливаем сходимость

$$h(u_{\xi}) \rightharpoonup h(u)$$
 слабо в $\mathring{W}^1_{p(\cdot), \mathrm{loc}}(\overline{\Omega}), \quad \xi \to \infty.$

Тогда, учитывая $\varphi \in C(\overline{K}), K = \operatorname{supp} \varphi \cap \Omega$, заключаем сходимость

$$\nabla h(u_{\xi})\varphi \rightharpoonup \nabla h(u)\varphi$$
 слабо в $L_{p(\cdot)}(\overline{\Omega}), \quad \xi \to \infty.$ (6.9)

Напомним, что функции u_{ξ} являются локальными ренормализованными решениями уравнения (2.10) в смысле определения 2.1-loc и удовлетворяют равенству вида (4.1).

Применяя (4.38), (4.3), (6.7), устанавливаем

$$\int_{\Omega} (b(\mathbf{x}, u_{\xi}) - f_{\xi}) h(u_{\xi}) \varphi d\mathbf{x} = \int_{\Omega} (b(\mathbf{x}, u) - f) h(u) \varphi d\mathbf{x} + \omega(\xi). \tag{6.10}$$

Учитывая сходимости (6.5), (6.9), имеем

$$\int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla T_M(u_{\xi})) \cdot \nabla h(u_{\xi}) \varphi d\mathbf{x} = \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla T_M(u)) \cdot \nabla h(u) \varphi d\mathbf{x} + \omega(\xi) = \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla u h'(u) \varphi d\mathbf{x} + \omega(\xi).$$
(6.11)

Применяя сходимости (4.37), (6.8), получаем

$$\int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla u_{\xi}) \cdot \nabla \varphi h(u_{\xi}) d\mathbf{x} = \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla \varphi h(u) d\mathbf{x} + \omega(\xi). \tag{6.12}$$

Комбинируя (4.1), (6.10)–(6.12), получаем равенство (2.7). Теорема 2.1 доказана.

Доказательство теоремы 2.2. Для любого $\xi \in \mathbb{N}$ существует единственное глобальное ренормализованное решение задачи

$$-\operatorname{div} \mathbf{a}(\mathbf{x}, \nabla u_{\xi}) + b(\mathbf{x}, u_{\xi}) = f, \quad \mathbf{x} \in \Omega(\xi); \tag{6.13}$$

$$u_{\xi} = 0, \quad \mathbf{x} \in \partial \Omega(\xi),$$
 (6.14)

где $f \in L_1(\Omega(\xi))$ (см., например, [3]).

Продолжим u_{ξ} нулем на область Ω . Очевидно, при каждом $\xi \in \mathbb{N}$ функция u_{ξ} является локальным ренормализованным решением задачи (0.1), (0.2) в области Ω . Тогда, согласно теореме 2.1, существует подпоследовательность последовательности $\{u_{\xi}\}_{\xi \in \mathbb{N}}$ (обозначим ее так же), сходящаяся почти всюду к локальному ренормализованному решению u задачи (0.1), (0.2).

СПИСОК ЛИТЕРАТУРЫ

- 1. Данфорд Н., Швари Дж. Т. Линейные операторы. Общая теория. М.: ИЛ, 1962.
- 2. Жиков В. В. О вариационных задачах и нелинейных эллиптических уравнениях с нестандартными условиями роста// Пробл. мат. анализа. 2011. 54. С. 23-112.
- 3. *Кожевникова Л. М.* Ренормализованные решения эллиптических уравнений с переменными показателями и данными в виде общей меры// Мат. сб. -2020.-211, № 12. С. 83-122.
- 4. Bidaut-Veron M.-F. Removable singularities and existence for a quasilinear equation with absorption or source term and measure data// Adv. Nonlinear Stud. -2003. -3, No 1. C. 25-63.
- 5. Boccardo L., Gallouët Th. Nonlinear elliptic equations with right-hand side measures// Commun. Part. Differ. Equ. -1992. -17, No. 3-4. -C. 641–655.
- 6. Dal Maso G., Malusa A. Some properties of reachable solutions of nonlinear elliptic equations with measure data// Ann. Sc. Norm. Super. Pisa Cl. Sci. -1997. -25, N = 1-2. -C. 375-396.
- 7. Diening L., Harjulehto P., Hästö P., Růžička M. Lebesgue and Sobolev spaces with variable exponents.—Berlin–Heidelberg: Springer, 2011.
- 8. Fan X. L., Zhao D. On the spaces $L^{p(x)}(\Omega)$ and $W^{k,p(x)}(\Omega)//$ J. Math. Anal. Appl. -2001.-263.- C. 424–446.

- 9. Hewitt E., Stromberg K. Real and abstract analysis.—Berlin-Heidelberg: Springer, 1965.
- 10. Kilpeläinen T., Kuusi T., Tuhola-Kujanpää A. Superharmonic functions are locally renormalized solutions// Ann. Henri Poincaré. — 2011. — 28. — C. 775–795.
- 11. Mokhtari F. Nonlinear anisotropic elliptic equations in \mathbb{R}^N with variable exponents and locally integrable data// Math. Methods Appl. Sci. - 2017. - 40. - C. 2265-2276.
- 12. Sanchón M., Urbano J. M. Entropy solutions for the p(x)-laplace equation // Trans. Am. Math. Soc. 2009. -361, No. 12. - C. 6387-6405.
- 13. Véron L. Local and global aspects of quasilinear degenerate elliptic equations. Quasilinear elliptic singular problems. — Hackensack: World Sci. Publ., 2017.

Л. М. Кожевникова

Стерлитамакский филиал Уфимского университета науки и технологий, Стерлитамак, Россия Елабужский Институт Казанского Федерального университета, Елабуга, Россия

E-mail: kosul@mail.ru

UDC 517.956.25

DOI: 10.22363/2413-3639-2025-71-1-125-146

EDN: UQKNFN

Local renormalized solutions of elliptic equations with variable exponents in unbounded domains

L. M. Kozhevnikova^{1,2}

¹Sterlitamak Branch of Ufa University of Science and Technology, Sterlitamak, Russia ²Elabuga Institute of Kazan Federal University, Elabuga, Russia

Abstract. In this paper, we consider a second-order quasilinear elliptic equation with variable nonlinearity exponents and a locally summable right-hand side. The stability property is established and, as a consequence, the existence of a local renormalized solution of the Dirichlet problem in an arbitrary unbounded domain is proved.

Keywords: quasilinear elliptic equation, variable growth exponent, unbounded domain, Dirichlet problem, stability of solution, local renormalized solution.

Conflict-of-interest. The author declares no conflicts of interest.

Acknowledgments and funding. The author declares no financial support.

For citation: L. M. Kozhevnikova, "Local renormalized solutions of elliptic equations with variable exponents in unbounded domains," Sovrem. Mat. Fundam. Napravl., 2025, vol. 71, No. 1, 125-146. http://doi.org/10.22363/2413-3639-2025-71-1-125-146

REFERENCES

- 1. N. Dunford and J. T. Schwartz, Lineupy operatory. Obshchaya teoriya [Linear Operators, Part 1: General Theory, Inostr. Lit., Moscow, 1962 (Russian translation).
- 2. V. V. Zhikov, "O variatsionnykh zadachakh i nelineynykh ellipticheskikh uravneniyakh s nestandartnymi usloviyami rosta" [On variational problems and nonlinear elliptic equations with nonstandard growth conditions, Probl. Mat. Analiza [Probl. Math. Anal.], 2011, 54, 23–112 (in Russian).

- 3. L. M. Kozhevnikova, "Renormalizovannye resheniya ellipticheskikh uravneniy s peremennymi pokazatelyami i dannymi v vide obshchey mery" [Renormalized solutions of elliptic equations with variable exponents and data in the form of a general measure], *Mat. Sb.* [Math. Digest], 2020, **211**, No. 12, 83–122 (in Russian).
- 4. M.-F. Bidaut-Veron, "Removable singularities and existence for a quasilinear equation with absorption or source term and measure data," *Adv. Nonlinear Stud.*, 2003, **3**, No. 1, 25–63.
- 5. L. Boccardo and Th. Gallouët, "Nonlinear elliptic equations with right-hand side measures," *Commun. Part. Differ. Equ.*, 1992, **17**, No. 3-4, 641–655.
- 6. G. Dal Maso and A. Malusa, "Some properties of reachable solutions of nonlinear elliptic equations with measure data," Ann. Sc. Norm. Super. Pisa Cl. Sci., 1997, 25, No. 1-2, 375–396.
- 7. L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Springer, Berlin–Heidelberg, 2011.
- 8. X. L. Fan and D. Zhao, "On the spaces $L^{p(x)}(\Omega)$ and $W^{k,p(x)}(\Omega)$," J. Math. Anal. Appl., 2001, **263**, 424–446.
- 9. E. Hewitt and K. Stromberg, Real and abstract analysis, Springer, Berlin–Heidelberg, 1965.
- 10. T. Kilpeläinen, T. Kuusi, and A. Tuhola-Kujanpää, "Superharmonic functions are locally renormalized solutions," *Ann. Henri Poincaré*, 2011, **28**, 775–795.
- 11. F. Mokhtari, "Nonlinear anisotropic elliptic equations in \mathbb{R}^N with variable exponents and locally integrable data," *Math. Methods Appl. Sci.*, 2017, **40**, 2265–2276.
- 12. M. Sanchón and J. M. Urbano, "Entropy solutions for the p(x)-laplace equation," Trans. Am. Math. Soc., 2009, **361**, No. 12, 6387–6405.
- 13. L. Véron, Local and Global Aspects of Quasilinear Degenerate Elliptic Equations. Quasilinear Elliptic Singular Problems, World Sci. Publ., Hackensack, 2017.

L. M. Kozhevnikova

Sterlitamak Branch of Ufa University of Science and Technology, Sterlitamak, Russia Elabuga Institute of Kazan Federal University, Elabuga, Russia

E-mail: kosul@mail.ru