利用人工神经网络和计算机视觉,根据膝关节计算机断层扫描分析判断一个人的年龄。初步结果

封面

如何引用文章

全文:

详细

论证。目前,对通过积极利用现代医学影像方法(如电子计算机断层扫描)和人工智能来分析的现有法医年龄估计方法进行现代化改造已成为一个明确的重点。这种方法使我们有可能创造出具有更高精度和可重复性特点的生理年龄估计新方法。

该研究的目的是利用人工神经网络和计算机视觉,在膝关节计算机断层扫描分析的基础上,开发一种预测个人生理年龄的算法,并对其进行实验测试。

材料与方法。我们采用智能信息技术(一套正规的数学和软件解决方案)对膝关节计算机断层扫描图(n=334)进行了分析。计算机断层扫描是2018年至2021年在以N.N.Priorov命名的国家创伤和矫形医学研究中心(National Medical Research Centre of Traumatology and Orthopedics named after N.N.Priorov)和以R.R.Vreden命名的国家创伤和矫形医学研究中心(National Medical Research Centre of Traumatology and Orthopedics named after R.R.Vreden)的放射诊断科进行的。研究对象为年龄在13至45岁之间、无畸形、膝关节损伤和一般结缔组织病变迹象的男女个体。

结果。在该研究的基础上,我们利用膝关节计算机断层扫描数据开发了一种年龄估计算法。所开发系统的主要组成部分包括预处理模块、智能计算核心、数据分析模块、三维重建模块、特征提取模块和最终年龄估计模块。所提方法的精髓在于同时应用人工神经网络和明确的正规化数学程序来计算骺线的特征。为了获得结果并进行初步实验研究以证实该方法的可行性、正确性和可操作性,我们使用YOLOv5模型的人工神经网络实施了测试软件。学习后的误差矩阵分析结果显示,正确识别的概率约为80%。我们在46张膝关节计算机断层扫描图像上对实验研究进行了验证。目前,儿童和青少年的年龄估计误差约为一岁。

结论。实验研究的初步结果证实了,所获得的年龄估计值与个人的实际年龄相吻合,因此,有望利用所提出的算法来创建一种自动年龄估计方法,并将其进一步应用于法医机构的实践中。目前,我们开发的算法是作为一套软件组件实施的,随后将对自动计算的数据进行人工整合。计划对计算机断层扫描图像数据库进行补充,以增加训练样本,并在扩展样本上测试年龄预测的准确度,包括考虑研究对象的性别。

作者简介

Dmitry D. Zolotenkov

I.M. Sechenov First Moscow State Medical University (Sechenov University)

编辑信件的主要联系方式.
Email: Zolotenkovaspir@mail.ru
ORCID iD: 0000-0002-1224-1077
SPIN 代码: 1352-8848
俄罗斯联邦, Moscow

Maksim I. Trufanov

Design Information Technologies Center Russian Academy of Sciences

Email: temp1202@mail.ru
ORCID iD: 0000-0001-7269-8741
SPIN 代码: 1519-0717

Cand. Sci. (Engin.)

俄罗斯联邦, Odintsovo

Vladimir I. Solodovnikov

Design Information Technologies Center Russian Academy of Sciences

Email: v_solodovnikov@hotmail.com
ORCID iD: 0000-0001-5533-214X
SPIN 代码: 5418-6554

Cand. Sci. (Engin.)

俄罗斯联邦, Odintsovo

参考

  1. AGFAD (2018) Stellungnahme: Forensische altersdiagnostik bei unbegleiteten minderjährigen flüchtlingen. Arbeitsgemeinschaft für forensische altersdiagnostik. Available from: https://www.dgrm.de/institute/deutschland/institut-essen/news-essen/stel.... Accessed: 15.5.2020.
  2. Schmeling A, Grundmann C, Fuhrmann A, et al. Criteria for age estimation in living individuals. Int J Legal Med. 2008;122(6):457–460. doi: 10.1007/s00414-008-0254-2
  3. Schmeling A, Dettmeyer R, Rudolf E, et al. Forensic age estimation: Methods, certainty, and the law. Dtsch Arztebl Int. 2016;113(4):44–50. doi: 10.3238/arztebl.2016.0044
  4. Lopatin O, Barszcz M, Bolechala F, Wozniak KJ. All rights reserved. The fusion of ossification centers: A comparative review of radiographic and other imaging modalities of age assessment in living groups of children, adolescents, and young adults. Leg Med (Tokyo). 2023;(61):102185. doi: 10.1016/j.legalmed.2022.102185
  5. Sobh ZK, Mohamed AS. A computed tomographic analysis of spheno-occipital synchondrosis ossification for age estimation in a sample of Egyptians. Am J Forensic Med Pathol. 2021;42(3):235–242. doi: 10.1097/PAF.0000000000000645
  6. Fan F, Zhang K, Peng Z, et al. Forensic age estimation of living persons from the knee: Comparison of MRI with radiographs. Forensic Sci Int. 2016;(268):145–150. doi: 10.1016/j.forsciint.2016.10.002
  7. Wittschieber D, Schulz R, Vieth V, et al. Influence of the examiner’s qualification and sources of error during stage determination of the medial clavicular epiphysis by means of computed tomography. Int J Legal Med. 2014;128(1):183–191. doi: 10.1007/s00414-013-0932-6
  8. Pröve PL, Jopp-van Well E, Stanczus B, et al. Automated segmentation of the knee for age assessment in 3D MR images using convolutional neural networks. Int J Legal Med. 2019;133(4):1191–1205. doi: 10.1007/s00414-018-1953-y
  9. Mauer MA, Well EJ, Herrmann J, et al. Automated age estimation of young individuals based on 3D knee MRI using deep learning. Int J Legal Med. 2021;135(2):649–663. doi: 10.1007/s00414-020-02465-z
  10. Dallora AL, Anderberg P, Kvist O, et al. Bone age assessment with various machine learning techniques: A systematic literature review and meta-analysis. PLoS One. 2019;14(7):e0220242. doi: 10.1371/journal.pone.0220242
  11. Arji G, Safdari R, Rezaeizadeh H, et al. A systematic literature review and classification of knowledge discovery in traditional medicine. Comp Methods Programs Biomed. 2019;(168):39–57. doi: 10.1016/j.cmpb.2018.10.017
  12. Zolotenkova GV, Rogachev AI, Pigolkin YI, et al. Age сlassification in forensic medicine using machine learning techniques. Modern Technol Med. 2022;14(1):15–24. doi: 10.17691/stm2022.14.1.02
  13. Ferrante L, Skrami E, Gesuita R, Cameriere R. Bayesian calibration for forensic age estimation. Statistics Med. 2015;34(10):1779–1790. doi: 10.1002/sim.6448
  14. Mauer MA, Well EJ, Herrmann J, et al. Automated age estimation of young individuals based on 3D knee MRI using deep learning. Int J Legal Med. 2021;135(2):649–663. doi: 10.1007/s00414-020-02465-z
  15. Dallora AL, Berglund JS, Brogren M, et al. Age assessment of youth and young adults using magnetic resonance imaging of the knee: A deep learning approach. JMIR Med Inform. 2019;7(4):e16291. doi: 10.2196/16291

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Marking of objects in the image used in the implementation of the method.

下载 (300KB)
3. Fig. 2. The mechanism for evaluating the local properties of each point of the epiphyseal line (plane) when calculating the age.

下载 (138KB)
4. Fig. 3. Example of normalization and calculation of image properties when calculating the properties of the epiphyseal line (plane): A ― the area between the bones; B ― the area adjacent to the epiphyseal line (B1 ― for the femur, B2 ― for the tibia).

下载 (230KB)
5. Fig. 4. Algorithm of age estimation according to computed tomography of the knee joint.

下载 (333KB)

版权所有 © Eco-Vector, 2023

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
##common.cookie##