Forensic bone proteomics: novel biomarkers and technologies for estimating the postmortem interval (a review)
- Authors: Mustafina G.R.1, Khalikov A.A.1, Kuznetsov K.O.2,3, Nazarova E.M.1
-
Affiliations:
- Bashkir State Medical University
- Ufa University of Science and Technology
- Bureau of Forensic Medical Examination
- Issue: Vol 11, No 3 (2025)
- Pages: 266-275
- Section: Reviews
- URL: https://journals.rcsi.science/2411-8729/article/view/355561
- DOI: https://doi.org/10.17816/fm16284
- EDN: https://elibrary.ru/HEALQI
- ID: 355561
Cite item
Full Text
Abstract
Bone proteomics is a rapidly evolving field in forensic medicine aimed at determining the postmortem interval. Unlike traditional approaches, this method enables quantitative and molecular-level analysis of protein composition changes in bone tissue. Highly degradation-resistant proteins are considered reliable biomarkers for estimating the postmortem interval, providing more accurate and objective results. Mass spectrometry, in combination with modern bioinformatics tools and machine learning technologies, allows for a detailed investigation of postmortem protein degradation processes and the identification of time-dependent molecular patterns. However, environmental factors such as humidity, temperature, soil composition, and microbial activity significantly affect protein preservation in bone tissue, underscoring the need for standardized analytical protocols.
This review summarizes key methods of bone proteomic analysis, prospects for its integration with metabolomics and lipidomics, and the potential of machine learning in postmortem interval estimation. Further research in this field should aim at validating biomarkers, standardizing techniques, and integrating these methods into forensic practice.
The development of forensic bone proteomics opens new possibilities, offering more precise data in complex medico-legal cases.
Full Text
##article.viewOnOriginalSite##About the authors
Gulgena R. Mustafina
Bashkir State Medical University
Email: gulgenarm@mail.ru
ORCID iD: 0000-0003-2534-6385
SPIN-code: 8904-2046
MD, Cand. Sci. (Medicine), Assistant Professor
Russian Federation, UfaAirat A. Khalikov
Bashkir State Medical University
Email: airat.expert@mail.ru
ORCID iD: 0000-0003-1045-5677
SPIN-code: 1895-7300
MD, Dr. Sci. (Medicine), Professor
Russian Federation, UfaKirill O. Kuznetsov
Ufa University of Science and Technology; Bureau of Forensic Medical Examination
Author for correspondence.
Email: kuznetsovarticles@mail.ru
ORCID iD: 0000-0002-2405-1801
SPIN-code: 3053-3773
MD
Russian Federation, Ufa; UfaElmira M. Nazarova
Bashkir State Medical University
Email: egevan@list.ru
ORCID iD: 0000-0002-1160-7241
SPIN-code: 6340-5202
MD, Cand. Sci. (Medicine), Assistant Professor
Russian Federation, UfaReferences
- Kumar S, Singh P. Proteomics: A Prospective New Tool in Forensic Investigations. Forensic Sci Rev. 2021;33(2):145–150. Available from: http://forensicsciencereview.com/Abstract/
- Parker GJ, Leppert T, Anex DS, et al. Demonstration of Protein-Based Human Identification Using the Hair Shaft Proteome. PLOS ONE. 2016;11(9):e0160653. doi: 10.1371/journal.pone.0160653 EDN: XTZYCV
- Goecker ZC, Salemi MR, Karim N, et al. Optimal Processing for Proteomic Genotyping Of Single Human Hairs. Forensic Science International: Genetics. 2020;47:102314. doi: 10.1016/j.fsigen.2020.102314 EDN: VPWLXQ
- Marcus K, Lelong C, Rabilloud T. What Room for Two-Dimensional Gel-Based Proteomics in a Shotgun Proteomics World? Proteomes. 2020;8(3):17. doi: 10.3390/PROTEOMES8030017 EDN: JYJNQG
- Zhao L, Cong X, Zhai L, et al. Comparative Evaluation of Label-Free Quantification Strategies. Journal of Proteomics. 2020;215:103669. doi: 10.1016/j.jprot.2020.103669 EDN: RQEZYB
- Jiang P, Peng W, Zhao J, et al. Glycan/Protein-Stable Isotope Labeling in Cell Culture for Enabling Concurrent Quantitative Glycomics/Proteomics/Glycoproteomics. Analytical Chemistry. 2023;95(44):16059–16069. doi: 10.1021/acs.analchem.3c00247 EDN: HDPVBM
- Wolters DA, Washburn MP, Yates JR. An Automated Multidimensional Protein Identification Technology for Shotgun Proteomics. Analytical Chemistry. 2001;73(23):5683–5690. doi: 10.1021/ac010617e
- Bian Y, Zheng R, Bayer FP, et al. Robust, Reproducible and Quantitative Analysis of Thousands of Proteomes by Micro-Flow LC–MS/MS. Nature Communications. 2020;11(1):157. doi: 10.1038/s41467-019-13973-x EDN: SDQBNF
- Adav SS, Leung CY, Ng KW. Profiling of Hair Proteome Revealed Individual Demographics. Forensic Science International: Genetics. 2023;66:102914. doi: 10.1016/j.fsigen.2023.102914 EDN: SZDFOX
- Mickleburgh HL, Schwalbe EC, Bonicelli A, et al. Human Bone Proteomes before and after Decomposition: Investigating the Effects of Biological Variation and Taphonomic Alteration on Bone Protein Profiles and the Implications for Forensic Proteomics. Journal of Proteome Research. 2021;20(5):2533–2546. doi: 10.1021/acs.jproteome.0c00992 EDN: YGTMFO
- Li Y, Xun D, Li L, et al. Deep Dive on the Proteome of Human Body Fluids: A Valuable Data Resource for Biomarker Discovery. Cancer Genomics and Proteomics. 2021;18(4):549–568. doi: 10.21873/cgp.20280 EDN: SXLVTB
- Parker GJ, McKiernan HE, Legg KM, Goecker ZC. Forensic Proteomics. Forensic Science International: Genetics. 2021;54:102529. doi: 10.1016/j.fsigen.2021.102529 EDN: XBXXJV
- Bonicelli A, Di Nunzio A, Di Nunzio C, Procopio N. Insights into the Differential Preservation of Bone Proteomes in Inhumed and Entombed Cadavers from Italian Forensic Caseworks. Journal of Proteome Research. 2022;21(5):1285–1298. doi: 10.1021/acs.jproteome.1c00904 EDN: BTQOIH
- Franceschetti L, Amadasi A, Bugelli V, et al. Estimation of Late Postmortem Interval: Where Do We Stand? A Literature Review. Biology. 2023;12(6):783. doi: 10.3390/biology12060783 EDN: NJVWJN
- Brockbals L, Garrett-Rickman S, Fu S, et al. Estimating the Time of Human Decomposition Based on Skeletal Muscle Biopsy Samples Utilizing an Untargeted LC–MS/MS-based Proteomics Approach. Analytical and Bioanalytical Chemistry. 2023;415(22):5487–5498. doi: 10.1007/s00216-023-04822-4 EDN: SXNXAY
- Mizukami H, Hathway B, Procopio N. Aquatic Decomposition of Mammalian Corpses: A Forensic Proteomic Approach. Journal of Proteome Research. 2020;19(5):2122–2135. doi: 10.1021/acs.jproteome.0c00060 EDN: TOEFBK
- Merkley ED, Wunschel DS, Wahl KL, Jarman KH. Applications and Challenges of Forensic Proteomics. Forensic Science International. 2019;297:350–363. doi: 10.1016/j.forsciint.2019.01.022 EDN: RVBHXU
- Halikov AA, Kildyushov EM, Kuznetsov KO, et al. Use of microRNA to Estimate Time Science Death: Review. Russian Journal of Forensic Medicine. 2021;7(3):132–138. doi: 10.17816/fm412 EDN: FHYOZZ
- Kildyushov EM, Ermakova YV, Tumanov EV, Kuznetsova GS. Estimation of Time Since Death in the Late Postmortem Period in Forensic Medicine (Literature Review). Russian Journal of Forensic Medicine. 2018;4(1):34–38. doi: 10.19048/2411-8729-2018-4-1-34-38 EDN: YWDARF
- Indiaminov SI, Zhumanov ZE, Blinova SA. Problems of Establishing the Prescription of Death. Forensic Medical Expertise. 2020;63(6):45–50. doi: 10.17116/sudmed20206306145 EDN: FXLSCS
- Ferreira MT, Cunha E. Can we Infer Post Mortem Interval on the Basis of Decomposition Rate? A Case from a Portuguese Cemetery. Forensic Science International. 2013;226(1-3):298.e1–298.e6. doi: 10.1016/j.forsciint.2013.01.006
- Jellinghaus K, Hachmann C, Hoeland K, et al. Correction to: Collagen Degradation as a Possibility to Determine the Post-Mortem Interval (PMI) of Animal Bones: A Validation Study Referring to an Original Study of Boaks et al. (2014). International Journal of Legal Medicine. 2018;132(3):765–765. doi: 10.1007/s00414-018-1782-z
- Zelentsova EA, Yanshole LV, Melnikov AD, et al. Post-Mortem Changes in Metabolomic Profiles of Human Serum, Aqueous Humor and Vitreous Humor. Metabolomics. 2020;16(7):80. doi: 10.1007/s11306-020-01700-3 EDN: YHUAPI
- Wu H, Liu FF, Wu JD, Xie Y. Research Progress on Estimation of Postmortem Interval Based on Ocular Tissues Structure. Fa Yi Xue Za Zhi. 2023;39(1):50–56. doi: 10.12116/j.issn.1004-5619.2021.410602
- Zissler A, Stoiber W, Geissenberger J, et al. Influencing Factors on Postmortem Protein Degradation for PMI Estimation: A Systematic Review. Diagnostics. 2021;11(7):1146. doi: 10.3390/diagnostics11071146 EDN: LGHYTE
- Martin C, Verheggen F. Odour Profile of Human Corpses: A Review. Forensic Chemistry. 2018;10:27–36. doi: 10.1016/j.forc.2018.07.002
- Procopio N, Hopkins RJA, Harvey VL, Buckley M. Proteome Variation with Collagen Yield in Ancient Bone. Journal of Proteome Research. 2021;20(3):1754–1769. doi: 10.1021/acs.jproteome.0c01014 EDN: BZKNHN
- Qi F, Tan Y, Yao A, et al. Psoriasis to Psoriatic Arthritis: The Application of Proteomics Technologies. Frontiers in Medicine. 2021;8:681172. doi: 10.3389/fmed.2021.681172 EDN: NPHHJX
- Sacco MA, Aquila I. Proteomics: A New Research Frontier in Forensic Pathology. International Journal of Molecular Sciences. 2023;24(13):10735. doi: 10.3390/ijms241310735 EDN: LHPKWV
- Duong VA, Park JM, Lim HJ, Lee H. Proteomics in Forensic Analysis: Applications for Human Samples. Applied Sciences. 2021;11(8):3393. doi: 10.3390/app11083393 EDN: ACJCEU
- Rose JP, Schurman CA, King CD, et al. Deep Coverage and Quantification of the Bone Proteome Provides Enhanced Opportunities for New Discoveries in Skeletal Biology and Disease. PLOS ONE. 2023;18(10):e0292268. doi: 10.1371/journal.pone.0292268 EDN: XCZVTY
- Creecy A, Damrath JG, Wallace JM. Control of Bone Matrix Properties by Osteocytes. Frontiers in Endocrinology. 2021;11:578477. doi: 10.3389/fendo.2020.578477 EDN: CUSLVW
- Volk SW, Shah SR, Cohen AJ, et al. Type III Collagen Regulates Osteoblastogenesis and the Quantity of Trabecular Bone. Calcified Tissue International. 2014;94(6):621–631. doi: 10.1007/s00223-014-9843-x EDN: BXNINO
- Ivanova VP, Krivchenko AI. Current Viewpoint on Structure and on Evolution of Collagens. II. Fibril-Associated Collagens. Journal of Evolutionary Biochemistry and Physiology. 2014;50(4):273–285. doi: 10.1134/S0022093014040012 EDN: UFPNRJ
- Vavilov AY, Khalikov AA, Rykunov IA, et al. Determination of the Corpse’s Stay in the Water Duration According to Maceration Degree of its Skin. Forensic Medical Expertise. 2023;66(3):64–68. doi: 10.17116/sudmed20236603164 EDN: BOUGOE
- Procopio N, Chamberlain AT, Buckley M. Exploring Biological and Geological Age-related Changes through Variations in Intra- and Intertooth Proteomes of Ancient Dentine. Journal of Proteome Research. 2018;17(3):1000–1013. doi: 10.1021/acs.jproteome.7b00648 EDN: YGDOTJ
- Holtz A, Basisty N, Schilling B. Quantification and Identification of Post-Translational Modifications Using Modern Proteomics Approaches. In; Marcus K, Eisenacher M, Sitek D, editors. Quantitative Methods in Proteomics. Methods in Molecular Biology. Humana, New York: Springer Protocols; 2021; P. 225–235. ISBN: 978-1-0716-1024-4 doi: 10.1007/978-1-0716-1024-4_16
- Donaldson AE, Lamont IL. Biochemistry Changes That Occur after Death: Potential Markers for Determining Post-Mortem Interval. PLoS ONE. 2013;8(11):e82011. doi: 10.1371/journal.pone.0082011
- Aslam B, Basit M, Nisar MA, et al. Proteomics: Technologies and Their Applications. Journal of Chromatographic Science. 2016;55(2):182–196. doi: 10.1093/chromsci/bmw167
- Rhein M, Hagemeier L, Klintschar M, et al. DNA Methylation Results Depend on DNA Integrity—Role of Post Mortem Interval. Frontiers in Genetics. 2015;6:182. doi: 10.3389/fgene.2015.00182
- Pittner S, Ehrenfellner B, Zissler A, et al. First Application of a Protein-Based Approach for Time Since Death Estimation. International Journal of Legal Medicine. 2016;131(2):479–483. doi: 10.1007/s00414-016-1459-4 EDN: LILOFA
- Marrone A, La Russa D, Barberio L, et al. Forensic Proteomics for the Discovery of New post mortem Interval Biomarkers: A Preliminary Study. International Journal of Molecular Sciences. 2023;24(19):14627. doi: 10.3390/ijms241914627 EDN: NFNVVZ
- Sidorova NA, Popov VL, Lavrukova OS. Features of Physiological Groups of Microorganisms — Participants in the Diagenesis of Bone Remains. Forensic Medical Expertise. 2021;64(5):41–45. doi: 10.17116/sudmed20216405141 EDN: BOBKCX
- Procopio N, Mein CA, Starace S, et al. Bone Diagenesis in Short Timescales: Insights from an Exploratory Proteomic Analysis. Biology. 2021;10(6):460. doi: 10.3390/biology10060460 EDN: DFDWGZ
- Ahmad A, Imran M, Ahsan H. Biomarkers as Biomedical Bioindicators: Approaches and Techniques for the Detection, Analysis, and Validation of Novel Biomarkers of Diseases. Pharmaceutics. 2023;15(6):1630. doi: 10.3390/pharmaceutics15061630 EDN: ZQCYIE
- Jellinghaus K, Urban PK, Hachmann C, et al. Collagen Degradation as a Possibility to Determine the Post-Mortem Interval (PMI) of Human Bones in a Forensic Context – A Survey. Legal Medicine. 2019;36:96–102. doi: 10.1016/j.legalmed.2018.11.009
- Boaks A, Siwek D, Mortazavi F. The Temporal Degradation of Bone Collagen: A Histochemical Approach. Forensic Science International. 2014;240:104–110. doi: 10.1016/j.forsciint.2014.04.008
- Sacco MA, Cordasco F, Scalise C, et al. Systematic Review on Post-Mortem Protein Alterations: Analysis of Experimental Models and Evaluation of Potential Biomarkers of Time of Death. Diagnostics. 2022;12(6):1490. doi: 10.3390/diagnostics12061490 EDN: NNVJXN
- Kram V, Shainer R, Jani P, et al. Biglycan in the Skeleton. Journal of Histochemistry & Cytochemistry. 2020;68(11):747–762. doi: 10.1369/0022155420937371 EDN: DIMWEJ
- Prieto-Bonete G, Pérez-Cárceles MD, Maurandi-López A, et al. Association Between Protein Profile and Postmortem Interval in Human Bone Remains. Journal of Proteomics. 2019;192:54–63. doi: 10.1016/j.jprot.2018.08.008 EDN: YKLYPJ
- Procopio N, Williams A, Chamberlain AT, Buckley M. Forensic Proteomics for the Evaluation of the Post-Mortem Decay in Bones. Journal of Proteomics. 2018;177:21–30. doi: 10.1016/j.jprot.2018.01.016
- Office of the Surgeon General (US). Bone Health and Osteoporosis: A Report of the Surgeon General. Rockville (MD): Office of the Surgeon General (US); 2004. Available from: https://www.ncbi.nlm.nih.gov/books/NBK45513/
- Procopio N, Buckley M. Minimizing Laboratory-Induced Decay in Bone Proteomics. Journal of Proteome Research. 2016;16(2):447–458. doi: 10.1021/acs.jproteome.6b00564 EDN: YXOVPR
- Procopio N, Chamberlain AT, Buckley M. Intra- and Interskeletal Proteome Variations in Fresh and Buried Bones. Journal of Proteome Research. 2017;16(5):2016–2029. doi: 10.1021/acs.jproteome.6b01070
- Wadsworth C, Buckley M. Proteome Degradation in Fossils: Investigating the Longevity of Protein Survival in Ancient Bone. Rapid Communications in Mass Spectrometry. 2014;28(6):605–615. doi: 10.1002/rcm.6821
- Ntasi G, Palomo IR, Marino G, et al. Molecular Signatures Written in Bone Proteins of 79 AD Victims from Herculaneum and Pompeii. Scientific Reports. 2022;12(1):8401. doi: 10.1038/s41598-022-12042-6 EDN: ZZGORT
- Mukherjee A, Rotwein P. Insulin-Like Growth Factor-Binding Protein-5 Inhibits Osteoblast Differentiation and Skeletal Growth by Blocking Insulin-Like Growth Factor Actions. Molecular Endocrinology. 2008;22(5):1238–1250. doi: 10.1210/me.2008-0001
- Shuken SR. An Introduction to Mass Spectrometry-Based Proteomics. Journal of Proteome Research. 2023;22(7):2151–2171. doi: 10.1021/acs.jproteome.2c00838 EDN: LYMSIJ
- Zhang HW, Lv C, Zhang LJ, et al. Application of Omics- and Multi-Omics-Based Techniques for Natural Product Target Discovery. Biomedicine & Pharmacotherapy. 2021;141:111833. doi: 10.1016/j.biopha.2021.111833 EDN: GDUUZU
- Pascovici D, Wu JX, McKay MJ, et al. Clinically Relevant Post-Translational Modification Analyses—Maturing Workflows and Bioinformatics Tools. International Journal of Molecular Sciences. 2018;20(1):16. doi: 10.3390/ijms20010016 EDN: KJCYCE
- Chen X, Wei S, Ji Y, et al. Quantitative Proteomics Using SILAC: Principles, Applications, and Developments. Proteomics. 2015;15(18):3175–3192. doi: 10.1002/pmic.201500108
- Wang X, He Y, Ye Y, et al. SILAC–Based Quantitative MS Approach for Real-Time Recording Protein-Mediated Cell-Cell Interactions. Scientific Reports. 2018;8(1):8441. doi: 10.1038/s41598-018-26262-2 EDN: DKDQCP
- Swan AL, Mobasheri A, Allaway D, et al. Application of Machine Learning to Proteomics Data: Classification and Biomarker Identification in Postgenomics Biology. OMICS: A Journal of Integrative Biology. 2013;17(12):595–610. doi: 10.1089/omi.2013.0017 EDN: MTRVWU
- Chen C, Hou J, Tanner JJ, Cheng J. Bioinformatics Methods for Mass Spectrometry-Based Proteomics Data Analysis. International Journal of Molecular Sciences. 2020;21(8):2873. doi: 10.3390/ijms21082873 EDN: QVSXLB
- Wilke C. Proteomics Offers New Clues for Forensic Investigations. ACS Central Science. 2021;7(10):1595–1598. doi: 10.1021/acscentsci.1c01232 EDN: QWAWGY
- Broadbelt KG, Rivera KD, Paterson DS, et al. Brainstem Deficiency of the 14-3-3 Regulator of Serotonin Synthesis: A Proteomics Analysis in the Sudden Infant Death Syndrome. Molecular & Cellular Proteomics. 2012;11(1):M111.009530. doi: 10.1074/mcp.M111.009530
- Sawafuji R, Cappellini E, Nagaoka T, et al. Proteomic Profiling of Archaeological Human Bone. Royal Society Open Science. 2017;4(6):161004. doi: 10.1098/rsos.161004 EDN: YFCEBR
- Wadsworth C, Procopio N, Anderung C, et al. Comparing Ancient DNA Survival and Proteome Content in 69 Archaeological Cattle Tooth and Bone Samples From Multiple European Sites. Journal of Proteomics. 2017;158:1–8. doi: 10.1016/j.jprot.2017.01.004 EDN: YYBWPN
- Bonicelli A, Mickleburgh HL, Chighine A, et al. The ‘ForensOMICS’ Approach for Postmortem Interval Estimation From Human Bone by Integrating Metabolomics, Lipidomics, and Proteomics. eLife. 2022;11:e83658. doi: 10.7554/eLife.83658 EDN: ZASEWN
Supplementary files

