Возрастное старение клеток хрящевой и костной ткани: роль в развитии заболеваний и возможности терапии
- Авторы: Плехова Н.Г.1, Новикова П.А.1, Цветов Н.В.1
-
Учреждения:
- Тихоокеанский государственный медицинский университет
- Выпуск: Том 20, № 4 (2025)
- Страницы: 282-295
- Раздел: Научные обзоры
- URL: https://journals.rcsi.science/2313-1829/article/view/381684
- DOI: https://doi.org/10.17816/gc646852
- EDN: https://elibrary.ru/MPEWTK
- ID: 381684
Цитировать
Аннотация
Индуцированное различными типами стресса клеточное старение (сенесценция) вызывает необратимую остановку клеточного цикла и изменения в экспрессии генов, метаболизме, организации хроматина, а также в активации/усилении антиапоптотических путей. В результате этого процесса происходит формирование провоспалительного секретома, или секреторного фенотипа, ассоциированного со старением (SAS-фенотип), который запускает хроническое стерильное воспаление (инфламейджинг).
Целью обзора стал поиск доказательств роли старения клеток в развитии возрастных изменений и заболеваний суставов и костной системы, а также изучение возможностей терапии.
На основании поиска работ в электронных научных базах данных Google Scholar, PubMed (MEDLINE), Scopus и Web of Science по ключевым словам и их сочетаниям с использованием программы AMSTAR 2 в данном обзоре представлена роль старения клеток в развитии возрастных изменений, а также заболеваний суставов и костной системы. Изложены данные, доказывающие наличие стареющих клеток SAS-фенотипа с экспрессией белка p16Ink4a в микросреде хрящевой и костной ткани. Продемонстрировано, что с возрастом стволовые клетки-предшественники, остеобласты, остеоциты и хондроциты вырабатывают маркёры клеточного старения и приобретают характерные для старения признаки: геномную нестабильность, укорочение теломер, эпигенетические изменения, потерю протеостаза, митохондриальную дисфункцию и другие. Доказывается, что старение клеток и формирование секреторного фенотипа является причиной хронического воспаления, способствует развитию остеопороза и остеоартрита.
Представлена новая стратегия лечения остеопороза и остеоартрита — сенотерапия, в которой мишенью для препаратов являются стареющие клетки (сенолитики) или различные механизмы, обеспечивающие их выживание и преобразование в SAS-фенотип (сеноморфики).
Установлено, что прогресс в исследованиях старения клеток за последние 10 лет обеспечил основу для новых методов лечения суставов и костной системы. Необходимо дальнейшее изучение эндокринного действия клеток SAS-фенотипа хрящевой и костной ткани, которое будет являться основой понимания взаимодействия между различными системами стареющего организма и разработки стратегии одновременного лечения возрастных расстройств.
Ключевые слова
Об авторах
Наталья Геннадьевна Плехова
Тихоокеанский государственный медицинский университет
Автор, ответственный за переписку.
Email: plekhova.ng@tgmu.ru
ORCID iD: 0000-0002-8701-7213
SPIN-код: 2685-9578
д-р биол. наук, доцент
Россия, ВладивостокПолина Андреевна Новикова
Тихоокеанский государственный медицинский университет
Email: vpo12345@mail.ru
ORCID iD: 0009-0002-5900-3938
Россия, Владивосток
Николай Владимирович Цветов
Тихоокеанский государственный медицинский университет
Email: tsvetov0@gmail.com
ORCID iD: 0009-0009-0318-0661
Россия, Владивосток
Список литературы
- Li Z, Zhang Z, Ren Y, et al. Aging and age-related diseases: from mechanisms to therapeutic strategies. Biogerontology. 2021;22(2):165–187. doi: 10.1007/s10522-021-09910-5 EDN: ARCTCB
- Little-Letsinger SE, Rubin J, Diekman B, et al. Exercise to mend aged-tissue crosstalk in bone targeting osteoporosis & osteoarthritis. Semin Cell Dev Biol. 2022;123:22–35. doi: 10.1016/j.semcdb.2021.08.011 EDN: DDXNEL
- Föger-Samwald U, Kerschan-Schindl K, Butylina M, Pietschmann P. Age related osteoporosis: targeting cellular senescence. Int J Mol Sci. 2022;23(5):2701. doi: 10.3390/ijms23052701 EDN: NHERFT
- Coryell PR, Diekman BO, Loeser RF. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nat Rev Rheumatol. 2021;17(1):47–57. doi: 10.1038/s41584-020-00533-7 EDN: JUZZUZ
- Doolittle ML, Monroe DG, Farr JN, Khosla S. The role of senolytics in osteoporosis and other skeletal pathologies. Mech Ageing Dev. 2021;199:111565. doi: 10.1016/j.mad.2021.111565 EDN: KXFVBV
- López-Otín C, Blasco MA, Partridge L, et al. Hallmarks of aging: An expanding universe. Cell. 2023;186(2):243–278. doi: 10.1016/j.cell.2022.11.001 EDN: JTXISH
- de Magalhães JP. Cellular senescence in normal physiology. Science. 2024;384(6702):1300–1301. doi: 10.1126/science.adj7050 EDN: DMDQIN
- Gorgoulis V, Adams PD, Alimonti A, et al. Cellular senescence: defining a path forward. Cell. 2019;179(4):813–827. doi: 10.1016/j.cell.2019.10.005 EDN: PGJUED
- Suryadevara V, Hudgins AD, Rajesh A, et al. SenNet recommendations for detecting senescent cells in different tissues. Nat Rev Mol Cell Biol. 2024;25(12):1001–1023. doi: 10.1038/s41580-024-00738-8 EDN: MAAWKN
- Igrunkova АV, Valieva YМ, Kalinichenko АМ, et al. Cellular senescence: molecular biology and morphology. Molecular Medicine. 2022;20(4):16–21. doi: 10.29296/24999490-2022-04-03 EDN: EKRPQL
- Ishikawa F. Cellular senescence, an unpopular yet trustworthy tumor suppressor mechanism. Cancer Sci. 2003;94(11):944–947. doi: 10.1111/j.1349-7006.2003.tb01382.x
- Hall BM, Balan V, Gleiberman AS, et al. Aging of mice is associated with p16(Ink4a)- and β-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. Aging (Albany NY). 2016;8(7):1294–1315. doi: 10.18632/aging.100991 EDN: YDKCLM
- Blagosklonny MV. Cell senescence, rapamycin and hyperfunction theory of aging. Cell Cycle. 2022;21(14):1456–1467. doi: 10.1080/15384101.2022.2054636 EDN: UEAAGF
- Lawrence M, Goyal A, Pathak S, Ganguly P. Cellular senescence and inflammaging in the bone: pathways, genetics, anti-aging strategies and interventions. Int J Mol Sci. 2024;25(13):7411. doi: 10.3390/ijms25137411 EDN: XJQDWY
- Diekman BO, Loeser RF. Aging and the emerging role of cellular senescence in osteoarthritis. Osteoarthritis Cartilage. 2024;32(4):365–371. doi: 10.1016/j.joca.2023.11.018 EDN: TLCNFY
- Ravazzano L, Colaianni G, Tarakanova A, et al. Multiscale and multidisciplinary analysis of aging processes in bone. NPJ Aging. 2024;10(1):28. doi: 10.1038/s41514-024-00156-2 EDN: EUCFTW
- Plekhova NG, Krivolutskaya PA, Chernenko IN. Cellular mechanisms of age-dependent bone remodeling. Kazan Medical Journal. 2024;105(4):648–660. doi: 10.17816/KMJ632264 EDN: HFJNYE
- Chan CKF, Gulati GS, Sinha R, et al. Identification of the human skeletal stem cell. Cell. 2018;175(1):43–56.e21. doi: 10.1016/j.cell.2018.07.029 EDN: YJILHN
- Kikyo N. Circadian regulation of bone remodeling. Int J Mol Sci. 2024;25(9):4717. doi: 10.3390/ijms25094717 EDN: BEKOSC
- Teissier T, Temkin V, Pollak RD, Cox LS. Crosstalk between senescent bone cells and the bone tissue microenvironment influences bone fragility during chronological age and in diabetes. Front Physiol. 2022;13:812157. doi: 10.3389/fphys.2022.812157 EDN: PFCGBF
- Khosla S, Farr JN, Monroe DG. Cellular senescence and the skeleton: pathophysiology and therapeutic implications. J Clin Invest. 2022;132(3):e154888. doi: 10.1172/JCI154888 EDN: ITINYC
- van der Kraan PM, van den Berg WB. Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthritis Cartilage. 2012;20(3):223–232. doi: 10.1016/j.joca.2011.12.003
- Mackie EJ, Ahmed YA, Tatarczuch L, et al. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol. 2008;40(1):46–62. doi: 10.1016/j.biocel.2007.06.009 EDN: MMSINB
- Jeon OH, David N, Campisi J, Elisseeff JH. Senescent cells and osteoarthritis: a painful connection. J Clin Invest. 2018;128(4):1229–1237. doi: 10.1172/JCI95147
- van Donkelaar CC, Wilson W. Mechanics of chondrocyte hypertrophy. Biomech Model Mechanobiol. 2012;11(5):655–664. doi: 10.1007/s10237-011-0340-0 EDN: PISQLL
- Li J, Dong S. The signaling pathways involved in chondrocyte differentiation and hypertrophic differentiation. Stem Cells Int. 2016;2016:2470351. doi: 10.1155/2016/2470351
- Rim YA, Nam Y, Ju JH. The role of chondrocyte hypertrophy and senescence in osteoarthritis initiation and progression. Int J Mol Sci. 2020;21(7):2358. doi: 10.3390/ijms21072358 EDN: GHPPWU
- Chen H, Tu M, Liu S, et al. Dendrobine alleviates cellular senescence and osteoarthritis via the ROS/NF-κB axis. Int J Mol Sci. 2023;24(3):2365. doi: 10.3390/ijms24032365 EDN: GTUYLC
- Xie J, Wang Y, Lu L, et al. Cellular senescence in knee osteoarthritis: molecular mechanisms and therapeutic implications. Ageing Res Rev. 2021;70:101413. doi: 10.1016/j.arr.2021.101413 EDN: FWQMLJ
- Ashraf S, Cha BH, Kim JS, et al. Regulation of senescence associated signaling mechanisms in chondrocytes for cartilage tissue regeneration. Osteoarthritis Cartilage. 2016;24(2):196–205. doi: 10.1016/j.joca.2015.07.008
- Yang X, Liu TC, Liu S, et al. Promoted viability and differentiated phenotype of cultured chondrocytes with low level laser irradiation potentiate efficacious cells for therapeutics. Front Bioeng Biotechnol. 2020;8:468. doi: 10.3389/fbioe.2020.00468 EDN: PVEDYG
- Solovyova IA, Demko IV, Sobko EA, et al. The role of p38 mapk in the development of immune inflammation. Bulletin Physiology and Pathology of Respiration. 2013;(49):105–114. EDN: RBQOLZ
- Del Rey MJ, Valín Á, Usategui A, et al. Senescent synovial fibroblasts accumulate prematurely in rheumatoid arthritis tissues and display an enhanced inflammatory phenotype. Immun Ageing. 2019;16:29. doi: 10.1186/s12979-019-0169-4 EDN: WLVXSJ
- Entz L, Falgayrac G, Chauveau C, et al. The extracellular matrix of human bone marrow adipocytes and glucose concentration differentially alter mineralization quality without impairing osteoblastogenesis. Bone Rep. 2022;17:101622. doi: 10.1016/j.bonr.2022.101622 EDN: PRBVAD
- Buettmann EG, Goldscheitter GM, Hoppock GA, et al. Similarities between disuse and age-induced bone loss. J Bone Miner Res. 2022;37(8):1417–1434. doi: 10.1002/jbmr.4643 EDN: HUGCFX
- Guerra RM, Fowler VM, Wang L. Osteocyte dendrites: how do they grow, mature, and degenerate in mineralized bone? Cytoskeleton (Hoboken). 2025;82(9):556–570. doi: 10.1002/cm.21964 EDN: VPQJSN
- Elnunu IS, Redmond JN, Obata Y, et al. Increased AGE cross-linking reduces the mechanical properties of osteons. JOM (1989). 2024;76(10):5692–5702. doi: 10.1007/s11837-024-06716-x EDN: TFPLOV
- Farr JN, Khosla S. Cellular senescence in bone. Bone. 2019;121:121–133. doi: 10.1016/j.bone.2019.01.015
- Wan M, Gray-Gaillard EF, Elisseeff JH. Cellular senescence in musculoskeletal homeostasis, diseases, and regeneration. Bone Res. 2021;9(1):41. doi: 10.1038/s41413-021-00164-y EDN: DKAUEC
- Fang CL, Liu B, Wan M. “Bone-SASP” in skeletal aging. Calcif Tissue Int. 2023;113(1):68–82. doi: 10.1007/s00223-023-01100-4 EDN: NZHGPK
- Kim HN, Xiong J, MacLeod RS, et al. Osteocyte RANKL is required for cortical bone loss with age and is induced by senescence. JCI Insight. 2020;5(19):e138815. doi: 10.1172/jci.insight.138815 EDN: IYYAQY
- Cui J, Shibata Y, Zhu T, et al. Osteocytes in bone aging: Advances, challenges, and future perspectives. Ageing Res Rev. 2022;77:101608. doi: 10.1016/j.arr.2022.101608 EDN: IPPGQA
- Wölfel EM, Fernandez-Guerra P, Nørgård MØ, et al. Senescence of skeletal stem cells and their contribution to age-related bone loss. Mech Ageing Dev. 2024;221:111976. doi: 10.1016/j.mad.2024.111976 EDN: XSPIOG
- Wang T, Huang S, He C. Senescent cells: A therapeutic target for osteoporosis. Cell Prolif. 2022;55(12):e13323. doi: 10.1111/cpr.13323
- Kurenkova AD, Medvedeva EV, Newton PT, Chagin AS. Niches for skeletal stem cells of mesenchymal origin. Front Cell Dev Biol. 2020;8:592. doi: 10.3389/fcell.2020.00592 EDN: JMQCSB
- Matsushita Y, Ono W, Ono N. Skeletal stem cells for bone development and repair: diversity matters. Curr Osteoporos Rep. 2020;18(3):189–198. doi: 10.1007/s11914-020-00572-9 EDN: QWVSPM
- Buck HV, Stains JP. Osteocyte-mediated mechanical response controls osteoblast differentiation and function. Front Physiol. 2024;15:1364694. doi: 10.3389/fphys.2024.1364694 EDN: ZCHJAN
- Pignolo RJ, Law SF, Chandra A. Bone aging, cellular senescence, and osteoporosis. JBMR Plus. 2021;5(4):e10488. doi: 10.1002/jbm4.10488 EDN: MCCWGP
- Melis S, Trompet D, Chagin AS, Maes C. Skeletal stem and progenitor cells in bone physiology, ageing and disease. Nat Rev Endocrinol. 2025;21(3):135–153. doi: 10.1038/s41574-024-01039-y EDN: VNCUVS
- Gharpinde MR, Pundkar A, Shrivastava S, et al. A comprehensive review of platelet-rich plasma and its emerging role in accelerating bone healing. Cureus. 2024;16(2):e54122. doi: 10.7759/cureus.54122 EDN: LYWFQA
- Spencer JA, Ferraro F, Roussakis E, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 2014;508(7495):269–273. doi: 10.1038/nature13034 EDN: WQZGYB
- Guo B, Huang X, Chen Y, Broxmeyer HE. Ex vivo expansion and homing of human cord blood hematopoietic stem cells. Adv Exp Med Biol. 2023;1442:85–104. doi: 10.1007/978-981-99-7471-9_6
- Han L, Wang B, Wang R, et al. The shift in the balance between osteoblastogenesis and adipogenesis of mesenchymal stem cells mediated by glucocorticoid receptor. Stem Cell Res Ther. 2019;10(1):377. doi: 10.1186/s13287-019-1498-0 EDN: ADRHCG
- Solidum JGN, Jeong Y, Heralde F 3rd, Park D. Differential regulation of skeletal stem/progenitor cells in distinct skeletal compartments. Front Physiol. 2023;14:1137063. doi: 10.3389/fphys.2023.1137063
- Pioli PD, Casero D, Montecino-Rodriguez E, et al. Plasma cells are obligate effectors of enhanced myelopoiesis in aging bone marrow. Immunity. 2019;51(2):351–366.e6. doi: 10.1016/j.immuni.2019.06.006
- Olivieri F, Prattichizzo F, Grillari J, Balistreri CR. Cellular senescence and inflammaging in age-related diseases. Mediators Inflamm. 2018;2018:9076485. doi: 10.1155/2018/9076485
- Ma Y, Qi M, An Y, et al. Autophagy controls mesenchymal stem cell properties and senescence during bone aging. Aging Cell. 2018;17(1):e12709. doi: 10.1111/acel.12709
- Remark LH, Leclerc K, Ramsukh M, et al. Loss of Notch signaling in skeletal stem cells enhances bone formation with aging. Bone Res. 2023;11(1):50. doi: 10.1038/s41413-023-00283-8 EDN: YIFQUQ
- Saul D, Kosinsky RL, Atkinson EJ, et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat Commun. 2022;13(1):4827. doi: 10.1038/s41467-022-32552-1 EDN: OCEODX
- Hsu B, Cumming RG, Seibel MJ, et al. Reproductive hormones and longitudinal change in bone mineral density and incident fracture risk in older men: the concord health and aging in men project. J Bone Miner Res. 2015;30(9):1701–1708. doi: 10.1002/jbmr.2493
- Ganguly P, El-Jawhari JJ, Giannoudis PV, et al. Age-related changes in bone marrow mesenchymal stromal cells: a potential impact on osteoporosis and osteoarthritis development. Cell Transplant. 2017;26(9):1520–1529. doi: 10.1177/0963689717721201
- Wolock SL, Krishnan I, Tenen DE, et al. Mapping distinct bone marrow niche populations and their differentiation paths. Cell Rep. 2019;28(2):302–311.e5. doi: 10.1016/j.celrep.2019.06.031 EDN: KTSVWV
- Mitroulis I, Kalafati L, Bornhäuser M, et al. Regulation of the bone marrow niche by inflammation. Front Immunol. 2020;11:1540. doi: 10.3389/fimmu.2020.01540 EDN: LQEVXM
- Tuckermann J, Adams RH. The endothelium-bone axis in development, homeostasis and bone and joint disease. Nat Rev Rheumatol. 2021;17(10):608–620. doi: 10.1038/s41584-021-00682-3 EDN: VISCNT
- Vun J, Iqbal N, Jones E, Ganguly P. Anti-aging potential of platelet rich plasma (PRP): evidence from osteoarthritis (OA) and applications in senescence and inflammaging. Bioengineering (Basel). 2023;10(8):987. doi: 10.3390/bioengineering10080987 EDN: OEHJNZ
- Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018;15(9):505–522. doi: 10.1038/s41569-018-0064-2 EDN: YIFCDZ
- Robbins PD, Jurk D, Khosla S, et al. Senolytic drugs: reducing senescent cell viability to extend health span. Annu Rev Pharmacol Toxicol. 2021;61:779–803. doi: 10.1146/annurev-pharmtox-050120-105018 EDN: FBNGDR
- Hay E, Bouaziz W, Funck-Brentano T, Cohen-Solal M. Sclerostin and bone aging: a mini-review. Gerontology. 2016;62(6):618–623. doi: 10.1159/000446278
- Gao Y, Patil S, Jia J. The development of molecular biology of osteoporosis. Int J Mol Sci. 2021;22(15):8182. doi: 10.3390/ijms22158182 EDN: CDXDCW
- Falvino A, Gasperini B, Cariati I, et al. Cellular senescence: the driving force of musculoskeletal diseases. Biomedicines. 2024;12(9):1948. doi: 10.3390/biomedicines12091948 EDN: NEKJUI
- Yao Z, Murali B, Ren Q, et al. Therapy-induced senescence drives bone loss. Cancer Res. 2020;80(5):1171–1182. doi: 10.1158/0008-5472.CAN-19-2348 EDN: PYMFRC
- Xu P, Lin B, Deng X, et al. VDR activation attenuates osteoblastic ferroptosis and senescence by stimulating the Nrf2/GPX4 pathway in age-related osteoporosis. Free Radic Biol Med. 2022;193(Pt 2):720–735. doi: 10.1016/j.freeradbiomed.2022.11.013 EDN: LBPPQV
- Guo Y, Jia X, Cui Y, et al. Sirt3-mediated mitophagy regulates AGEs-induced BMSCs senescence and senile osteoporosis. Redox Biol. 2021;41:101915. doi: 10.1016/j.redox.2021.101915 EDN: KYWCGO
- Li CJ, Xiao Y, Sun YC, et al. Senescent immune cells release grancalcin to promote skeletal aging. Cell Metab. 2022;34(1):184–185. doi: 10.1016/j.cmet.2021.12.003 EDN: JAJPKZ
- Schmauck-Medina T, Molière A, Lautrup S, et al. New hallmarks of ageing: a 2022 Copenhagen ageing meeting summary. Aging (Albany NY). 2022;14(16):6829–6839. doi: 10.18632/aging.204248 EDN: QVWBBH
- Yu H, Yao S, Zhou C, et al. Morroniside attenuates apoptosis and pyroptosis of chondrocytes and ameliorates osteoarthritic development by inhibiting NF-κB signaling. J Ethnopharmacol. 2021;266:113447. doi: 10.1016/j.jep.2020.113447 EDN: VPQUVI
- Tong L, Yu H, Huang X, et al. Current understanding of osteoarthritis pathogenesis and relevant new approaches. Bone Res. 2022;10(1):60. doi: 10.1038/s41413-022-00226-9 EDN: AJEAGA
- Kabalyk MA. Biomarkers of subchondral bone remodeling in osteoarthritis. Pacific Medical Journal. 2017;(1):36–41. doi: 10.17238/PmJ1609-1175.2017.1.37-41 EDN: VYOCGX
- Song C, Zhou Y, Cheng K, et al. Cellular senescence — Molecular mechanisms of intervertebral disc degeneration from an immune perspective. Biomed Pharmacother. 2023;162:114711. doi: 10.1016/j.biopha.2023.114711 EDN: XENXIF
- Zhang L, Xing R, Huang Z, et al. Inhibition of synovial macrophage pyroptosis alleviates synovitis and fibrosis in knee osteoarthritis. Mediators Inflamm. 2019;2019:2165918. doi: 10.1155/2019/2165918
- Chen B, Wang L, Xie D, Wang Y. Exploration and breakthrough in the mode of chondrocyte death — A potential new mechanism for osteoarthritis. Biomed Pharmacother. 2024;170:115990. doi: 10.1016/j.biopha.2023.115990 EDN: NZRAKY
- Farr JN, Xu M, Weivoda MM, et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat Med. 2017;23(9):1072–1079. doi: 10.1038/nm.4385
- Chin AF, Han J, Clement CC, et al. Senolytic treatment reduces oxidative protein stress in an aging male murine model of post-traumatic osteoarthritis. Aging Cell. 2023;22(11):e13979. doi: 10.1111/acel.13979 EDN: ZQMXVC
- Liu Y, Zhang Z, Li T, et al. Senescence in osteoarthritis: from mechanism to potential treatment. Arthritis Res Ther. 2022;24(1):174. doi: 10.1186/s13075-022-02859-x EDN: AGQUGD
- Singh P, Kapahi P, van Deursen JM. Immune checkpoint inhibitors as senolytic agents. Cell Res. 2023;33(3):197–198. doi: 10.1038/s41422-022-00761-4 EDN: GPKHYQ
- Cao Z, Li Y, Wang W, et al. Is Lutikizumab, an anti-interleukin-1α/β dual variable domain immunoglobulin, efficacious for osteoarthritis? Results from a bayesian network meta-analysis. Biomed Res Int. 2020;2020:9013283. doi: 10.1155/2020/9013283 EDN: KGACZJ
- Schulze-Tanzil G. Experimental therapeutics for the treatment of osteoarthritis. J Exp Pharmacol. 2021;13:101–125. doi: 10.2147/JEP.S237479 EDN: PLJAEQ
- Xiong Y, Mi BB, Lin Z, et al. The role of the immune microenvironment in bone, cartilage, and soft tissue regeneration: from mechanism to therapeutic opportunity. Mil Med Res. 2022;9(1):65. doi: 10.1186/s40779-022-00426-8 EDN: YASGEE
- Reid P, Liew DF, Akruwala R, et al. Activated osteoarthritis following immune checkpoint inhibitor treatment: an observational study. J Immunother Cancer. 2021;9(9):e003260. doi: 10.1136/jitc-2021-003260 EDN: WHWFZL
- Hu Q, Ecker M. Overview of MMP-13 as a promising target for the treatment of osteoarthritis. Int J Mol Sci. 2021;22(4):1742. doi: 10.3390/ijms22041742 EDN: TJKTRH
- Rodriguez-Merchan EC. The current role of disease-modifying osteoarthritis drugs. Arch Bone Jt Surg. 2023;11(1):11–22. doi: 10.22038/ABJS.2021.56530.2807
- Li J, Zhang B, Liu WX, et al. Metformin limits osteoarthritis development and progression through activation of AMPK signalling. Ann Rheum Dis. 2020;79(5):635–645. doi: 10.1136/annrheumdis-2019-216713 EDN: NLRFMU
- Kong H, Sun ML, Zhang XA, Wang XQ. Crosstalk among circRNA/lncRNA, miRNA, and mRNA in osteoarthritis. Front Cell Dev Biol. 2021;9:774370. doi: 10.3389/fcell.2021.774370 EDN: EWKLPI
- Duan L, Liang Y, Xu X, et al. Recent progress on the role of miR-140 in cartilage matrix remodelling and its implications for osteoarthritis treatment. Arthritis Res Ther. 2020;22(1):194. doi: 10.1186/s13075-020-02290-0 EDN: LAIOMN
- He X, Deng L. miR-204-5p inhibits inflammation of synovial fibroblasts in osteoarthritis by suppressing FOXC1. J Orthop Sci. 2022;27(4):921–928. doi: 10.1016/j.jos.2021.03.014 EDN: NANQHP
Дополнительные файлы
