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Moaxoabl M MeToabl MalLIMHHOIO 06y4eHuA
ANA pasaeneHns HeupoPUsUoNornyecKux

XapaKTepuCTUK TBOPYECKUX COCTOAHMM/3TanoB

TBOPYECKOM AeATe/IbHOCTU Ha 0CHOBE BpeMeHHbIX PAAoB

W YacTOTHO-BpeMeHHbIX npu3sHakosB III/BM-curHanos

H.B. LLemakwmHa, I".C. Benukobopeu, H.B. HaropHoBa

WNHCcTUTYT 3BOMIOLMOHHOI ¢u3mnonorum u bruoxummm uM. U.M. CeyeHoBa PoccuiicKoii akapeMum Hayk, CaHkT-lleTepbypr, Poccuitckan Qepepauma

AHHOTALMA

06ocHoBaHMe. B naHHoM paboTe NpeanpuHATA NOMbITKA «MaLIMHHOrO» OQnaiH-pasaeneHns U KnacCUuPUKaLmm HeKoTo-
PbIX COCTOAHWIA/CTaaMiA BbINONHEHWA TBOPYECKMX 3aZa4 C UCMOMb30BaHWEM NOAX0AA «TECT-KOHTPOby». Mbl paccMatpuBa-
NN BbIMOSIHEHWE KOHTPOJSIbHBIX 3a[lay B KA4YeCTBe HayasbHbIX CTafMi peann3aumm TBopHecKon AeAtensHocTH. [poBegeHo
CPaBHUTENIbHOE UCCeoBaHME NOAX00B K KNacCUdMKaLMM BPEMEHHOrO CUrHana U 4acTOTHO-BPEMEHHBIX KapT MpU Bbl-
MONHEHUM TPEX 3afaHWW Ha OMBEPreHTHoe MbllieHue: 1) NpuayMbiBaHME OKOHYaHWW K 06LLEM3BECTHBIM MOCNOBULAM
(«MOCNOBWLbI», napagurma Bbi3BaHHbIX NoTeHumanos, BI); 2) npuaymbiBaHue pacckasoB («PACCKA3», HenpepbiBHas
33r); 3) cozpaHKe Xy[oxecTBeHHOro M3obpaxkeHus B npoLiecce *Kusonuck («viART», HenpepbiBHasA 33I7) Ha pa3HbIX aTanax.
Llenb nccnenoBaHma — cpaBHWTL M BbIOpaTh NOAX0AbI K KNaccudmKaLumm xapakTtepucTuk 330 -curHana oTaenbHbIX TBOp-
YECKUX COCTOAHMI /CTaaMin TBOPYECKON LEATENBHOCTM.

MeToabl. B 3agaHum «MNOC/0BULbI» (napapurma BI) yyactBoBano 22 yenoseka, B 3agaHun «PACCKA3» — 15 yenosek
W OZMH YeNOBEK NMPUHUMAN y4yacTue B JIOHTUTIOQHOM MCCNe0BaHUM Xy[OMECTBEHHOr0 TBopyecTBa (case study). Mbl uc-
no/b30Bau NIMHelHbIe MEeTOAbl aHanK3a Mo 0THOLLEHWIO K NpeobpasoBaHHoMy K CSD (current source density) cblpoMy cur-
Hany 33l 1 cBépTouHble HelipoHHble cetu (convolutional neural network, CNN) ans KnaccuduKaumm 4acToTHO-BpEMEHHbIX
KapT (Berenet Mopne, 3-30 I'). HenpepbiHble 331" 6binv pa3aeneHbl Ha anoxu no 4 ¢, ana Bl ucnonb3osanu 1500 mc no-
Cne NpeAbABAEHUA CTUMYNA. YacTOTHO-BpeMeHHbIe KapTbl ObIIM CreHepyUpoBaHbl ANA 4-CeKyHOHbIX MHTepBanos 33l ¢ wa-
rom 100 Mc (HenpepbiHble 331 B 3agaHuax «PACCKA3», «ViART») unm 1500 mc (B 3aganum «OCNTOBULbI») v cocTosanm
13 KOMOMHMPOBAHHOMO M306pareHmna (224x224 px) ona dpoHTanbHoii (Fz) n TeMenHon (Pz) 30H Mo3ra. Knaccudukaumio
“306parkeHunit NpoBoAMNM ¢ nomoLlbio MoanduumposanHor CNN (apxuTekTypbl ResNet50, ResNet18).

Pesynbtarbl. [1nA 4eTbIpEx KNaccoB TOUHOCTb Knaccuduraumm B 3agave «PACCKA3» (npuayMbiBaHue CloxKeTa, NpoLosiKeHne
CIOXKeTa UCTOPUMU, ONKCaHMEe 1300parKeHmns, GOH C OTKPbITLIMKM Fa3amu) cocTaBnsana 96,4% [+8,3 SD] ¢ ResNet50 1 ResNet18.
Tpu cocToaHUs «VIART» (*KMBOMMCb Ha XOJICTE, MPOCMOTP KapTWHbI, GOH C OTKPbITLIMM Fa3amu) fanv 86,94% ans kernel naive
bayes 1 98,2% nna CNN. OgHako B napagurMe nocnefoBaTenbHoOro pasaeneHna Ha 06y4aloLLyio U TPEHUPOBOYHYIO BbIGOPKU
(Mogenb uHTepdeica Mo3r—KoMnbloTep) TOYHOCTb Knaccudumkaumm ynana B cpegHeM go 70,0% [+11% SD.

B napagurme Bl «MOC/1I0BULbl» TouHOCTb KnaccumKaumm TpEX KnaccoB (Co3maHuMe «HOBOro» OKOHYaHuA, nogbop ce-
MaHTMYEeCKOr0 CMHOHWMMA M BOCMPOM3BEAEHWUE M3 MaMATU M3BECTHOrO0 OKOHYaHWs nocnosuu) coctasnsana 80,5% [+8,7 SD]
ana CSP (common spatial pattern) ¢ nocnegyowmm rSVM (MeTof onopHbIX BEKTOPOB Ha OCHOBE paguasnbHoW 6asncHom
$yHKUMuM), B To BpeMA Kak TouHocTb CNN coctaBnana 43,2% [+8,8 SDI.

3aknioyeHune. Ha gaHHbIN MOMEHT MCMOb30BaHME CBEPTOYHBIX HEMPOHHBIX CETEN MOKa3ano OTHOCUTENIBHO MYYLIUA pe-
3ynbTaT ONA KnacCUPUKaLMKU «HEMpepbiBHbIX», OJWUTENbHBIX COCTOAHWIA TBOPYECKOW LEATENbHOCTU M0 M306paeHnAM
YaCTOTHO-BPEMEHHbIX KapT. B To e BpeMsA oLeHKa ObICTPbIX «MepexoaHbIX NPOLLEeCCoB», TakMX Kak Bll, 6bina bonee adpdek-
TUBHOM NMPY KNAacCUGUKaLMK «BPEMEHHBIX PAJOB» C NPOCTPAHCTBEHHON GUNbTPaLMeNt.

KnioyeBble cnoBa: HEMpOHHbIE CETW; XY[AOXKECTBEHHOe TBOPYECTBO; BepbanbHOE TBOPYECTBO; MalUMHHOE 06yyeHue
C yuuTeneM; anekTposHuedanorpadua; 33M; Boi3aBaHHbIe noTeHUManbl; BIl; yacTOTHO-BpeMeHHOW aHanus.
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Machine-learning applications for differentiation
across states/stages of creative thinking based
on time-series and time-frequency features

of EEG/ERP signals

Natalia V. Shemyakina, Gleb S. Velikoborets, Zhanna V. Nagornova

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russian Federation

ABSTRACT

BACKGROUND: The study presents machine-learning (ML) classification approaches for the state/stage differentiation of
creative tasks using the “test-control” approach. The control tasks were considered as the initial stages of the creative activity.
Time-series and time-frequency electroencephalography (EEG) data analyses were employed in three divergent thinking
tasks: 1) creating endings to well-known proverbs (“PROVERBS”, event-related potential [ERP] paradigm); 2) creating stories
(“STORIES”, continuous EEG); 3) free creative painting (“viART”, continuous EEG).

AIM: To compare and select effective ML classification approaches for EEG signal separation at different stages or states of
creative task performance.

METHODS: In this study, 22 individuals participated in the “PROVERBS” (ERP paradigm), 15 in the “STORIES”, and 1 (a longitudinal
case study) in the “viART” tasks. Linear and convolutional neural network (CNN) classifiers were used. EEG data were previous
artifacts corrected and converted to current source density (CSD). Continuous EEGs were divided into 4-s intervals and 1500 ms
after stimulus presentation, were used in ERPs. The EEG/ERP time-frequency maps (Morlet wavelet transformation) for 3-30 Hz
were generated for 4-s intervals with 100 ms shift (continuous EEGs in “STORIES” and “viART") or for 1500 ms after stimulus
presentation (ERPs in “PROVERBS”) and consisted of combined images (224x224 px) for frontal (Fz) and parietal (Pz) brain zones.
Image classification was carried out using the modified CNN (ResNet50, ResNet18 architectures).

RESULTS: The offline classification accuracy of the four-class system (description of a picture, inventing a story plot,
continuation of story’s plot, and background with open eyes) in the “STORY” creation task was up to 96.4% [+8.3 SD] with
ResNet architectures (ResNet50 and ResNet18). The accuracy of the three states discrimination of the artists’ creative painting
(resting state with open eyes, painting on canvas, and viewing the painting) was 86.94% for kernel naive bayes and 98.2%
for CNN. For the trained and tested samples given for the CNN in consecutive order (neurointerface mode), the accuracy
diminished to 70.0% [11% SD] on average. In the ERP paradigm “PROVERBS”, the classification accuracy of the three-class
system (creation of “new” ending, naming of semantic synonym, and remembering of the known ending) was 80.5% [+8.7 SD]
for the common spatial pattern, followed by rSVM (radial kernel basis support vector machine), compared with 43.2% [+8.8 SD]
for CNN.

CONCLUSION: The use of CNNs allowed better classifying of “continuous” long-term states of creative activity. In fast
“transient processes” such as ERP, time-series classifiers with spatial filtering proved to be more efficient.

Keywords: neural networks; creativity; artistic creativity; supervised machine learning; electroencephalography; EEG; event-
related potential; ERP; time-frequency analysis.
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OPUIMHATTBHOE VICCNELOBARME

INTRODUCTION

Machine learning (ML) is widely used in the recognition
of various “functional” states (emotions, phases of
sleeping, tiredness, etc.) from physiological data
(particularly, electroencephalography [EEG]); however, no
many studies of cognitive state discrimination have been
conducted thus far. Moreover, ML is proposed as the basis
for brain—computer interface development in different
areas of rehabilitation — motor [1], cognitive [2], or some
enhancement procedures [3]. Studies on state recognition
have shown great variability in ML methods, choice of
classification approaches, and input features. The two main
approaches to state recognition based on EEG features are
as follows: 1) recognition of characteristics of “continuous”
EEG data when the state either remains constant or slowly
changes over a long time, i.e., from a few seconds to
several minutes (spontaneous EEG); or 2) recognition
of characteristics of “short” intervals, i.e., lasting up to
a couple of seconds when brain activity is associated with
fast decisions or perceptive and cognitive responses to
some external stimulus, such as event-related potentials
(ERP). In the first case, strict synchronization with external
events is unnecessary, and features for classification
relate to the so-called “spontaneous” EEG, which might
be represented as frequency band power features [4-6].
For “transient processes” classifications based on ERP
features, time series is mostly used [4]. In addition, no
common approaches could be used without testing it for
the certain type of the task. Thus, this study aimed to
explore and compare different ML approaches that could be
used for the classification of creativity stages in continuous
EEGs and short ERP trials. In both cases, divergent thinking
tasks were used without and with time restriction. As the
model situation, the test-control approach was used, and
control tasks were considered as possible (according to
hypothesized mental processes) and previous creative
decisions as stages/states.

Literature data on the implementation of ML in creativity
research are limited. In a previous study [7], the two-class
system (more and less creative states in alternative uses
task and ordinary or uncommon (more creative) uses of
everyday objects) achieved an average accuracy of 63.0%,
and the ML approach used included spectrally weighted
common spatial patterns (CSPs) for feature extraction
and quadratic discriminant analysis. Discrimination of
more and less creative individuals based on EEG signals
had 82.3% accuracy. Data [8] on the differentiation of
three classes — creating an original ending, suggesting
a synonym, or remembering a well-known ending of a
proverb or saying — were explored, with an average
accuracy of 48+5% for the best linear classifier using a
classifier learner toolbox in Matlab. The physiological
effects described for these data among others revealed
higher power (8—9 Hz) in the right frontal and left parietal
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regions at 400-700 ms after stimulus onset while creating
original and synonymic endings compared with the control
task of remembering the ending of a well-known proverb.
In the nonverbal creativity model [9], i.e., divergent thinking
during painting, the accuracy for the separation of the
background state and creative and noncreative drawing
was 66.9% when using a classifier based on a support
vector machine (SVM; Gaussian radial basis function and
classifier learner). The physiological effects demonstrated
a higher percentage of theta and alpha frequencies in the
frontal (5-6 and 12-13 Hz), central (4-7 and 8-10 Hz),
and parietal (4-5, 6-7, 8-9, and 12—13 Hz) zones during
creative sketching in comparison with noncreative lines
and object drawing. Creativity is a heterogeneous process
in which certain stages can be defined, for example, idea
generation, idea elaboration, idea evaluation or generation,
and exploratory stages [10]. In a previous study, the
specific creative demands were set by instructions [11]
and considered models of creative process stages; thus,
the performance of these tasks could correspond to the
distinct states of creative thinking. In our study, models
of “STORY” creation and “PROVERBS” ending creation can
be considered different creative states (stages defined
by instruction). More clearly, different stages of creative
processes can be distinguished in free creative activities
using artistic painting. In this case, all stages from idea
generation (sketching) via idea elaboration (canvas
painting) and idea evolution (color painting) to evaluation
(viewing own painting) can be defined and verified by
observation.

To the best of our knowledge, not many researchers
have attempted to build classifiers to differentiate creative
states and stages. However, such classifiers could be used
in cognitive rehabilitation [12].

The use of ML algorithms to differentiate stages of
the creative process is within fundamental science and
allows us to answer the question of whether information
about the type of performed mental operations is
reflected in a complex EEG pattern. On the contrary, these
approaches can be used to create a “passive” brain-
computer interface (see, for example, [13]); when using
an external stimulus (music and light), the user can be
informed about his/her achievement of the “optimal” state
for creative activity.

Aim — the study aimed to find the most effective EEG-
based classifiers and feature generation’s approaches to
differentiate stages and states of creative thinking.

MATERIALS AND METHODS

Stimuli and tasks

Three models of divergent thinking, namely, verbal
(“STORIES") and nonverbal (“PAINTING viART") without time
restriction and verbal (“PROVERBS") in the ERP paradigm
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(with time restriction), were applied. In “STORIES" and
“VIART", continuous EEGs were analyzed, whereas in the
creative model, “PROVERBS” was examined in relatively
short trials.

Divergent thinking tasks with continuous
electroencephalograms registration

The comparative study using time-series and time-
frequency maps (wavelet transformation) classifications at
different stages of creating plots of stories (“STORIES"), or
visual images (“viART") was conducted.

Story creation task (“STORY")

Electroencephalography data from the story creation
task [14] were used for the four-class system. The
participants created stories using black-and-white pictures
with only two personages from the Guilford and 0’Sullivan
social IQ test [15].

The three tasks were as follows: the free creation task
(FCrT), where the participants were told to create the plot
before and after the situation based on what they had
seen in the picture. The participants mentally pronounced
sentences and voluntarily pressed the button when they
were ready to tell the story. In the effortful creation task
(EffCrT), the participants were asked to continue the story
plot, changing the previous line they had just created and
using the same picture presentation. FCrT and EffCrT could
be considered two stages of the same process — creating
the original story with some impasse and overcoming self-
induced short memory stereotype — i.e., in a situation,
the participants had to expand the story. In the control
task, the participants were asked to mentally describe the
picture.

Ecological (free) painting with three or five
states/classes: “viART” model

The EEG data used for classification were taken from
a longitudinal case study with the participation of an artist
(J.P.). Classification was conducted for three (final stage
of canvas painting, viewing own painting, and background
state with opened eyes) or five (sketching in the album,
oil transfer to canvas, final stage of the canvas work,
viewing own painting, and a background state) classes,
respectively. All stages of free creative painting were
empirically observed and marked through time by the
investigator.

Divergent thinking task with time restriction
(event-related potential paradigm)

Electroencephalography data were collected while
the participants were creating original endings for known
uncompleted proverbs and sayings (Cr) [16]. The control
tasks were to recall the commonly known ending of an
uncompleted proverb or saying (C) or to give a synonym
for proverbs’ ending (Syn). All tasks were associated with
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the retrieval of information from long-term memory. The
difference between creative and noncreative tasks was in
overcoming the previously formed stereotype and searching
(creation) for a new original ending of a proverb or saying
that would significantly change its meaning.

Participants

Fifteen participants (aged 18-20 years, 9 female)
took part in the divergent verbal creative study without
time restriction (“STORIES” model), and one participant
(professional artist, J.P., aged 57 years) was involved in
the nonverbal creative painting task (“viART") without time
restriction.

In the model of divergent verbal tasks with time
restriction (ERP paradigm), data of 22 participants (aged
18-22 years, 18 female) were analyzed and classified.

All procedures were conducted in accordance with the
Declaration of Helsinki (1974) and its subsequent updates.
The study was approved by the Ethics Committee of Sechenov
Institute of Evolutionary Physiology and Biochemistry of the
Russian Academy of Sciences, Saint Petersburg, Russia
(Protocol number 2-02, February 2, 2022). Participation in
the study was voluntary, and participants could drop out at
any moment. All participants were free of any medical or
neurological disorders and had normal or corrected vision.
Written consent was obtained from all participants before
the study in according to the protocol.

Psychological testing

To ensure that the groups had homogenous cognitive
abilities, standard progressive matrices [17] were applied.
This test is a nonverbal, culturally independent 1Q test
that measures deductive reasoning through five sets of
multichoice tasks. Obtained data revealed average 1Q values
~110+8 for the partisipants sample.

EEG/ERP procedure and data registration

EEG/ERPs were recorded with “Mitsar 31-channel” (Fp1,
Fpz, Fp2, F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, T3,
C3, Cz, C4, T4, TP7, CP3, CPz, CP4, TP8, T5, P3, Pz, P4, Té,
01, 0z, and 02) EEG system (“Mitsar Ltd.", Saint Petersburg,
http://www.mitsar-medical.com) or with the “SmartBCl
24-channels”(“Mitsar Ltd.”, Saint Petersburg, http://www.
mitsar-medical.com) (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz,
C4, T4, T5, P3, Pz, P4, T6, 01, 02) EEG system through the
WinEEG software package (Ponomarev V.A., Kropotov Ju.D.,
registered for a computer program RF N 2001610516,
08.05.2001). Silver chloride electrodes were positioned
according to the modification by 10-10% or 10-20%. Input
signals were referenced to the linked ears, filtered between
0.53 and 30.0 Hz, and were digitized at a sampling rate of
500 or 250 Hz correspondingly, with a notch filter of 45—
55 Hz. The ground electrode was located between the Fpz
and Fz sites on the forehead. Resistance of the electrodes
did not exceed 5 kOhm.
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Electroencephalography signal artifact
correction

The eye-blink artifacts were corrected by zeroing the
activation curves of individual independent components
corresponding to eye blinks. These components were
obtained by the application of independent component
analysis (ICA) to the raw EEG fragments. The method has
been previously described [18-20]. High- and low-frequency
activities were automatically marked as artifacts and were
excluded from further analysis. The thresholds were set as
follows: (1) 50 pV for the slow waves in the 0—2 Hz band and
2) 35 pV for the fast waves in the 20-35 Hz band.

Electroencephalography signal feature
extraction

The search for informative features and a short-term
approach for EEG data preprocessing is important for state
classification, which could be used in practical applications.
The difficulty of classification of EEG signals is associated
with the low spatial resolution of this method. To increase
the spatial resolution of EEG, the current source density
(CSD) transformation was used [21, 22-24], which can
be employed for both continuous EEG and ERP. The CSD
reduces the volume conduction effect on the signal recorded
from the head surface [22, 23] and makes local differences
distinguishable that can otherwise be masked by the
activities of the neighboring cortical areas [24].

Continuous electroencephalography signal
feature extraction (“STORIES” and “viART”
models)

The time-series feature vector generation and wavelet
time-frequency analysis were used. In both cases, the
artifact-free CSD-transformed EEGs were divided into 4-s
fragments with a shift of 100 ms for further analysis.

Time-series feature vector generation. The time
series of EEG amplitudes from two electrodes (Fz and Pz)
were combined into one feature vector: 2000 time points for
each 4-s EEG fragment. The number of 4-s EEG fragments
(trials) for classification was equalized between classes in
each participant individually.

Wavelet time-frequency analysis. Continuous wavelet
transform (CWT) was implemented in Matlab [25]. The analytic
Morlet wavelet was used to create the CWT (40 voices per
octave) in each 4-s fragment. L1 normalization was used by
the CWT function. The minimum and maximum scales for
the wavelet energy visualization on time-frequency maps
were set equally for all states and participants (max = 12
for continuous EEG). The frequency was presented on a
logarithmic scale. The amplitude was normalized within the
specified range for each sample. Combined together, time-
frequency maps (CWT plotted graphs) from frontal (Fz) and
parietal (Pz) electrodes formed one image with 224x224 px
resolution. Samples of such images were used as trained and
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test sets for the ResNet50 convolution network for creative
state classification. The modified architecture — ResNet18
(with 70 layers) — was tested for CWT combined images.
The number of images for classification was comparable
between classes in each participant.

Feature extraction in the event-related
potentials paradigm

As previously shown [8], the classification of raw time-
series signal in the PROVERBS model had an average
accuracy of 48+5% for three classes. Thus, we had to
explore and compare other approaches to choose more
robust classification methods for transient processes such
as ERPs.

At this time, for ERP feature extraction, CSP decomposition
was applied for the time-series analysis and wavelet time-
frequency analysis.

Time-series CSP feature vector generation. The
CSP was used for feature generation in the time domain for
short-time intervals (1500 ms) after stimuli presentation.
CSPs maximize the variance for one class (least-squares
sense) but minimize the variance for the other [26]. As
the CSP parameter, the number of components was set.
The classifier could not accurately distinguish between the
two classes with too few components. However, if there
were too many components, the classifier weights might
be significantly overfit [27]. CSP was calculated on the
space of electrodes located in the central regions (F3, Fz,
F4, FC3, FCz, FC4, C3, Cz, C4, CP3, CPz, CP4, P3, Pz, and
P4) using MNE-Python (https://mne.tools/stable/generated/
mne.decoding.CSP.html). The number of components was
selected empirically and was equal to 15.

For the multiclass paradigm (three classes in our case),
CSPs were calculated by joint approximate diagonalization
that might be equivalent to an ICA, and a method of choosing
independent components (ICs) that approximately maximize
mutual information of ICs and class labels was presented [28].

Wavelet time-frequency analysis. All preprocessing
was the same as described above for continuous EEG data
with a time window difference — here, the 1500-ms time
following stimuli presentation was used for the CWT time-
frequency calculation. The minimum and maximum scales
for the wavelet energy visualization on the time-frequency
maps were set equally for all states and participants (max =
16 for ERP).

Classification methods

Electroencephalography signal time series were
classified using algorithms from the classifier learning
toolbox in Matlab. The results of the method with the best
accuracy classification for each participant were considered.
An empirical assessment of the generalization ability of
algorithms was performed automatically by K-folds cross-
validation: the total number of trials was successively
divided into five samples (nonoverlapping “bootstrap”), with
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four of them (80% trials) included in the training sample
and one (20% trials) in the test sample. The training and
test samples of the trials did not overlap. The principal
component analysis tool in Matlab was used to reduce the
dimension of the input feature vector.

The images of time-frequency maps obtained for
“STORY”, “viART", and “PROVERBS" models were classified
using a convolutional neural network (CNN, with ResNet50
architecture) in Matlab Deep Network Designer Toolbox. The
numbers of classes (three, four, or five) were set at the last
fully connected level. The total samples (images) set for each
participant was randomly divided into three nonoverlapping
samples: test (15-25% depending on the size of the total
sample), validation (15-30% of the remaining set), and
training. Training options for CNN were set as default in
Matlab Deep Network Designer Tool with MaxEpoch of 30
and MiniBatchSize of 32.

The CSP-filtered data (“PROVERBS" models) were
classified using SVM with the radial basis (kernel) function
(RBF) and with one-against-each approach of multiclass
classification (skLearn and Python). In all approaches to the
classification, the sample sets for different classes were
equal in every participant so the empirical chance level was
close to the theoretical chance level (20.0; 25.0; and 33.3%
for the five-, four-, and three-class systems, respectively).
The classification accuracy far exceeding this threshold was
considered significant.

In both continuous tasks (“STORY” and “viART"), the
“neurointerface usage conditions” were modeled. The
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training and testing sample sets in these cases were formed
not by bootstrapping from the whole EEG but consequently:
training sample (from the first part of each EEG record) and
then the testing sample (from the last part of each EEG
record).

Statistical analysis

Statistical comparison of different approaches to
classification was performed using the Wilcoxon test for
dependent samples, and significant differences with p <0.05
were considered. The Wilcoxon test was selected because we
did not expect a normal classification accuracy distribution
in the participants’ sample. Moreover, in each participant,
since the same data were classified, expected dependent
classification accuracies were obtained by different methods.

RESULTS

Classification of spontaneous electroencephalography
signal characteristics during divergent creative thinking

Story creation model. A four-class classification
was made, i.e., creation of a story plot based on a picture
(stage 1, FCreT), creation of the story’s plot further changes
(stage 2, EffCrT), description of a picture, and background
EEG with eyes open (Table 1).

The level of classification performance with the time-
series features was higher than that at the theoretical chance
level (25% for the four-class system) in all participants (See
Table 1). The types of classifiers showed that better results

Table 1. Accuracy for the four-class classification based on spontaneous EEG features: time series and images of time-frequency maps

from the wavelet analysis

Tabnuua 1. TouyHOCTb 4-KNaccoBOM KnaccudMKaLMM NpU3HAKOB CMOHTaHHOW I3I: BpeMeHHbIX PAMOB U M300parKeHW YacTOTHO-

BPEMEHHI;IX KapT BeMBJeT-aHanm3a

Time-series classification (4 classes)

Wavelet images classification (4 classes)

Subject number

Accuracy; %+SD |

Classifier

ResNet50; accuracy, %

S1 53.5+1.7 Ensemble bagged tree 100
S2 48.8+3.3 Ensemble boosted tree 75
S3 74.31.8 Ensemble bagged tree 99.7
Sk 43.4+0.2 Tree medium tree 97.2
S5 89.7+1.0 Ensemble bagged tree 100
Sé 63.7£2.7 Ensemble bagged tree 100
S7 54.6 £1.5 Gaussian naive bayes 100
S8 49.8+0.7 Kernel naive bayes 98
S9 87.9+1.5 Ensemble subspace knn 100
S10 45.10.5 Ensemble bagged tree 100
ST 57.3£3.0 Ensemble bagged tree 100
S12 59.5+0.5 Ensemble bagged tree 99.3
S13 64.9+1.9 Ensemble bagged tree 100
S14 69.5+1.1 Ensemble bagged tree 100
S15 33.420.5 Ensemble subspace Discriminant 77.0
Mean 59.7+15.8 96.4+8.3
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varied among participants; however, most often (for 9 among
15 subjects), a higher accuracy in recognizing the stages of
story creation was demonstrated by the ensemble bagged
tree classifier. The classification performance of the CNN
(ResNet50) classifier was significantly higher in comparison
with the time-series classification: Z=3.4, p <0.0007. Even
in participants in whom the classification accuracy of states
using time series was very low (participant 15, 33.4%; or
participant 4, 43.4%), the use CNN for time-frequency maps’
images significantly increased the classification accuracy (up
to 77% and 97.2% correspondingly).

Free artistic painting/creation of visual images
(“viART”) model. Five or three stages of creating two oil
paintings by a professional artist were classified. These
included sketching in the album, sketching on the canvas,
color oil painting on the canvas, viewing the ready painting,
and background EEG with opened eyes for the five-class
system and color oil painting on the canvas, viewing the
ready painting, and background EEG with opened eyes for
the three-class system.

The time-series classification achieves an accuracy of
75.8% for the three-class system (ensemble bagged tree)
and 56.2% for the five-class system (kernel SVM). In both
conditions, the levels of classification performance were
higher than the theoretical chance level (33.3 and 20%,
respectively). The implementation of CNN (ResNet50) for the
classification of time-frequency map images increased the
accuracy level up to 99% for both conditions. Thus, different
stages of the creative process by a professional artist appear
to be distinguished using ML.

In both continuous tasks (“STORY” and “viART"), the
lighter CNN architecture (ResNet18) was tested to classify
time-frequency images, and the neurointerface usage
conditions were modeled. In this case, the training and
testing samples were formed not by bootstrapping from the
whole EEG but consequently: training sample (from the first
part of each EEG record) and then testing sample (from the
last part of each EEG record). The classification accuracy in
this mode was expectably lower, with an in average of 70%
[11 SD].

Classification of creative thinking stages by ERP
(single trial) features. The results of the implementation
of different approaches to the single-trial classification in
creative task performance are presented in Table 2.

The performance of the SVM classifier based on the
spatial filtration of time-series data (CSP) was significantly
higher than that of the CNN (ResNet50) classifier for the time-
frequency map images: Z=4.1; p <0.00004 (See Table 2). The
minimal decoding accuracy with the CSP feature generation
was 56.2% (participant 8), whereas the CNN classifier had
an accuracy of 33.3%, which was close to the theoretical
chance level threshold in 9 of the 22 participants.

The applied multiclass spatial components filtering
CSP with the following SVM classifier demonstrated high
discriminative accuracy with more mixing of Cr and Syn
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Table 2. Classification accuracy for the three-class discrimination
(create original proverb ending, recall ending, and find a synonym
to the ending) based on event-related potential features: common
spatial pattern for the time series and images of the time-frequen-
cy maps from the wavelet analysis

Tabnuua 2. TouHOCTb KnaccudMKaLMKM TPEX KnaccoB (npuay-
MaTb OPUrMHaNbHOE OKOHYaHWe MOCNOBULbI, BCMOMHUTb OKOH-
YaHWe U Ha3BaTb CUHOHWUM K OKOHYaHWI0) Ha CHOBaHWW MpU3Ha-
KOB BbI3BaHHbIX MOTEHLMAN0B: NPOCTPAHCTBEHHON (UNbTPaLmM
BpeMeHHbIX pAnoB (CSP) 1 1306paxKeHUin YacTOTHO-BpEMEHHBIX
KapT BevBeT-aHanu3a

Subject Time-series (3 classes) Wavelet images
number by CSP (SVM); (3 classes) ResNet50;
Accuracy %+SD Accuracy %
S1 78.9+7.2 51
S2 81.95.6 32
S3 77.4+5.9 54
Sh 83.3+4.2 47
S5 80.0+7.4 36
S6 90.4+2.6 53
S7 80.2+4.8 L4
S8 56.2+8.3 40
S9 95.3+3.5 37
S10 79.345.2 36
SN 85.3+£2.9 36
S12 86.8+4.6 38
S13 76.5+6.7 43
S14 88.1£6.5 29
S15 73.0£7.5 32
S16 81.5+2.7 40
S17 98.1£2.5 43
S18 77.3+4.6 55
S19 72+6.2 57
S20 80.9+6.5 59
S21 70.9+6.3 50
S22 78.3+3.5 38
Mean 80.5+8.8 43.2+8.8

Note: CSP — common spatial pattern; SYM — support vector machine.
Mpumeyanue: CSP — 06LLmii NpocTpaHCTBeHHbIM GubTp; SVM —
MalUMHa/MeTOL OMOpHBIX BEKTOPOB.

tasks, as these states are closer to each other than to the
control task (Table 3).

The confusion matrices in the classification procedure can
give additional information for the physiological individual
and group data analysis that could be used complementarily
for the evaluation of more and less close states based on the
discriminated feature vectors.

DISCUSSION

In this comparative classification study, we aimed to
develop an approach to classify creative states and stages
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Table 3. Average confusion matrix for the three-class system in the “PROVERBS” task using common spatial pattern for the time series
Tabnuua 3. YcpeaHEHHaA MaTpuUa CMeLUMBaHUA NpU Knaccuukaumm Tpéx KnaccoB B 3apaHum «MNOCNTIOBULbI» ¢ ncnonb3oBaHmeM

MPOCTPaHCTBEHHOM GpunbTpaumm (CSP) BpeMeHHBIX pAaoB

Predicted labels, %

True labels, %
Cr C Syn
Cr 78.0 8.7 13.3
C 8.4 86.2 5.5
Syn 15.0 5.3 79.7

Note: Cr (creative) — to create an original proverb’s ending; C (control) — to recall commonly known endings; Syn (synonym) — to find out a synonym

to the proverbs’ endings.

Mpumeuanme: Cr (TBOpUeCKoe) — HAMTW CUHOHMM K COBCTBEHHOMY BapuaHTy OKOHYaHWsA MocnoBuLbl; C (KOHTPOb) — BCMOMHUTL 06LLen3BeCTHOR
OKOHYaHMe NocoBULbl; Syn (CUHOHWUM) — HaWTU CUHOHWUM K U3BECTHOMY OKOHYaHMIO MOCIOBULbI.

using EEG times-series and time-frequency analyses.
The study results supported the requirement of different
classification methods for EEGs in long-lasting/continuous
creative states and fast creative tasks.

The wavelet analysis and classification of time-frequency
images showed higher effectiveness for distinguishing long-
lasting creative states with the decoding accuracy for four
classes of up to 96.4+8.3 [SD] compared with the time-series
analysis (best results, 59.6+15.8 [SDI]). Compared with the
time-series analysis, the wavelet (time-frequency) analysis
brings EEG power ratio for different frequency bands.
It appears that the frequency characteristics effectively
describe some stable states formed during creative activity
at different stages that could be separated by classification.
Physiological data could clarify features that may be
sensitive to EEG signal classification. Thus, in [14], the
frequency structure and spectral power differences between
free story creation (FCrT) and effortful story creation (EffCrT)
were revealed. Compared with FCrT, the EffCrT (creative task
with overcoming of self-induced stereotype) demonstrated
a higher percentage in 9-10, 10-11, and 11-12 Hz and
increased power in the temporal and occipital areas.
Moreover, an increase of alpha activity was discussed in
accordance with attentional-defocused states and blockage
from external information, which could be important for
effective creative activity.

At present, frequency-specific EEG features have been
effectively used to distinguish emotional states based
on EEG data [5]. Approaches for classifying creative and
emotional states might be similar because these states can
have some “stable”/reproducible patterns; however, they
can undergo smooth rearrangements. Another question
under investigation is the assessment of not only the
frequency but also the spatial characteristics of the EEG for
classification: in this case, the EEG is a three-dimensional
array with the estimation of time, power, and spatial
location of the electrodes on the head surface [29-31]. For
emotion recognition by EEG features, Wang et al. [31] used
electrode—frequency distribution maps calculated based on
short-time Fourier transformation as features and CNN with
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residual blocks for classification, which achieved 90.59%
accuracy for the three-class system (positive, neutral, and
negative emotions). Kim et al. [32] used a 3D spatiotemporal
representation of EEG signals as features and CNN with
a channel bottleneck module (CNN-BN) as a classifier and
reached accuracy up to 99% for the two-class classification
system of emotional states (valence and arousal). In the
present study, we used time-frequency maps calculated for
two electrodes located in the frontal (Fz) and parietal (Pz)
regions, combined into one image. This allowed us to capture
both the temporal and spatial distributions of EEG power
features in various creative states/expected stages. Similar
to the recognition of emotional states from the EEG data, the
use of CNN for image classification (time-frequency maps)
was effective and provided a mean classification accuracy of
up to 96% [8.3 SD] in our case.

Wavelet map classification of three and five classes
(states) from the painting phases of a professional artist (in
“ecological” condition of art studio) reached an accuracy of up
to 99.0% in both cases and was higher than the chance level
in the time-series classifications, with 75.8% and 56.2%,
respectively. Classifications of long-lasting creative states in
professional participants were previously attempted [9, 33].
In the study by Sasaki et al. [33], states of creative music
performance (guitar improvization by proficient musicians)
compared with noncreative task (scales on guitar) were
classified with a mean group accuracy of 75.0% (min, 47.6;
max, 92.9%).

Based on high classification accuracy, it was suggested
that there could be some common “specific EEG patterns”
for classification despite individual variations for the two
tested models — “STORY” and “viART" — that failed. When
the data of one participant was excluded from the common
sample sets (“STORY"), or EEG features from one canvas
were suggested to be classified by taking for test EEG data
from the other painting (“viArt"), the accuracy was at the
chance level. However, when a commonly trained set was
formed from EEGs of all participants and the test set also
included data from all participants, the classification results
were also approximately 90%. Thus, it could be a problem
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of highly organized CNN memory abilities that we have to
check in the future.

In contrast to the differentiation of long-lasting creativity
states, the implementation of time-frequency maps for
single-trial ERP classifications between creative and
noncreative cognitive activities was insufficient.

The mean classification accuracy (with ResNet50 as
classifier and time-frequency images as features) for the
three-class system (“PROVERB" model) was 43.2% [8.8 SD],
and 9 of the 22 participants had an accuracy level <40.0%
(with 33.3% at the theoretical chance level). The low
classification accuracy might be caused by the small number
of samples for CNN training, since 104 trials for each class
were proposed for the participants to fulfill. For state
discrimination by the ERP features, time-series features were
mostly applied [4]. In studies with the classification based
on ERP features, the brain responses to different stimuli
were mostly classified, for example — target or non-target
objects in BCI spellers, erroneous stimuli, or face perception
[34-36]. In this study, we attempted to distinguish short
single-trial time intervals (1500 ms) connected to different
mental operations in response to the same stimuli (same set
of proverbs). Only a few attempts were made to distinguish
creative and noncreative states based on EEG features [7-9,
33]. ML using spectrally weighted CSPs (SpecCSP) algorithm
for EEG feature extraction attained a mean of >63.9%
classification performance for verbal creative compared
with noncreative task performance (alternative use task)
[7]. In our previous study, the classification of time-series
single-trial data for the PROVERBS model gave a mean group
accuracy level of 48.7+5.0% [8], which was higher than the
theoretical chance level (33.3% for the three-class system)
but required improved accuracy for practical applications.
Here, in addition to converting EEG from referential montage
to CSD, CSP was used for the classification of data from
15 electrodes located in the central frontal and parietal
regions. Group-averaged decoding accuracy for three states
(creating an original ending, finding/naming a synonym,
and recalling the ending of a known proverb or saying) was
80.5+8.8 (min, 56.2+8.3; max, 98.1x2.5). Since we decoded
creative and cognitive states according to the instructions
given to the participants (without taking into account their
response), the type of activity (creative/noncreative) at short
intervals for finding an answer (1500 ms) already led to a
reorganization of brain bioelectrical activity detectible using
the ML approach.

CONCLUSION

ML approaches appear to be effectively used for
the discrimination of creative and noncreative states
and stages of creative activity in both ordinary people
and professionals. We implemented wavelet time-
frequency image classifications by convolutional neural
network (ResNet50 architecture), which achieved a mean
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classification accuracy of 96.4% for the four-class system
(“STORY” creation model) and up to 99% for the three- and
five-class system during oil painting by a professional
artist (“viART" model). In both cases, a high discriminative
strength of convolutional neural network was demonstrated
for long-lasting states (several minutes). Nevertheless,
these are pilot data that should be further explored to
exclude the situation of just convolutional neural network
memory for physiological samples.

This high discriminative strength of convolutional
neural network for time-frequency maps could be used
for continuous cognitive neurointerface in the case of
overcoming the barrier of training length, which might be
decided through effective pretraining of the convolutional
neural network for specific electroencephalography
features. The modeled neurointerface usage situation
(consequence order of training and testing samples)
with lighter convolutional neural network architecture
expectably diminished the convolutional neural network
classification strength, with an accuracy of approximately
70% [11% SDI.

For short-time single-trial creative responses, the CSP-
based support vector machine classifier demonstrated
greater accuracy, with a mean accuracy of 83%. Thus,
creative states and stages of creative activity could be
recognized using machine learning methods for the
development of cognitive interfaces.
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KoHdnMKT uHTepecoB. ABTOpbI [EKNapvpyloT OTCYTCTBYME
ABHBIX 1 MOTEHLMANBbHBIX KOHPSIMKTOB MHTEPECOB, CBA3AHHbIX
C NybnMKaLmMet HacToALLEN CTaTby.

Bknag aBtopoB. H.B. llemAknHa — pa3paboTka
KOHLenuuu, MeTofonorMM M MOAX0L4OoB WCCNeA0BaHMS;
npoBedeHWe MccnedoBaHWi, npeaobpaboTka, aHanus
W KnaccuduKauma gaHHblx, 0630p IMTEpaTyphl, HanucaHwe
TeKCTa M pefakTvpoBaHue cTatby; .C. Benmkobopey —
peanu3auma Koda [NA CO3[aHWA YacTOTHO-BPEMEHHBIX
KapT no 3J3/BI, nouck noaxodoB M Knaccuukaums
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