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АННОТАЦИЯ
Обоснование. В данной работе предпринята попытка «машинного» офлайн-разделения и классификации некото-
рых состояний/стадий выполнения творческих задач с использованием подхода «тест-контроль». Мы рассматрива-
ли выполнение контрольных задач в качестве начальных стадий реализации творческой деятельности. Проведено 
сравнительное исследование подходов к классификации временнóго сигнала и частотно-временны́х карт при вы-
полнении трёх заданий на дивергентное мышление: 1) придумывание окончаний к общеизвестным пословицам 
(«ПОСЛОВИЦЫ», парадигма вызванных потенциалов, ВП); 2) придумывание рассказов («РАССКАЗ», непрерывная 
ЭЭГ); 3) создание художественного изображения в процессе живописи («viART», непрерывная ЭЭГ) на разных этапах. 
Цель исследования — сравнить и выбрать подходы к классификации характеристик ЭЭГ-сигнала отдельных твор-
ческих состояний /стадий творческой деятельности.
Методы. В задании «ПОСЛОВИЦЫ» (парадигма ВП) участвовало 22 человека, в задании «РАССКАЗ» — 15 человек 
и один человек принимал участие в лонгитюдном исследовании художественного творчества (сase study). Мы ис-
пользовали линейные методы анализа по отношению к преобразованному к CSD (current source density) сырому сиг-
налу ЭЭГ и свёрточные нейронные сети (convolutional neural network, CNN) для классификации частотно-временны́х 
карт (вейвлет Морле, 3–30 Гц). Непрерывные ЭЭГ были разделены на эпохи по 4 с, для ВП использовали 1500 мс по-
сле предъявления стимула. Частотно-временны́е карты были сгенерированы для 4-секундных интервалов ЭЭГ с ша-
гом 100 мс (непрерывные ЭЭГ в заданиях «РАССКАЗ», «viART») или 1500 мс (в задании «ПОСЛОВИЦЫ») и состояли 
из комбинированного изображения (224×224 px) для фронтальной (Fz) и теменной (Pz) зон мозга. Классификацию 
изображений проводили с помощью модифицированной CNN (архитектуры ResNet50, ResNet18).
Результаты. Для четырёх классов точность классификации в задаче «РАССКАЗ» (придумывание сюжета, продолжение 
сюжета истории, описание изображения, фон с открытыми глазами) составляла 96,4% [±8,3 SD] с ResNet50 и ResNet18. 
Три состояния «viART» (живопись на холсте, просмотр картины, фон с открытыми глазами) дали 86,94% для kernel naive 
bayes и 98,2% для CNN. Однако в парадигме последовательного разделения на обучающую и тренировочную выборки 
(модель интерфейса мозг–компьютер) точность классификации упала в среднем до 70,0% [±11% SD]. 
В парадигме ВП «ПОСЛОВИЦЫ» точность классификации трёх классов (создание «нового» окончания, подбор се-
мантического синонима и воспроизведение из памяти известного окончания пословиц) составляла 80,5% [±8,7 SD] 
для CSP (common spatial pattern) с последующим rSVM (метод опорных векторов на основе радиальной базисной 
функции), в то время как точность CNN составляла 43,2% [±8,8 SD].
Заключение. На данный момент использование свёрточных нейронных сетей показало относительно лучший ре-
зультат для классификации «непрерывных», длительных состояний творческой деятельности по изображениям 
частотно-временны́х карт. В то же время оценка быстрых «переходных процессов», таких как ВП, была более эффек-
тивной при классификации «временны́х рядов» с пространственной фильтрацией.

Ключевые слова: нейронные сети; художественное творчество; вербальное творчество; машинное обучение 
с учителем; электроэнцефалография; ЭЭГ; вызванные потенциалы; ВП; частотно-временной анализ.
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of EEG/ERP signals
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ABSTRACT
BACKGROUND: The study presents machine-learning (ML) classification approaches for the state/stage differentiation of 
creative tasks using the “test-control” approach. The control tasks were considered as the initial stages of the creative activity. 
Time-series and time-frequency electroencephalography (EEG) data analyses were employed in three divergent thinking 
tasks: 1) creating endings to well-known proverbs (“PROVERBS”, event-related potential [ERP] paradigm); 2) creating stories 
(“STORIES”, continuous EEG); 3) free creative painting (“viART”, continuous EEG).
AIM: To compare and select effective ML classification approaches for EEG signal separation at different stages or states of 
creative task performance.
METHODS: In this study, 22 individuals participated in the “PROVERBS” (ERP paradigm), 15 in the “STORIES”, and 1 (a longitudinal 
case study) in the “viART” tasks. Linear and convolutional neural network (CNN) classifiers were used. EEG data were previous 
artifacts corrected and converted to current source density (CSD). Continuous EEGs were divided into 4-s intervals and 1500 ms 
after stimulus presentation, were used in ERPs. The EEG/ERP time-frequency maps (Morlet wavelet transformation) for 3–30 Hz 
were generated for 4-s intervals with 100 ms shift (continuous EEGs in “STORIES” and “viART”) or for 1500 ms after stimulus 
presentation (ERPs in “PROVERBS”) and consisted of combined images (224×224 px) for frontal (Fz) and parietal (Pz) brain zones. 
Image classification was carried out using the modified CNN (ResNet50, ResNet18 architectures). 
RESULTS: The offline classification accuracy of the four-class system (description of a picture, inventing a story plot, 
continuation of story’s plot, and background with open eyes) in the “STORY” creation task was up to 96.4% [±8.3 SD] with 
ResNet architectures (ResNet50 and ResNet18). The accuracy of the three states discrimination of the artists’ creative painting 
(resting state with open eyes, painting on canvas, and viewing the painting) was 86.94% for kernel naive bayes and 98.2% 
for CNN. For the trained and tested samples given for the CNN in consecutive order (neurointerface mode), the accuracy 
diminished to 70.0% [11% SD] on average. In the ERP paradigm “PROVERBS”, the classification accuracy of the three-class 
system (creation of “new” ending, naming of semantic synonym, and remembering of the known ending) was 80.5% [±8.7 SD] 
for the common spatial pattern, followed by rSVM (radial kernel basis support vector machine), compared with 43.2% [±8.8 SD] 
for CNN.
CONCLUSION: The use of CNNs allowed better classifying of “continuous” long-term states of creative activity. In fast 
“transient processes” such as ERP, time-series classifiers with spatial filtering proved to be more efficient.

Keywords: neural networks; creativity; artistic creativity; supervised machine learning; electroencephalography; EEG; event-
related potential; ERP; time-frequency analysis.
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INTRODUCTION
Machine learning (ML) is widely used in the recognition 

of various “functional” states (emotions, phases of 
sleeping, tiredness, etc.) from physiological data 
(particularly, electroencephalography [EEG]); however, no 
many studies of cognitive state discrimination have been 
conducted thus far. Moreover, ML is proposed as the basis 
for brain–computer interface development in different 
areas of rehabilitation — motor [1], cognitive [2], or some 
enhancement procedures [3]. Studies on state recognition 
have shown great variability in ML methods, choice of 
classification approaches, and input features. The two main 
approaches to state recognition based on EEG features are 
as follows: 1) recognition of characteristics of “continuous” 
EEG data when the state either remains constant or slowly 
changes over a long time, i.e., from a few seconds to 
several minutes (spontaneous EEG); or 2) recognition 
of characteristics of “short” intervals, i.e., lasting up to 
a couple of seconds when brain activity is associated with 
fast decisions or perceptive and cognitive responses to 
some external stimulus, such as event-related potentials 
(ERP). In the first case, strict synchronization with external 
events is unnecessary, and features for classification 
relate to the so-called “spontaneous” EEG, which might 
be represented as frequency band power features [4–6]. 
For “transient processes” classifications based on ERP 
features, time series is mostly used [4]. In addition, no 
common approaches could be used without testing it for 
the certain type of the task. Thus, this study aimed to 
explore and compare different ML approaches that could be 
used for the classification of creativity stages in continuous 
EEGs and short ERP trials. In both cases, divergent thinking 
tasks were used without and with time restriction. As the 
model situation, the test-control approach was used, and 
control tasks were considered as possible (according to 
hypothesized mental processes) and previous creative 
decisions as stages/states. 

Literature data on the implementation of ML in creativity 
research are limited. In a previous study [7], the two-class 
system (more and less creative states in alternative uses 
task and ordinary or uncommon (more creative) uses of 
everyday objects) achieved an average accuracy of 63.0%, 
and the ML approach used included spectrally weighted 
common spatial patterns (CSPs) for feature extraction 
and quadratic discriminant analysis. Discrimination of 
more and less creative individuals based on EEG signals 
had 82.3% accuracy. Data [8] on the differentiation of 
three classes  — creating an original ending, suggesting 
a synonym, or remembering a well-known ending of a 
proverb or saying — were explored, with an average 
accuracy of 48±5% for the best linear classifier using a 
classifier learner toolbox in Matlab. The physiological 
effects described for these data among others revealed 
higher power (8–9 Hz) in the right frontal and left parietal 

regions at 400–700 ms after stimulus onset while creating 
original and synonymic endings compared with the control 
task of remembering the ending of a well-known proverb. 
In the nonverbal creativity model [9], i.e., divergent thinking 
during painting, the accuracy for the separation of the 
background state and creative and noncreative drawing 
was 66.9% when using a classifier based on a support 
vector machine (SVM; Gaussian radial basis function and 
classifier learner). The physiological effects demonstrated 
a higher percentage of theta and alpha frequencies in the 
frontal (5–6 and 12–13  Hz), central (4–7 and 8–10  Hz), 
and parietal (4–5, 6–7, 8–9, and 12–13 Hz) zones during 
creative sketching in comparison with noncreative lines 
and object drawing. Creativity is a heterogeneous process 
in which certain stages can be defined, for example, idea 
generation, idea elaboration, idea evaluation or generation, 
and exploratory stages [10]. In a previous study, the 
specific creative demands were set by instructions [11] 
and considered models of creative process stages; thus, 
the performance of these tasks could correspond to the 
distinct states of creative thinking. In our study, models 
of “STORY” creation and “PROVERBS” ending creation can 
be considered different creative states (stages defined 
by instruction). More clearly, different stages of creative 
processes can be distinguished in free creative activities 
using artistic painting. In this case, all stages from idea 
generation (sketching) via idea elaboration (canvas 
painting) and idea evolution (color painting) to evaluation 
(viewing own painting) can be defined and verified by 
observation.

To the best of our knowledge, not many researchers 
have attempted to build classifiers to differentiate creative 
states and stages. However, such classifiers could be used 
in cognitive rehabilitation [12]. 

The use of ML algorithms to differentiate stages of 
the creative process is within fundamental science and 
allows us to answer the question of whether information 
about the type of performed mental operations is 
reflected in a complex EEG pattern. On the contrary, these 
approaches can be used to create a “passive” brain–
computer interface (see, for example, [13]); when using 
an external stimulus (music and light), the user can be 
informed about his/her achievement of the “optimal” state 
for creative activity.

Aim — the study aimed to find the most effective EEG-
based classifiers and feature generation’s approaches to 
differentiate stages and states of creative thinking.

MATERIALS AND METHODS

Stimuli and tasks 
Three models of divergent thinking, namely, verbal 

(“STORIES”) and nonverbal (“PAINTING viART”) without time 
restriction and verbal (“PROVERBS”) in the ERP paradigm 
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(with time restriction), were applied. In “STORIES” and 
“viART”, continuous EEGs were analyzed, whereas in the 
creative model, “PROVERBS” was examined in relatively 
short trials. 

Divergent thinking tasks with continuous 
electroencephalograms registration

The comparative study using time-series and time-
frequency maps (wavelet transformation) classifications at 
different stages of creating plots of stories (“STORIES”), or 
visual images (“viART”) was conducted.

Story creation task (“STORY”) 
Electroencephalography  data from the story creation 

task [14] were used for the four-class system. The 
participants created stories using black-and-white pictures 
with only two personages from the Guilford and O’Sullivan 
social IQ test [15]. 

The three tasks were as follows: the free creation task 
(FCrT), where the participants were told to create the plot 
before and after the situation based on what they had 
seen in the picture. The participants mentally pronounced 
sentences and voluntarily pressed the button when they 
were ready to tell the story. In the effortful creation task 
(EffCrT), the participants were asked to continue the story 
plot, changing the previous line they had just created and 
using the same picture presentation. FCrT and EffCrT could 
be considered two stages of the same process — creating 
the original story with some impasse and overcoming self-
induced short memory stereotype — i.e., in a situation, 
the participants had to expand the story. In the control 
task, the participants were asked to mentally describe the 
picture. 

Ecological (free) painting with three or five 
states/classes: “viART” model

The EEG data used for classification were taken from 
a longitudinal case study with the participation of an artist 
(J.P.). Classification was conducted for three (final stage 
of canvas painting, viewing own painting, and background 
state with opened eyes) or five (sketching in the album, 
oil transfer to canvas, final stage of the canvas work, 
viewing own painting, and a background state) classes, 
respectively. All stages of free creative painting were 
empirically observed and marked through time by the 
investigator. 

Divergent thinking task with time restriction 
(event-related potential paradigm)

Electroencephalography data were collected while 
the participants were creating original endings for known 
uncompleted proverbs and sayings (Cr) [16]. The  control 
tasks were to recall the commonly known ending of an 
uncompleted proverb or saying (C) or to give a synonym 
for proverbs’ ending (Syn). All tasks were associated with 

the retrieval of information from long-term memory. The 
difference between creative and noncreative tasks was in 
overcoming the previously formed stereotype and searching 
(creation) for a new original ending of a proverb or saying 
that would significantly change its meaning.

Participants 
Fifteen participants (aged 18–20 years, 9 female) 

took part in the divergent verbal creative study without 
time restriction (“STORIES” model), and one participant 
(professional artist, J.P., aged 57 years) was involved in 
the nonverbal creative painting task (“viART”) without time 
restriction. 

In the model of divergent verbal tasks with time 
restriction (ERP paradigm), data of 22 participants (aged 
18–22 years, 18 female) were analyzed and classified. 

All procedures were conducted in accordance with the 
Declaration of Helsinki (1974) and its subsequent updates. 
The study was approved by the Ethics Committee of Sechenov 
Institute of Evolutionary Physiology and Biochemistry of the 
Russian Academy of Sciences, Saint Petersburg, Russia 
(Protocol number 2-02, February  2, 2022). Participation in 
the study was voluntary, and participants could drop out at 
any moment. All participants were free of any medical or 
neurological disorders and had normal or corrected vision. 
Written consent was obtained from all participants before 
the study in according to the protocol.

Psychological testing
To ensure that the groups had homogenous cognitive 

abilities, standard progressive matrices [17] were applied. 
This test is a nonverbal, culturally independent IQ test 
that measures deductive reasoning through five sets of 
multichoice tasks. Obtained data revealed average IQ values 
~110±8 for the partisipants sample.

EEG/ERP procedure and data registration
EEG/ERPs were recorded with “Mitsar 31-channel” (Fp1, 

Fpz, Fp2, F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, T3, 
C3, Cz, C4, T4, TP7, CP3, CPz, CP4, TP8, T5, P3, Pz, P4, T6, 
O1, Oz, and O2) EEG system (“Mitsar Ltd.”, Saint Petersburg, 
http://www.mitsar-medical.com) or with the “SmartBCI 
24-channels”(“Mitsar Ltd.”, Saint Petersburg, http://www.
mitsar-medical.com) (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, 
C4, T4, T5, P3, Pz, P4, T6, O1, O2) EEG system through the 
WinEEG software package (Ponomarev V.A., Kropotov Ju.D., 
registered for a computer program RF N  2001610516, 
08.05.2001). Silver chloride electrodes were positioned 
according to the modification by 10–10% or 10–20%. Input 
signals were referenced to the linked ears, filtered between 
0.53 and 30.0 Hz, and were digitized at a sampling rate of 
500 or 250 Hz correspondingly, with a notch filter of 45–
55  Hz. The ground electrode was located between the Fpz 
and Fz sites on the forehead. Resistance of the electrodes 
did not exceed 5 kOhm.

http://www.mitsar-medical.com)
http://www.mitsar-medical.com)
http://www.mitsar-medical.com)
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Electroencephalography signal artifact 
correction

The eye-blink artifacts were corrected by zeroing the 
activation curves of individual independent components 
corresponding to eye blinks. These components were 
obtained by the application of independent component 
analysis (ICA) to the raw EEG fragments. The method has 
been previously described [18–20]. High- and low-frequency 
activities were automatically marked as artifacts and were 
excluded from further analysis. The thresholds were set as 
follows: (1) 50 µV for the slow waves in the 0–2 Hz band and 
2) 35 µV for the fast waves in the 20–35 Hz band.

Electroencephalography signal feature 
extraction

The search for informative features and a short-term 
approach for EEG data preprocessing is important for state 
classification, which could be used in practical applications. 
The difficulty of classification of EEG signals is associated 
with the low spatial resolution of this method. To increase 
the spatial resolution of EEG, the current source density 
(CSD) transformation was used [21, 22–24], which can 
be employed for both continuous EEG and ERP. The  CSD 
reduces the volume conduction effect on the signal recorded 
from the head surface [22, 23] and makes local differences 
distinguishable that can otherwise be masked by the 
activities of the neighboring cortical areas [24].

Continuous electroencephalography signal 
feature extraction (“STORIES” and “viART” 
models)

The time-series feature vector generation and wavelet 
time-frequency analysis were used. In both cases, the 
artifact-free CSD-transformed EEGs were divided into 4-s 
fragments with a shift of 100 ms for further analysis.

Time-series feature vector generation. The time 
series of EEG amplitudes from two electrodes (Fz and Pz) 
were combined into one feature vector: 2000 time points for 
each 4-s EEG fragment. The number of 4-s EEG fragments 
(trials) for classification was equalized between classes in 
each participant individually.

Wavelet time-frequency analysis. Continuous wavelet 
transform (CWT) was implemented in Matlab [25]. The analytic 
Morlet wavelet was used to create the CWT (40 voices per 
octave) in each 4-s fragment. L1 normalization was used by 
the CWT function. The minimum and maximum scales for 
the wavelet energy visualization on time-frequency maps 
were set equally for all states and participants (max = 12 
for continuous EEG). The frequency was presented on a 
logarithmic scale. The amplitude was normalized within the 
specified range for each sample. Combined together, time-
frequency maps (CWT plotted graphs) from frontal (Fz) and 
parietal (Pz) electrodes formed one image with 224×224 px 
resolution. Samples of such images were used as trained and 

test sets for the ResNet50 convolution network for creative 
state classification. The modified architecture — ResNet18 
(with 70 layers) — was tested for CWT combined images. 
The number of images for classification was comparable 
between classes in each participant.

Feature extraction in the event-related 
potentials paradigm

As previously shown [8], the classification of raw time-
series signal in the PROVERBS model had an average 
accuracy of 48±5% for three classes. Thus, we had to 
explore and compare other approaches to choose more 
robust classification methods for transient processes such 
as ERPs. 

At this time, for ERP feature extraction, CSP decomposition 
was applied for the time-series analysis and wavelet time-
frequency analysis.

Time-series CSP feature vector generation. The 
CSP was used for feature generation in the time domain for 
short-time intervals (1500  ms) after stimuli presentation. 
CSPs maximize the variance for one class (least-squares 
sense) but minimize the variance for the other [26]. As 
the CSP parameter, the number of components was set. 
The classifier could not accurately distinguish between the 
two classes with too few components. However, if there 
were too many components, the classifier weights might 
be significantly overfit [27]. CSP was calculated on the 
space of electrodes located in the central regions (F3, Fz, 
F4, FC3, FCz, FC4, C3, Cz, C4, CP3, CPz, CP4, P3, Pz, and 
P4) using MNE-Python (https://mne.tools/stable/generated/
mne.decoding.CSP.html). The  number of components was 
selected empirically and was equal to 15. 

For the multiclass paradigm (three classes in our case), 
CSPs were calculated by joint approximate diagonalization 
that might be equivalent to an ICA, and a method of choosing 
independent components (ICs) that approximately maximize 
mutual information of ICs and class labels was presented [28].

Wavelet time-frequency analysis. All preprocessing 
was the same as described above for continuous EEG data 
with a time window difference — here, the 1500-ms time 
following stimuli presentation was used for the CWT time-
frequency calculation. The minimum and maximum scales 
for the wavelet energy visualization on the time-frequency 
maps were set equally for all states and participants (max = 
16 for ERP).

Classification methods
Electroencephalography signal  time series were 

classified using algorithms from the classifier learning 
toolbox in Matlab. The  results of the method with the best 
accuracy classification for each participant were considered. 
An empirical assessment of the generalization ability of 
algorithms was performed automatically by K-folds cross-
validation: the total number of trials was successively 
divided into five samples (nonoverlapping “bootstrap”), with 

https://mne.tools/stable/generated/mne.decoding.CSP.html)
https://mne.tools/stable/generated/mne.decoding.CSP.html)
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four of them (80% trials) included in the training sample 
and one (20% trials) in the test sample. The training and 
test samples of the trials did not overlap. The principal 
component analysis tool in Matlab was used to reduce the 
dimension of the input feature vector.

The images of time-frequency maps obtained for 
“STORY”, “viART”, and “PROVERBS” models were classified 
using a convolutional neural network (CNN, with ResNet50 
architecture) in Matlab Deep Network Designer Toolbox. The 
numbers of classes (three, four, or five) were set at the last 
fully connected level. The total samples (images) set for each 
participant was randomly divided into three nonoverlapping 
samples: test (15–25% depending on the size of the total 
sample), validation (15–30% of the remaining set), and 
training. Training options for CNN were set as default in 
Matlab Deep Network Designer Tool with MaxEpoch of 30 
and MiniBatchSize of 32. 

The CSP-filtered data (“PROVERBS” models) were 
classified using SVM with the radial basis (kernel) function 
(RBF) and with one-against-each approach of multiclass 
classification (skLearn and Python). In all approaches to the 
classification, the sample sets for different classes were 
equal in every participant so the empirical chance level was 
close to the theoretical chance level (20.0; 25.0; and 33.3% 
for the five-, four-, and three-class systems, respectively). 
The classification accuracy far exceeding this threshold was 
considered significant.

In both continuous tasks (“STORY” and “viART”), the 
“neurointerface usage conditions” were modeled. The 

training and testing sample sets in these cases were formed 
not by bootstrapping from the whole EEG but consequently: 
training sample (from the first part of each EEG record) and 
then the testing sample (from the last part of each EEG 
record).

Statistical analysis
Statistical comparison of different approaches to 

classification was performed using the Wilcoxon test for 
dependent samples, and significant differences with p <0.05 
were considered. The Wilcoxon test was selected because we 
did not expect a normal classification accuracy distribution 
in the participants’ sample. Moreover, in each participant, 
since the same data were classified, expected dependent 
classification accuracies were obtained by different methods.

RESULTS
Classification of spontaneous electroencephalography 

signal  characteristics during divergent creative thinking
Story creation model. A four-class classification 

was made, i.e., creation of a story plot based on a picture 
(stage 1, FCreT), creation of the story’s plot further changes 
(stage 2, EffCrT), description of a picture, and background 
EEG with eyes open (Table 1). 

The level of classification performance with the time-
series features was higher than that at the theoretical chance 
level (25% for the four-class system) in all participants (See 
Table 1). The types of classifiers showed that better results 

Table 1. Accuracy for the four-class classification based on spontaneous EEG features: time series and images of time-frequency maps 
from the wavelet analysis
Таблица 1. Точность 4-классовой классификации признаков спонтанной ЭЭГ: временны́х рядов и изображений частотно- 
временны́х карт вейвлет-анализа

Subject number
Time-series classification (4 classes) Wavelet images classification (4 classes)

ResNet50; accuracy, %Accuracy; %±SD Classifier

S1 53.5±1.7 Ensemble bagged tree 100
S2 48.8±3.3 Ensemble boosted tree 75
S3 74.3±1.8 Ensemble bagged tree 99.7
S4 43.4±0.2 Tree medium tree 97.2
S5 89.7±1.0 Ensemble bagged tree 100
S6 63.7±2.7 Ensemble bagged tree 100
S7 54.6 ±1.5 Gaussian naive bayes 100
S8 49.8±0.7 Kernel naive bayes 98
S9 87.9±1.5 Ensemble subspace knn 100
S10 45.1±0.5 Ensemble bagged tree 100
S11 57.3±3.0 Ensemble bagged tree 100
S12 59.5±0.5 Ensemble bagged tree 99.3
S13 64.9±1.9 Ensemble bagged tree 100
S14 69.5±1.1 Ensemble bagged tree 100
S15 33.4±0.5 Ensemble subspace Discriminant 77.0
Mean 59.7±15.8 96.4±8.3
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varied among participants; however, most often (for 9 among 
15 subjects), a higher accuracy in recognizing the stages of 
story creation was demonstrated by the ensemble bagged 
tree classifier. The classification performance of the CNN 
(ResNet50) classifier was significantly higher in comparison 
with the time-series classification: Z=3.4, p  <0.0007. Even 
in participants in whom the classification accuracy of states 
using time series was very low (participant 15, 33.4%; or 
participant 4, 43.4%), the use CNN for time-frequency maps’ 
images significantly increased the classification accuracy (up 
to 77% and 97.2% correspondingly).

Free artistic painting/creation of visual images 
(“viART”) model. Five or three stages of creating two oil 
paintings by a professional artist were classified. These 
included sketching in the album, sketching on the canvas, 
color oil painting on the canvas, viewing the ready painting, 
and background EEG with opened eyes for the five-class 
system and color oil painting on the canvas, viewing the 
ready painting, and background EEG with opened eyes for 
the three-class system.

The time-series classification achieves an accuracy of 
75.8% for the three-class system (ensemble bagged tree) 
and 56.2% for the five-class system (kernel SVM). In both 
conditions, the levels of classification performance were 
higher than the theoretical chance level (33.3 and 20%, 
respectively). The implementation of CNN (ResNet50) for the 
classification of time-frequency map images increased the 
accuracy level up to 99% for both conditions. Thus, different 
stages of the creative process by a professional artist appear 
to be distinguished using ML. 

In both continuous tasks (“STORY” and “viART”), the 
lighter CNN architecture (ResNet18) was tested to classify 
time-frequency images, and the neurointerface usage 
conditions were modeled. In this case, the training and 
testing samples were formed not by bootstrapping from the 
whole EEG but consequently: training sample (from the first 
part of each EEG record) and then testing sample (from the 
last part of each EEG record). The classification accuracy in 
this mode was expectably lower, with an in average of 70% 
[11 SD].

Classification of creative thinking stages by ERP 
(single trial) features. The results of the implementation 
of different approaches to the single-trial classification in 
creative task performance are presented in Table 2.

The performance of the SVM classifier based on the 
spatial filtration of time-series data (CSP) was significantly 
higher than that of the CNN (ResNet50) classifier for the time-
frequency map images: Z=4.1; p <0.00004 (See Table 2). The 
minimal decoding accuracy with the CSP feature generation 
was 56.2% (participant 8), whereas the CNN classifier had 
an accuracy of 33.3%, which was close to the theoretical 
chance level threshold in 9 of the 22 participants.

The applied multiclass spatial components filtering 
CSP with the following SVM classifier demonstrated high 
discriminative accuracy with more mixing of Cr and Syn 

tasks, as these states are closer to each other than to the 
control task (Table 3). 

The confusion matrices in the classification procedure can 
give additional information for the physiological individual 
and group data analysis that could be used complementarily 
for the evaluation of more and less close states based on the 
discriminated feature vectors. 

DISCUSSION 
In this comparative classification study, we aimed to 

develop an approach to classify creative states and stages 

Table 2. Classification accuracy for the three-class discrimination 
(create original proverb ending, recall ending, and find a synonym 
to the ending) based on event-related potential features: common 
spatial pattern for the time series and images of the time-frequen-
cy maps from the wavelet analysis
Таблица 2. Точность классификации трёх классов (приду-
мать оригинальное окончание пословицы, вспомнить окон-
чание и назвать синоним к окончанию) на сновании призна-
ков вызванных потенциалов: пространственной фильтрации 
временны́х рядов (CSP) и изображений частотно-временны́х 
карт вейвлет-анализа

Subject 
number

Time-series (3 classes) 
by CSP (SVM); 

Accuracy %±SD

Wavelet images  
(3 classes) ResNet50; 

Accuracy %

S1 78.9±7.2 51
S2 81.9±5.6 32
S3 77.4±5.9 54
S4 83.3±4.2 47
S5 80.0±7.4 36
S6 90.4±2.6 53
S7 80.2±4.8 44
S8 56.2±8.3 40
S9 95.3±3.5 37
S10 79.3±5.2 36
S11 85.3±2.9 36
S12 86.8±4.6 38
S13 76.5±6.7 43
S14 88.1±6.5 29
S15 73.0±7.5 32
S16 81.5±2.7 40
S17 98.1±2.5 43
S18 77.3±4.6 55
S19 72±6.2 57
S20 80.9±6.5 59
S21 70.9±6.3 50
S22 78.3±3.5 38
Mean 80.5±8.8 43.2±8.8

Note: CSP — common spatial pattern; SVM — support vector machine.
Примечание: CSP — общий пространственный фильтр; SVM — 
машина/метод опорных векторов.
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using EEG times-series and time-frequency analyses. 
The  study results supported the requirement of different 
classification methods for EEGs in long-lasting/continuous 
creative states and fast creative tasks. 

The wavelet analysis and classification of time-frequency 
images showed higher effectiveness for distinguishing long-
lasting creative states with the decoding accuracy for four 
classes of up to 96.4±8.3 [SD] compared with the time-series 
analysis (best results, 59.6±15.8  [SD]). Compared with the 
time-series analysis, the wavelet (time-frequency) analysis 
brings EEG power ratio for different frequency bands. 
It appears that the frequency characteristics effectively 
describe some stable states formed during creative activity 
at different stages that could be separated by classification. 
Physiological data could clarify features that may be 
sensitive to EEG signal classification. Thus, in [14], the 
frequency structure and spectral power differences between 
free story creation (FCrT) and effortful story creation (EffCrT) 
were revealed. Compared with FCrT, the EffCrT (creative task 
with overcoming of self-induced stereotype) demonstrated 
a higher percentage in 9–10, 10–11, and 11–12  Hz and 
increased power in the temporal and occipital areas. 
Moreover, an increase of alpha activity was discussed in 
accordance with attentional-defocused states and blockage 
from external information, which could be important for 
effective creative activity. 

At present, frequency-specific EEG features have been 
effectively used to distinguish emotional states based 
on EEG data [5]. Approaches for classifying creative and 
emotional states might be similar because these states can 
have some “stable”/reproducible patterns; however, they 
can undergo smooth rearrangements. Another question 
under investigation is the assessment of not only the 
frequency but also the spatial characteristics of the EEG for 
classification: in this case, the EEG is a three-dimensional 
array with the estimation of time, power, and spatial 
location of the electrodes on the head surface [29–31]. For 
emotion recognition by EEG features, Wang et al. [31] used 
electrode–frequency distribution maps calculated based on 
short-time Fourier transformation as features and CNN with 

residual blocks for classification, which achieved 90.59% 
accuracy for the three-class system (positive, neutral, and 
negative emotions). Kim et al. [32] used a 3D spatiotemporal 
representation of EEG signals as features and CNN with 
a  channel bottleneck module (CNN-BN) as a classifier and 
reached accuracy up to 99% for the two-class classification 
system of emotional states (valence and arousal). In the 
present study, we used time-frequency maps calculated for 
two electrodes located in the frontal (Fz) and parietal (Pz) 
regions, combined into one image. This allowed us to capture 
both the temporal and spatial distributions of EEG power 
features in various creative states/expected stages. Similar 
to the recognition of emotional states from the EEG data, the 
use of CNN for image classification (time-frequency maps) 
was effective and provided a mean classification accuracy of 
up to 96% [8.3 SD] in our case. 

Wavelet map classification of three and five classes 
(states) from the painting phases of a professional artist (in 
“ecological” condition of art studio) reached an accuracy of up 
to 99.0% in both cases and was higher than the chance level 
in the time-series classifications, with 75.8% and 56.2%, 
respectively. Classifications of long-lasting creative states in 
professional participants were previously attempted [9, 33]. 
In the study by Sasaki et al. [33], states of creative music 
performance (guitar improvization by proficient musicians) 
compared with noncreative task (scales on guitar) were 
classified with a mean group accuracy of 75.0% (min, 47.6; 
max, 92.9%). 

Based on high classification accuracy, it was suggested 
that there could be some common “specific EEG patterns” 
for classification despite individual variations for the two 
tested models — “STORY” and “viART” — that failed. When 
the data of one participant was excluded from the common 
sample sets (“STORY”), or EEG features from one canvas 
were suggested to be classified by taking for test EEG data 
from the other painting (“viArt”), the accuracy was at the 
chance level. However, when a commonly trained set was 
formed from EEGs of all participants and the test set also 
included data from all participants, the classification results 
were also approximately 90%. Thus, it could be a problem 

Table 3. Average confusion matrix for the three-class system in the “PROVERBS” task using common spatial pattern for the time series
Таблица 3. Усреднённая матрица смешивания при классификации трёх классов в задании «ПОСЛОВИЦЫ» с использованием 
пространственной фильтрации (CSP) временны́х рядов

True labels, %
Predicted labels, %

Cr C Syn

Cr 78.0 8.7 13.3

C 8.4 86.2 5.5

Syn 15.0 5.3 79.7

Note: Cr (creative) — to create an original proverb’s ending; C (control) — to recall commonly known endings; Syn (synonym) — to find out a synonym 
to the proverbs’ endings.
Примечание: Cr (творческое) — найти синоним к собственному варианту окончания пословицы; C (контроль) — вспомнить общеизвестное 
окончание пословицы; Syn (синоним) — найти синоним к известному окончанию пословицы.
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of highly organized CNN memory abilities that we have to 
check in the future. 

In contrast to the differentiation of long-lasting creativity 
states, the implementation of time-frequency maps for 
single-trial ERP classifications between creative and 
noncreative cognitive activities was insufficient. 

The mean classification accuracy (with ResNet50 as 
classifier and time-frequency images as features) for the 
three-class system (“PROVERB” model) was 43.2% [8.8 SD], 
and 9 of the 22 participants had an accuracy level <40.0% 
(with 33.3% at the theoretical chance level). The low 
classification accuracy might be caused by the small number 
of samples for CNN training, since 104 trials for each class 
were proposed for the participants to fulfill. For state 
discrimination by the ERP features, time-series features were 
mostly applied [4]. In studies with the classification based 
on ERP features, the brain responses to different stimuli 
were mostly classified, for example — target or non-target 
objects in BCI spellers, erroneous stimuli, or face perception 
[34–36]. In this study, we attempted to distinguish short 
single-trial time intervals (1500 ms) connected to different 
mental operations in response to the same stimuli (same set 
of proverbs). Only a few attempts were made to distinguish 
creative and noncreative states based on EEG features [7–9, 
33]. ML using spectrally weighted CSPs (SpecCSP) algorithm 
for EEG feature extraction attained a mean of >63.9% 
classification performance for verbal creative compared 
with noncreative task performance (alternative use task) 
[7]. In  our previous study, the classification of time-series 
single-trial data for the PROVERBS model gave a mean group 
accuracy level of 48.7±5.0% [8], which was higher than the 
theoretical chance level (33.3% for the three-class system) 
but required improved accuracy for practical applications. 
Нere, in addition to converting EEG from referential montage 
to CSD, CSP was used for the classification of data from 
15 electrodes located in the central frontal and parietal 
regions. Group-averaged decoding accuracy for three states 
(creating an original ending, finding/naming a synonym, 
and recalling the ending of a known proverb or saying) was 
80.5±8.8 (min, 56.2±8.3; max, 98.1±2.5). Since we decoded 
creative and cognitive states according to the instructions 
given to the participants (without taking into account their 
response), the type of activity (creative/noncreative) at short 
intervals for finding an answer (1500  ms) already led to a 
reorganization of brain bioelectrical activity detectible using 
the ML approach. 

CONCLUSION
ML approaches appear to be effectively used for 

the discrimination of creative and noncreative states 
and stages of creative activity in both ordinary people 
and professionals. We implemented wavelet time-
frequency image classifications by convolutional neural 
network (ResNet50 architecture), which achieved a mean 

classification accuracy of 96.4% for the four-class system 
(“STORY” creation model) and up to 99% for the three- and 
five-class system during oil painting by a professional 
artist (“viART” model). In both cases, a high discriminative 
strength of convolutional neural network was demonstrated 
for long-lasting states (several minutes). Nevertheless, 
these are pilot data that should be further explored to 
exclude the situation of just convolutional neural network 
memory for physiological samples. 

This high discriminative strength of convolutional 
neural network for time-frequency maps could be used 
for continuous cognitive neurointerface in the case of 
overcoming the barrier of training length, which might be 
decided through effective pretraining of the convolutional 
neural network for specific electroencephalography 
features. The modeled neurointerface usage situation 
(consequence order of training and testing samples) 
with lighter convolutional neural network architecture 
expectably diminished the convolutional neural network 
classification strength, with an accuracy of approximately 
70% [11% SD]. 

For short-time single-trial creative responses, the CSP-
based support vector machine classifier demonstrated 
greater accuracy, with a mean accuracy of 83%. Thus, 
creative states and stages of creative activity could be 
recognized using machine learning methods for the 
development of cognitive interfaces.
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