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06ocHoBaHuWe. OHTOreHe3 MO3roBbIX HEMpOCeTel, 0becrneymBaloLLMx 06paboTKy NEKCUKO-CEMaHTUYECKOM MHOPMaLMK B [IETCKOM BO3-
pacTe, OCTAETCA Marnou3yyeHHoW 06MacTblo GMU3MONOTrUM BbICLLEW HEPBHOW AEATENbHOCTM YenoBeKa. B To e BpeMa uccnefoBaHuA
Ha B3POC/IbIX UCTILITYEMbIX YHKe JOCTUMIA 3HAUUTENbHOrO NPOrpecca B 06HapYMEHWUM HEMPOHHBIX KOHTYPOB, OTBEYAlOLLMX 3a 06paboTKy
MO3roM abCcTPaKTHOM U KOHKPETHOM CEeMaHTMYecKon uHdopMaumu. B yacTHoCTH, uccneoBaHWA Ha B3pOC/bIX MOKa3aju, YTO BarHbIM
MapKEPOM, pa3nuyalolMM npouecchl 06paboTky 3TMX ABYX 6a30BbIX TMMOB CEMAHTUKW, ABMAETCA MEXMNOMyLIapHaA acUMMETpUA Hel-
POHHOW aKTUBHOCTU B MOAANbHO-CMeLUdUYECKUX U MofabHO-HecneLmbuyeckmx obnactax Kopbl rofoBHoro Mosra (TM): kak npasuno,
B OTBET Ha abCTPaKTHbIE CIOBA PErvUCTpUpyeTCA bonee feBonaTepan3oBaHas akTUBHOCTb, YEM MpY BOCTIPUATUM KOHKPETHBIX CoB. BMecte
C TEM [JaHHble 06 aHaNOrMyYHbIX Pa3nUYMAX Y [ieTelt OTCYTCTBYIOT; Lie/Ibi0 HACTOALLIEr0 MCCNEA0BaHNA CTano 3arnosiHeHVe 3Toro npobena.
Llenb uccnepoBaHua — onpefenuTb BO3pacTHbIE 0COBEHHOCTM flaTepanu3aLymn NaTTepHoOB HEMpOHasbHbIX 0TBETOB, CBA3aHHbIE C 06-
paboTKoM abCTPaKTHOM U KOHKPETHOM peyeBOM CEMAHTUKK Y UCTbITYEMbIX AETCKOr0 Bo3pacTa.

MeToppl. B HacToALLEM MccneoBaHWM y4acTBOBaNy 30poBble AeTu B Bo3pacTe oT 5 Ao 13 net (n=41). Mbl ucnonb3oBanu MeTop, Mar-
HUTO3HUedanorpadum (M) B coveTaHUM ¢ MapagMrMon HeraTMBHOCTM paccornacoBanua (HP). UcnbiyeMbiM naccuBHo, BHe $oKyca
NPOM3BONLHOr0 BHUMaHMA, NPeSbABNANM CEPUM CIYXOBbIX CTUMYMOB, COLepHaLLme abeTPaKTHBIE M KOHKPETHbIE TNarosibl PYycCKoro
A3bIKa. [pocTpaHCTBEHHO-BPEMEHHYI0 AVHAMMKY aKTUBHOCTU UCTOYHWMKOB HepoMarHUTHOM HP peKoHCTpypoBanu MeTofoM HauMeHb-
Lwer HopMbl (minimum-norm estimate, MNE) nnsa 3apaHee onpefenéHHbIx 0bnacTeit MHTepeca: NePBUYHON CAYXOBOW KOpbI, NEPBUYHOM
MOTOPHOWM KOPbl 1 HUMKHEN NO0BHON M3BUIMHBI B 060MX nonywapuax I'M. [Insa Kawpon 06nactv v TMna CTUMyna NpoMsBOAMAM CTaTh-
CTMYECKOe CpaBHeHWe MarHWTyq oTBeToB HP Meay NneBbiM M NpaBbiM nonywapuamy B mMnagweit (59 net) u ctapwen (10-13 ner)
BO3pacTHbIX rpynnax.

Pesynbtatbl. Mbl 06Hapy*WAW permoHanbHo-CreLMPUYEcKMe pasnmumua B fatepanmsaumy Bbi3BaHHbIX 0TBeTOB HP Ha KOHKpeTHble
1 abCTpaKTHBIE CIOBA B MOTOPHBIX M HUMHUX N06HbIX 061acTAX Kopbl M (napHbii nepMyTaumonHbIn TecT, p <0,05). bonee Toro, B Mnag-
Luew Bo3pacTHoM rpynne (5—9 net) oTBETLI Ha NpeabABEHNE abCTPAKTHOro CTUMYNa U CTUMYNa-NceBAO0CoBa bbiIn NaTepanv3oBaHsi
BNEBO, M 3TOT 3QdeKT Hanbonee BbiparkeH B HUKHUX NOBHBIX 0bnacTax (nona bpoamaHa 45 n 47) nesoro nonylapus. B cTapluen Bos-
pactHou rpynne (10-13 neT) BblparKeHHOro fieBoNaTepanbHOro 0TBETA B 3TUX 06/1acTAX He Habniopanock. BMecTe ¢ TeM AnA KOHKpeTHo-
ro CTUMyna — rnarona, 0603HayaloLLero ABUMHKEHUE PYKM — OTMEYEHO pasninyme B KapTUHE MENMONYLLAPHON acCUMMETPUMN OTBETOB
npesCcTaBuTENbCTBA PYKM B MOTOPHOM Kope: OTBET y [eTel MnajLlel BO3pacTHOM rpynnbl bbin npaBonatepanv3oBaHHbIM, B TO BpeMS
KaK y [eTeli B CTapLUeii BO3PaCcTHOM rpynne — bunarepanbHbiM.

3aknioueHue. [MonyyeHHbIE NOKaNbHbIE Y MEXKMONYLLIAPHbIE PA3UYMA AUHAMUKKA HEMPOMArHUTHbIX OTBETOB MOTOPHOW KOpbl U 0bna-
€T bpoKa MoXHO paccMaTpuBaTh Kak KOpPENAT BO3PacTHbIX M3MEHEHWUI B HEMPOKOTHUTUBHbIX CTpaTeruAxX BOCNPUATUA abCTpaKTHOM
N KOHKPETHOW peyeBOM CEMAHTUKM.
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ABSTRACT

BACKGROUND: The development of brain neural networks that support lexico-semantic processing in children remains a poorly
understood topic in neuroscience. Meanwhile, investigations in adults have provided ample evidence regarding the brain circuits
underpinning the processing of abstract and concrete semantics. These studies have shown that interhemispheric asymmetry
in neural responses across modal and amodal cortical areas might be an important marker that helps in distinguishing these
two types of semantics, with more left-lateralized activity patterns for abstract than concrete word comprehension. However,
little is known about such distinctions in children; thus, addressing this gap was the goal of this study.

AIM: This study aimed to investigate age-related differences in the lateralization of neural response patterns associated with
the processing of abstract and concrete semantics in children.

METHODS: This study employed magnetoencephalography and a mismatch negativity (MMN) paradigm in a group of 41 healthy
children aged 513 years. The participants were passively exposed to the auditory series of abstract and concrete Russian
verbs presented outside the focus of attention. Spatiotemporal patterns of the dynamics of neuromagnetic sources activity
were reconstructed using minimum-norm estimate within predefined regions of interest: primary auditory cortex, primary
motor cortex, and inferior frontal gyrus of both hemispheres. The magnitudes of MMN responses were further compared
statistically between the two hemispheres within two age groups: younger (aged 5-9 years) and older (aged 1013 years)
children.

RESULTS: Regionally specific differences were found in the lateralization of event-related MMN responses to concrete
compared with abstract words in motor and inferior frontal cortical areas (paired permutation tests, p <0.05). Moreover, in
the younger group (aged 5-9 years), responses to the abstract and pseudoword stimulus were left-lateralized, and this effect
was most pronounced in the inferior frontal regions (45 and 47 Brodmann fields) of the left hemisphere. In the older group
(aged 10-13 years), no pronounced left-lateralized response was observed in these areas. However, for the concrete hand
action verb stimulus, different patterns of the interhemispheric asymmetry of the hand motor area responses were observed:
the response in the younger group was right-lateralized, whereas in the older group, the response was bilateral.
CONCLUSION: The present area- and hemisphere-specific dynamics of neuromagnetic responses in the motor cortex and
Broca's area might correlate with the age-related changes in neurocognitive strategies for the comprehension of abstract and
concrete language.

Keywords: children; semantics; functional laterality; magnetoencephalography.
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INTRODUCTION

language is a higher-order cognitive ability that relies
on multiple neurocognitive functions, e.g., memory,
attention, perception, and cognitive control, and modality-
specific (auditory, visual, and sensorimotor) neural
mechanisms [1-4]. These processes are associated
with various neural networks, whose maturation is
characterized by ontogenetic asynchrony [5]. The adult
language system is strongly left-lateralized, whereas in
children, the interhemispheric interactions within language-
specific areas change across developmental stages in
parallel with structural cortical matter changes [6, 7].
Thus, developmental neuroimaging studies of the changes
in language and speech abilities across the lifespan
might yield neural markers of maturation and linguistic
competence that might serve as future diagnostic tools.
To address this, this study focused on the neural correlates
of spoken word comprehension in school-age children
at the semantic level. To this end, a distinction between
the domains of abstract and concrete semantics, one
of the most common and basic categorizations of semantic
knowledge, was used [8].

A few previous adult studies, mostly using functional
magnetic resonance imaging (fMRI) [9-11], showed that
the lateralization of neural activity is a common difference
between speech networks processing these two main types
of semantics. Although the activity of neural networks
specific to processing concrete semantics is more distributed
and bilateral, that supporting abstract semantics is mostly
left-lateralized. However, given the dynamic transient
nature of neurolinguistic processes, with changes unfolding
on a millisecond scale, the use of fMRI is insufficient
because it lacks temporal resolution. Instead, temporary-
resolved techniques such as magnetoencephalography
(MEG) or multichannel electroencephalography (EEG)
appear more suitable for tackling dynamic and often short-
lived neural activity taking place during speech perception
and language comprehension [12]. Specifically, to study
rapid pre-attentive neural responses associated with early
automatic linguistic processes, many EEG and MEG studies
have successfully employed the mismatch negativity
(MMN) paradigm. Within this paradigm (also known as
the oddball paradigm), rare (so-called deviant) stimuli
(e.g., simple tones, phonemes, and words) are randomly
presented within a series of repetitively presented frequent
(standard) stimuli. The contrast between the standard and
deviant stimuli elicits a MMN brain response in the absence
of stimulus-related tasks or even focused attention on
the auditory input. Importantly, the MMN response is
generated bilaterally, which allows its use in studying
the lateralization of speech and language function. For
example, the magnetic equivalent of MMN (MMNm, also
known as the mismatch field or MMF) was found to be
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lateralized for mother-tongue stimuli compared with non-
native phonemes [13]. Previous developmental studies
of speech MMN patterns in children have shown a common
tendency of a decrease in the response magnitude with
age [14-17]. However, no developmental studies using
the MMN paradigm have addressed either lateralization
effects or their relation to the semantic types.

In this study, we tried to fill this gap in understanding
the age-related differences in neural speech processes.
MEG was used to record brain activity in children of a wide
age range (aged 5-13 years) within the critical language
acquisition period. An MMN paradigm with semantically
abstract and concrete action-related verbs used as deviant
stimuli and a control condition using an acoustically matched
pseudoword stimulus were employed.

We hypothesized that the lateralization of MMNm
responses to these stimuli will differentially manifest in
younger (aged 5-9 years) and older (aged 10-13 years)
children depending on the specific cortical regions
associated concrete or abstract semantics. Several extant
adult studies point the crucial role of the left inferior frontal
gyrus (IFG) in the processing of abstract semantics [18-21].
The IFG is functionally heterogeneous and includes three
anatomical portions, namely, BA44, BA45, and BA47,
which are differentially associated with different aspects
of language. The aforementioned studies mostly point to
the main role of BA45 and BA47 in semantic processing.
Moreover, BA45 and BA47 might contribute to semantic
processing differently, and this contribution might be age-
specific. Thus, both areas were included in our analysis. In
turn, the processing of concrete semantics was reported
to be associated with bilateral activity in modality-specific
areas, including sensorimotor ones [11]. Moreover, for
concrete motor action-related verbs, responses in the motor
cortex demonstrate somatotopical patterns [22], at least
in the language-dominant left hemisphere. For instance,
neuromagnetic MMN responses to hand-action verbs
presented as deviants are stronger in the hand-motor area
than those to mouth- or leg-action verbs, and vice versa.
Based on this evidence, patterns of MEG activity in the motor
cortex of both cerebral hemispheres were analyzed. Finally,
as an MMN is primarily an auditory response to an acoustic
change, the activity in the auditory cortex (BA41) was also
explored.

Aim — this study aimed to investigate the age-
related dynamics of semantically specific MMN responses
within a priori selected bilateral cortical regions: auditory
cortex, IFG, and motor cortex. We hypothesized that these
differences might be expressed as differential activity
patterns that would depend on both the stimulus type
(abstract or concrete) and cerebral hemisphere (left or right).
As a result, we expected to observe region-specific age-
related dynamics of response lateralization that diverges
between abstract and concrete words.
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MATERIALS AND METHODS

Participants

A group of 41 healthy right-handed children without
hearing impairments aged 5—13 years (mean age, 9.6 years,
SD=2.05, 24 of them were girls) participated in the study. To
address age-related changes, the sample was divided into
two subgroups: the younger group aged 5-9 years (n=15)
and the older group aged 10-13 years (n=26).

The study was approved by the HSE Institutional Review
Board on March 1, 2019. Written consent was obtained from
all the study participants’ legal guardians before the study
screening in according to the study protocol.

Materials

Three auditory oddball conditions were presented in
a separate 6-min session each in random order with a short
interval. The interstimulus interval varied from 900 and
1100 ms and jittered randomly. All stimuli had a disyllabic
CVCV structure. The three sets of stimuli were as follows: 1)
a concrete hand action-related imperative verb “nenn” (“lepi”
[lirpi'i] — “sculpt”, “mould”, or “glue” in English; deviant,
60 occurrences) presented among multiple repetitions
of an acoustically matched pseudoword (“lepe” [litp'e];
standard, 300 occurrences); 2) an abstract imperative verb
“konn” (“kopi” [kepi'i] — “collect”, “save”, “accumulate” in
English; deviant) and an acoustically matched pseudoword
“vone” “kope” [kep'e]; standard); 3) a pseudoword verb
“ponn” (“ropi” [repi'i]; deviant) and an acoustically matched
pseudoword (“rope” [rep'e]; standard). The real words had
an above-zero lexical frequency according to the Frequency
Dictionary of the Russian National Corpus [23]. All stimuli
were composed using a cross-splicing procedure to remove
coarticulation cues and ensure that the standard—deviant
divergence point (to which MMN responses should be time-
locked) was identical across conditions. To this end, separately
generated first and second syllables were cross-spliced
together, with a 70-ms interval of silent closure, typical for
this type of Russian word. Importantly, the second syllables
(Ipi] for deviants and [pe] for standards) were identical
across all three conditions; similarly, the first syllables were
physically identical within each standard—deviant pair ([li1],
[ke], and [re]. The fundamental frequencies, stress patterns,
and loudness of the stimuli were also matched. These
procedures enabled a high degree of acoustic similarity and
identical acoustic—phonetic contrasts between standards and
deviants across all conditions, whereas their lexicosemantic
properties diverged.

Procedure

The participants were placed in a magnetically shielded
room, seated on a comfortable chair, and presented
with the auditory stimuli delivered through nonmagnetic
earplugs (3M E-A-RLINK, USA) at an individually determined
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comfortable sound level. After the experiment, the participants
were interviewed about the stimuli that they heard during
the recording. They were asked to repeat the stimuli that
they heard to make sure they perceived them correctly. They
were instructed to ignore the auditory input and focus their
attention on silent videos presented on a projection screen,
whose content was unrelated to the auditory stimulation.
During the experimental session, whole-head MEG recording
was performed using a 306-channel MEG setup (Neuromag,
Helsinki, Finland).

Data preprocessing and analysis

Raw MEG data were preprocessed using the temporally
extended signal space separation algorithm [24] implemented
in MaxFilter 2.0 software (Neuromag) with simultaneous
correction for head movement and then band-pass filtered
(0.5-45.0 Hz). Physiological (cardiac activity and eye
movements) and technical artifacts were removed using
single-space projection (SSP) and independent component
analysis (ICA), respectively. This made on average 93%
of the original deviant stimuli epochs left as artefact-free
for the abstract stimulus, 94% for the concrete stimulus,
and 95% for the pseudoword stimulus in the younger
group. In the older group, for all stimulus types, 96% of the
original deviants’ epochs left on average as artifact-free.
The artifact-cleaned data obtained from the gradiometer
pairs were epoched in segments of 180—1000 ms relative
to the stimulus onset. Baseline correction was applied using
the 180-250 ms stimulus interval, which corresponds to
70 ms of the silent closure interval between the first and
second syllables, i.e., immediately before the disambiguation
point. To estimate individual sources of brain activity for each
stimulus type (deviant and standard) and condition (abstract
verb, concrete action verb, and pseudoword), automatically
constructed surface-based cortical parcellations based
on individual structural T1-weighted magnetic resonance
images were used. Noise covariance matrices were
computed from empty room gradiometer recordings.
The forward solution was computed using overlapping
sphere forward models. For the inverse solution, a minimum
norm estimation (MNE) computed on preprocessed artifact-
free averaged gradiometer responses was used. This was
followed by deviant-minus-standard source subtraction to
compute the MMNm at the source level for each condition.
The cortical area map for each participant was constructed
using PALS-B12 [25] and anatomically finer-grained
Brainnettome [26] atlases. Source time courses of MMN
responses were extracted (separately for each condition)
within predefined bilateral regions of interest (ROIs): BA41
(auditory cortex), BA4 (primary motor cortex), BA4 hand
area only, and BA45 and BA47 in the IFG, both separately
and combined. The source activations for each source time
courses were calculated by averaging the signal of the voxels
within each ROI. The resulting ROI-specific source MMNm
amplitudes were further subjected to statistical analysis
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using paired permutation tests. For each time point between
50 and 350 ms, the MMNm source magnitudes in the left
and right hemispheres were compared in each ROI for each
stimulus condition. The time window was not specified for
the statistical analysis because MMNm response latencies
may vary depending on age and stimulus type [27-29]. An
exploratory analysis was conducted in this study; to not miss
statistically significant differences, it was performed for
the whole epoch. The paired permutation test was chosen
because it is a nonparametric test. The latter is beneficial for
studies with a small sample size. This test is also resistant
to outliers, fairly accurate for numerous permutations, and
resistant to multiple-comparison corrections.

RESULTS

The MMNm source dynamics for the concrete action-
related verb are shown in Fig. 1. The results of the

5-9 y.o. children
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pairwise permutation tests showed statistically significant
magnitude differences between hemispheric sources only in
the younger group (aged 5-9 years, Figure 1, left panel) and
only for the upper-limb motor area within BA4 in 200 and
300 ms. No other differences were found when comparing
ROIs between hemispheres in this group (including the full
BA4). For the older group (aged 10-13 years, Fig. 1, right
panel), the concrete-verb condition yielded a significantly
left-lateralized response only in BA45 in the IFG around 130,
160, and 230 ms.

Fig. 2 shows the MMNm source dynamics for the abstract-
verb condition across different ROIs. For the younger group
(Fig. 2, left panel), statistically significant differences between
the left and right hemispheres were found for the combined
BA45 and BA47 area between 140 and 170 ms and for each
of these areas separately between 150 and 270 ms, with
stronger source amplitudes for the left IFG over the right
one. Responses in the BA41primary auditory area were also

10-13 y.o. children
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Fig. 1. ROI-specific source time courses of MMN responses to concrete action-related verbform in the two age groups. X-axis (all
the graphs), time after the disambiguation point (second syllable onset) (ms); Y-axis (all the graphs), magnetic source strength (auxiliary
units, AU). Here: within specific bilateral ROIs, BA41, BA4 (whole area), BA4 (upper limb), BA45, BA47, and BA45/47 (combined BA45 and
BA47). Thick lines correspond to the left-hemispheric MMN responses; dashed lines correspond to the right-hemispheric MMN responses;
shadowed areas correspond to the time points with significant differences (paired permutation test, p <0.05) found between the left and

right hemispheres; RO, region of interest.

Puc. 1. BpeMeHHble pAgbl permoHanbHo-CneLUUHbIX 0TBETOB HEraTMBHOCTM PaccoriacoBaHUA Ha KOHKPETHbIW F1arof B ABYX BO3-
pacTHbIx rpynnax. Ocb X (ana Bcex rpadmKoB): BpeMs ¢ MOMEHTa TOUKM Je3Maburyauumm (Havano BTOpOro cnora, Mc); ocb Y (ans Bcex
rpa¢uKoB): CMNa UCTOYHMKOB MarHUTHOrO MonA (yCHoBHble eauHMUbI, Y.e). 3aech: bunatepanbHble obnactu uHTepeca: BA41, BA4
LuenuroM, BA4 (3oHa pykw), BALS, BA4T, BA4S/4T BMecTe. HKUpHbIE NIUHWAKM COOTBETCTBYIOT SIEBOMONYLLAPHBIM OTBETAM HEraTMBHOCTM
PaccornacoBaHus; NYHKTUPHbIE SIMHUM — NPaBONOJIyLLAPHLIM 0TBETAM HEraTUBHOCTM PaccorilacoBaHus; 3aTeHEHHbIe 0bnacTu rpadm-
KOB — MOMEHTaM BPEMEHM, B KOTOPbIX 0BHApYHEHbI CTAaTUCTUYECKU 3HAUMMble Pasnnuma (NapHbIA NepMyTaLmMoHHBIiA TecT, p <0,05)

Mexay 0TBeTaMu N1eBoro 1 npaeoro nonymapwﬁ.
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Fig. 2. ROI-specific source time courses of MMN responses to abstract verbform for the two age groups. X-axis (all the graphs), time
after the disambiguation point (second syllable onset) (ms); Y-axis (all the graphs), magnetic source strength (auxiliary units, AU). Here:
within specific bilateral ROIs, BA41, BA4 (whole area), BA4 (upper limb), BA4S, BA47, and BA45/47 (BA4S and BA47 combined). Thick
lines correspond to the left-hemispheric MMN responses; dashed lines correspond to the right-hemispheric MMN responses; shadowed
areas of the graphs correspond to the time points with the statistically significant differences (paired permutation test, p <0.05) found

between the left and right hemispheres; RO, region of interest.

Puc. 2. BpeMeHHble pAfbl pervoHanbHo-CrneLumMuyHbIX 0TBETOB HEraTMBHOCTM PaccoriiacoBaHUA Ha abCTPaKTHbIV rnaron B [ByX BO3-
pacTHbix rpynnax. Ocb X (ans Bcex rpadmKoB): BpeMs C MOMeHTa TOYKM Ae3Maburyaumm (Hauano BTOPOro ciora, Mc); ocb Y (Ana Bcex
rpadMKoB): CUNA UCTOMHWKOB MarHWUTHOrO MoniA (YCNOBHbIe eAuHULBI, Y..). 3heck: bunatepanbHble obnactv uHTepeca: BA4T, BA4
uenukoM, BA4 30Ha pyku, BA4S, BALT, BA4S/4T BMecTe. HupHble NMHMM COOTBETCTBYIOT NIEBOMONYLUAPHBIM OTBETaM HEraTMBHOCTY
paccornacoBaHuA; MyHKTUPHbIE IMHAWM — NPaBOMOJTyLLIAPHBEIM 0TBETaM HEraTUBHOCTM PaccorfiacoBaHms; 3aTeHéHHbIe obnacTv rpadu-
KOB — MOMEHTaM BpeMeHW, B KOTOPbIX 06HapYMeHbl CTaTUCTUYECKW 3HauMMBble pa3nnumA (MapHbIA nepMyTaumMoHHbIn TecT, p <0,05)

Mex Oy 0TBETaMu NIeBOro 1 npaBoro I'IOJ'IyLLIapVIVI.

left-lateralized between 150 and 270 ms, whereas within
the BA4 primary motor area, a tendency to a rightward
lateralization was found later or during the epoch.

In the older group (Fig. 2, right panel), a slight leftward
lateralization of sources within the primary auditory cortex
(BA41) was observed at approximately 150 ms and a slightly
right-lateralized late source dynamics within the upper-limb
area of BA4 between 270 and 290 ms. Minor lateralization
effects were found in the inferior frontal areas. The strongest
effect was in BA45 at approximately 70 and 130-150 ms.

Finally, the analysis carried out for the pseudoword
condition revealed left-lateralized responses in the younger
group for all ROIs, except the motor areas (Fig. 3, left panel).
The lateralization effects on the BA41 area were observed
between 270 and 330 ms, whereas in inferior frontal areas,
these effects occurred between 230 and 270 ms. By contrast,
for older children, no significant lateralization differences
were found in any of the selected ROIs within the MMNm

DOl https://doi.org/10.23868/gc568067

response time window, except for a slightly right-lateralized
late response component in the hand-motor area and a brief
left-lateralized BA45 activation early on (Fig. 3, right panel).

DISCUSSION

This study investigated the hemispheric asymmetry
of MMNm responses elicited by abstract and concrete action-
related verbs in children aged 5-13 years. Specifically, this
study addressed the association of this asymmetry with age,
semantic type, and cortical areas of interest.

In the younger group, for the processing of concrete
verbs (associated with a hand action), the interhemispheric
asymmetry observed in the relevant upper-limb motor cortex
became right-lateralized at approximately 200 and 300 ms.
In turn, the lateralization of neural responses to the abstract
verb in the younger group was left-hemispheric in most
of the areas of interest. The responses were bilateral only in
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Fig. 3. ROI-specific source time courses of MMN responses to pseudoword form for the two age groups. X-axis (all the graphs), time
after the disambiguation point (second syllable onset) (ms); Y-axis (all the graphs), magnetic source strength (auxiliary units, AU). Here:
within specific bilateral ROIs, BA41, BA4 (whole area), BA4 (upper limb), BA4S, BA47, and BA45/47 (combined BA45 and BA47). Thick
lines correspond to the left-hemispheric MMN responses; dashed lines correcpond to the right-hemispheric MMN responses; shadowed
areas correspond to the time points with significant differences (paired permutation test, p <0.05) found between the left and right
hemispheres; RO, region of interest.

Puc. 3. BpeMeHHble pAfbl pervoHanbHo-creumMuyHbIX 0TBETOB HEraTMBHOCTM PaccoriacoBaHWUA Ha NCEBAOCO0BO B ABYX BO3PaCTHbIX
rpynnax. Ocb X (anA Bcex rpaduKoB): BpeMs ¢ MOMEHTa TOUKM Ae3Maburyaumm (Hayano BTOporo cnora, Mc); ock Y (ana Bcex rpaguKoB):
CMMa UCTOYHUKOB MarHUTHOTO NonA (YCroBHbIE efuHMLbI, Y.€.). 3neck: bunatepanbHble 0bnactv untepeca: BA4T, BA4 uenvkom, BA4
30Ha pyku, BA4S, BA4T, BALS/4T BMecTe. H{UpHbIe NMHWKM COOTBETCTBYIOT NIEBOMOJYLLIAPHLIM OTBETAM HEraTMBHOCTM paccoriacoBaHus;
NMYHKTUPHbIE IMHUU — MPaBOMONYLLAPHLIM O0TBETAM HEraTUBHOCTU PaccorfiacoBaHWS; 3aTeHEHHbIe 06M1acTv rpadMKoB — MOMEHTaM
BPEMEHM, K KOTOPbIX 0BHApyHKeHbl CTaTUCTUYECKM 3HaYMMBble pasnnumA (MapHbI nepMyTaumMoHHbIi TecT, p <0,05) Mexay oTBeTamu

NeBOTO U NPaBoro NosyLlapuil.

the upper-limb primary motor area, whereas in the inferior
frontal areas, specifically in the BA47, the responses were
left-lateralized. The latter effect was presented between 150
and 300 ms. For the pseudoword, the strongest lateralization
effects in the younger group were found in the inferior frontal
areas, in both BA45 and BA47. These responses were left-
lateralized, and the effect was observed at approximately
250 ms.

In the older group, the interhemispheric asymmetry
effects for concrete verbs were found in the inferior frontal
areas. Here, the BA45 area (a part of the IFG, putatively
involved in processing abstract semantics), showed
the left-lateralized activation in approximately 150 ms. For
the abstract semantics, older children exhibited bilateral or
even slightly right-lateralized activations across all areas
of interest. These lateralization effects were early in the IFG
areas, where the distinction between hemispheric responses
occurred already at approximately 70 ms and later at
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approximately 100 and 150 ms. In the BA4 upper limb area,
the lateralization difference became significant much later at
approximately 270 ms. Finally, no lateralization effects were
found for the pseudoword responses in the older group,
except for slightly right-lateralized effects in primary motor
areas at approximately 130 ms.

Previous studies on children using various speech
MMN designs [14—17] have demonstrated that the main
correlate of neural response maturation is the decrease
in its magnitude. Our data provide further evidence that
not only the magnitude but also the interhemispheric
asymmetry of MMN responses manifests differently in
children of different ages. The variation in interhemispheric
response patterns also depends on the semantics type:
abstract or concrete-word stimuli. Thus, these variations
might indicate the different neural mechanisms underlying
the processing of abstract and concrete semantics in
different age groups.
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A very strong, left-lateralized asymmetry of the MMN
responses was found for abstract semantic stimulus and
pseudowords in the inferior frontal areas (BA45 and BA47)
in the younger group. Although adult studies [18-21] have
shown that both areas play a crucial role in abstract semantic
processing, we suggest another possible interpretation of our
results: the greater left-hemispheric response within these
areas in younger children might be a marker of a stronger
involvement of the top—down control mechanisms while
retrieving the meaning based on the auditory input. Previous
studies have discussed the role of the left IFG in the top—
down control of speech comprehension [30-34]. Particularly,
evidence shows that the left inferior frontal area might be
a crucial hub of the bilateral neural network that supports
the perception of temporally predictable auditory stimuli
such as speech [35, 36].

A similar explanation may help elucidate the pattern
of a stronger left-hemispheric activity found here in
the younger group for the pseudoword stimulus, whose
processing may require a larger effort, as futile attempts at
finding a matching lexicosemantic representation/memory
trace in the lexicon are made. In addition, the increased
left-hemispheric MMN response in the inferior frontal area
to the abstract stimulus in the younger group might be
considered a sign of the greater excitability of the neural
networks supporting this stimuli processing. This excitability
level might reflect a higher level of arousal because of the
involvement of the greater attentional resources in abstract
semantics processing in younger children, whereas this
excitability decreases with age [37-39].

Another potential explanation for the variation in laterality
patterns is the greater familiarity of the linguistic stimuli by
older children than by younger ones. Greater familiarity with
abstract words (which are acquired at a later age) might
correlate with stronger perceptual or sensorimotor semantic
associations for such stimuli in older children [26, 40]. Thus,
while the processing of these stimuli must rely on the core
linguistic structures in the left hemisphere at a younger age,
later in life, even the more abstract verb may acquire specific
sensorimotor references, leading to a more distributed
bilateral memory trace [41, 42]. We see this in the older
group with a less profound left-hemispheric contribution
across all the stimuli semantic conditions. Still, in the older
group, we also observed some contributions of the left-
hemispheric BA45 response not only in the abstract but also
in concrete stimuli processing. This might be because both
stimuli are verbs, and they share some common semantic
meaning, that is, action-related. This might implicitly indicate
the increased role of the BA45 area in the processing
of semantic information compared with the general top-
down control function in the older group.

Finally, within each group, the latencies of the magnetic
responses within the same cortical areas of interest
vary across semantically different stimuli. For instance,
responses to the abstract verbs demonstrate a leftward
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asymmetry already at 140-150 ms, much earlier than
the pseudoword responses. This might reveal a more rapid
processing of the semantically meaningful stimuli in this
area than meaningless pseudowords. However, the link
between latency variations, stimuli semantic categories, and
age groups needs further investigation.

CONCLUSION

In this magnetoencephalography study, the lateralization
of MMNm to spoken word stimuli in children was found to be
sensitive to several factors, such as age, regions of interest,
and semantics of a specific stimulus. Particularly, the left-
hemispheric inferior frontal areas were more involved in
the processing of abstract semantics and pseudoword
stimuli than in the processing of concrete stimuli in younger
children (aged 5-9 years). By contrast, for the concrete
motor-action verb stimulus, greater rightward lateralization
of the MMNm response was found within the bilateral upper-
limb motor representation in younger children.

In older children (aged 10-13 years), no such robust
involvement of the left inferior frontal areas was found in
the processing of all semantic types of stimuli. In addition,
these areas contribute to the processing of both abstract
and concrete stimuli, probably because of their greater role
in action semantics processing for older children. However,
the precise evaluation of the lateralization effects and their
interaction with the factors of interest needs quantitative
estimation of the individual laterality indices in a further study.
This is a potential limitation of this study; thus, its results
must be further investigated to clarify the neural mechanisms
underlying the age-related lateralization differences observed
here. Future investigations should consider different spatial
and temporal parameters of neural response patterns
associated with verbal semantic processing. This should also
include analyzing the dynamics of response latencies across
areas, hemispheres, and conditions and comparing these
dynamics between age groups. Furthermore, they should
consider additional cortical areas of interest (e.g., temporal,
temporoparietal, and occipital cortices) and anatomical
definitions of the regions of interest used. The latter might
change across age because of the heterogeneous growth
of the cortical matter potentially affecting the spatiotemporal
features of the neural response patterns.
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