Oxidative stress and antioxidant defense system in atherosclerosis and diabetes mellitus type 2


Cite item

Full Text

Abstract

Relevance. Cardiovascular diseases are the leading cause of death, and the current therapy is imperfect, as it has many side effects, and is ineffective for about a third of patients. In this review, we consider the role of oxidative stress in diseases of atherosclerotic genesis, such as type 2 diabetes mellitus and coronary heart disease. The key targets for molecular and cellular therapy of oxidative stress in diseases of atherosclerotic genesis can be, firstly, receptors localized on the cell membrane, the binding of which to the end products of glycolysis and proinflammatory interleukins leads to the activation of inflammatory cascades; secondly, antioxidant molecules, the content of which must be maintained at an optimal level both by alimentary and local infusion. Since the processes of β-cell damage and death are in most cases mediated by the activity of the NLRP‑3 inflammasome, it is necessary to study possible ways of destabilizing this protein complex, which help prevent the maturation and secretion of interleukins‑1β and –18. Conclusion. In addition to direct treatment, careful monitoring of biochemical markers signaling the onset of a pathological process is required, a tool for which can be tests for determining the antioxidant status. In addition, it is recommended to promote a healthy lifestyle among individuals prone to diabetes mellitus 2 and cardiovascular diseases, consisting of reducing the consumption of foods rich in fats and carbohydrates (in parallel with enriching the diet with fiber-rich, vitamins and preventing oxidative stress), increasing beneficial physical activity and quitting smoking.

About the authors

Victoria E. Karyagina

National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov; RUDN University

Author for correspondence.
Email: vypryazhkina.viktoriya@mail.ru
ORCID iD: 0009-0001-3484-9577
Moscow, Russian Federation

Dmitry V. Prutskikh

RUDN University

Email: vypryazhkina.viktoriya@mail.ru
ORCID iD: 0009-0000-0222-8891
Moscow, Russian Federation

Polina A. Vishnyakova

National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov; RUDN University

Email: vypryazhkina.viktoriya@mail.ru
ORCID iD: 0000-0001-8650-8240
SPIN-code: 3406-3866
Moscow, Russian Federation

Andrey V. Elchaninov

RUDN University; Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery

Email: vypryazhkina.viktoriya@mail.ru
ORCID iD: 0000-0002-2392-4439
SPIN-code: 5160-9029
Moscow, Russian Federation

References

  1. Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-­Smith CM, Barone Gibbs B, Beaton AZ, Boehme AK, Commodore-­Mensah Y, Currie ME, Elkind MSV, Evenson KR, Generoso G, Heard DG, Hiremath S, Johansen MC, Kalani R, Kazi DS, Ko D, Liu J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Perman SM, Poudel R, Rezk-­Hanna M, Roth GA, Shah NS, St-­Onge M-P, Thacker EL, Tsao CW, Urbut SM, Van Spall HGC, Voeks JH, Wang N-Y, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation. 2024;149(8). doi: 10.1161/CIR.0000000000001209 doi: 10.1161/CIR.0000000000001209
  2. Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical Update: Cardiovascular Disease in Diabetes Mellitus. Circulation. 2016;133(24):2459—2502. doi: 10.1161/CIRCULATIONAHA.116.022194
  3. Nolte E. Measuring the health of nations: analysis of mortality amenable to health care. BMJ. 2003;327(7424):1129—0. doi: 10.1136/bmj.327.7424.1129.
  4. https://www.who.int/health-­topics/cardiovascular-­diseases#tab=tab_1. https://www.who.int/health-­topics/cardiovascular-­diseases#tab=tab_1 (accessed 16 Jul 2024).
  5. Allarakha S, Yadav J, Yadav AK. Financial Burden and financing strategies for treating the cardiovascular diseases in India. Social Sciences & Humanities Open. 2022;6(1):100275. doi: 10.1016/j.ssaho.2022.100275
  6. Durak I, Kaçmaz M, Çimen MYB, Büyükkoçak Ü, Öztürk HS. Blood oxidant/antioxidant status of atherosclerotic patients. International Journal of Cardiology. 2001;77(2—3):293—297. doi: 10.1016/S0167-5273 (00) 00450 2
  7. Collin F. Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases. International Journal of Molecular Sciences. 2019;20(10):2407. doi: 10.3390/ijms20102407
  8. Collin F. Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases. International Journal of Molecular Sciences. 2019;20(10):2407. doi: 10.3390/ijms20102407
  9. Phaniendra A, Jestadi DB, Periyasamy L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian Journal of Clinical Biochemistry. 2015;30(1):11—26. doi: 10.1007/s12291 014 0446 0.
  10. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-­Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P. Oxidative stress, aging, and diseases. Clinical Interventions in Aging. 2018;13:757—772. doi: 10.2147/CIA.S158513
  11. Sharifi-­Rad M, Anil Kumar N V., Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Tsouh Fokou PV, Azzini E, Peluso I, Prakash Mishra A, Nigam M, El Rayess Y, Beyrouthy M El, Polito L, Iriti M, Martins N, Martorell M, Docea AO, Setzer WN, Calina D, Cho WC, Sharifi-­Rad J. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Frontiers in Physiology. 2020;11. doi: 10.3389/fphys.2020.00694 doi: 10.3389/fphys.2020.00694
  12. Navab M, Imes SS, Hama SY, Hough GP, Ross LA, Bork RW, Valente AJ, Berliner JA, Drinkwater DC, Laks H. Monocyte transmigration induced by modification of low density lipoprotein in cocultures of human aortic wall cells is due to induction of monocyte chemotactic protein 1 synthesis and is abolished by high density lipoprotein. Journal of Clinical Investigation. 199188(6):2039—2046. doi: 10.1172/JCI115532
  13. Poznyak AV, Nikiforov NG, Markin AM, Kashirskikh DA, Myasoedova VA, Gerasimova E V, Orekhov AN. Overview of OxLDL and Its Impact on Cardiovascular Health: Focus on Atherosclerosis. Frontiers in Pharmacology. 2021;11. doi: 10.3389/fphar.2020.613780
  14. Mushenkova NV, Bezsonov EE, Orekhova VA, Popkova TV, Starodubova AV, Orekhov AN. Recognition of Oxidized Lipids by Macrophages and Its Role in Atherosclerosis Development. Biomedicines. 2021;9(8):915. doi: 10.3390/biomedicines9080915
  15. Poznyak A, Grechko AV, Poggio P, Myasoedova VA, Alfieri V, Orekhov AN. The Diabetes Mellitus–Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. International Journal of Molecular Sciences. 2020;21(5):1835. doi: 10.3390/ijms21051835
  16. Fan W. Epidemiology in diabetes mellitus and cardiovascular disease. Cardiovascular Endocrinology. 2017;6(1):8—16. doi: 10.1097/XCE.0000000000000116
  17. Jaacks LM, Siegel KR, Gujral UP, Narayan KMV. Type 2 diabetes: A 21st century epidemic. Best Practice & Research Clinical Endocrinology & Metabolism. 2016;30(3):331—343. doi: 10.1016/
  18. j.beem.2016.05.003
  19. Mustafina SV, Rymar OD, Shcherbakova LV, Verevkin EG, Pikhart H, Sazonova OV, Ragino YI, Simonova GI, Bobak M, Malyutina SK, Voevoda MI. The Risk of Type 2 Diabetes Mellitus in a Russian Population Cohort According to Data from the HAPIEE Project. Journal of Personalized Medicine. 2021;11(2):119. doi: 10.3390/jpm11020119
  20. Stamler J, Neaton JD, Cohen JD, Cutler J, Eberly L, Grandits G, Kuller LH, Ockene J, Prineas R. Multiple Risk Factor Intervention Trial Revisited: A New Perspective Based on Nonfatal and Fatal Composite Endpoints, Coronary and Cardiovascular, During the Trial. Journal of the American Heart Association. 2012;1(5). doi: 10.1161/JAHA.112.003640
  21. Martín-­Timón I. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength? World Journal of Diabetes. 2014;5(4):444. doi: 10.4239/wjd.v5.i4.444
  22. Vergès B. Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia. 2015;58(5):886—899. doi: 10.1007/s00125 015 3525 8
  23. Mushenkova NV, Summerhill VI, Zhang D, Romanenko EB, Grechko AV, Orekhov AN. Current Advances in the Diagnostic Imaging of Atherosclerosis: Insights into the Pathophysiology of Vulnerable Plaque. International Journal of Molecular Sciences. 2020;21(8):2992. doi: 10.3390/ijms21082992
  24. Yuan D, Zou Z, Li X, Cheng N, Guo N, Sun G, Liu D. A new side-effect of sufentanil: increased monocyte-­endothelial adhesion. BMC Anesthesiology. 2021;21(1):267. doi: 10.1186/s12871 021 01487 3.
  25. Sies H. Oxidative Stress: Introductory Remarks. In: Oxidative Stress. Elsevier, 1985, pp 1—8.
  26. Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature Reviews Molecular Cell Biology. 2020;21(7):363—383. doi: 10.1038/s41580 020 0230 3.
  27. Lushchak VI. Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology. 2011;101(1):13—30. doi: 10.1016/j.aquatox.2010.10.006.
  28. Peng H-Y, Lucavs J, Ballard D, Das JK, Kumar A, Wang L, Ren Y, Xiong X, Song J. Metabolic Reprogramming and Reactive Oxygen Species in T Cell Immunity. Frontiers in Immunology. 2021;12. doi: 10.3389/fimmu.2021.652687 doi: 10.3389/fimmu.2021.652687.
  29. Min SH, Kang GM, Park JW, Kim M-S. Beneficial Effects of Low-­Grade Mitochondrial Stress on Metabolic Diseases and Aging. Yonsei Medical Journal. 2024;65(2):55. doi: 10.3349/ymj.2023.0131.
  30. Lushchak VI, Storey KB. Oxidative stress concept updated: Definitions, classifications, and regulatory pathways implicated. EXCLI journal. 2021;20:956—967. doi: 10.17179/excli2021-3596.
  31. Checa J, Aran JM. Reactive Oxygen Species: Drivers of Physiological and Pathological Processes. Journal of Inflammation Research. 2020;13:1057—1073. doi: 10.2147/JIR.S275595
  32. Sandalio LM, Rodríguez-­Serrano M, Romero-­Puertas MC, del Río LA. Role of Peroxisomes as a Source of Reactive Oxygen Species (ROS). Signaling Molecules. 2013, pp 231—255.
  33. Veith A, Moorthy B. Role of cytochrome p450s in the generation and metabolism of reactive oxygen species. Current opinion in toxicology. 2018;7:44—51. doi: 10.1016/j.cotox.2017.10.003
  34. White RE, Coon MJ. Oxygen Activation by Cytochrome P 4501. Annual Review of Biochemistry. 1980;49(1):315—356. doi: 10.1146/annurev.bi.49.070180.001531
  35. Denisov IG, Makris TM, Sligar SG, Schlichting I. Structure and Chemistry of Cytochrome P450. Chemical Reviews. 2005;105(6):2253—2278. doi: 10.1021/cr0307143
  36. Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxidative Medicine and Cellular Longevity. 2016;2016:1—44. doi: 10.1155/2016/1245049.
  37. Tirichen H, Yaigoub H, Xu W, Wu C, Li R, Li Y. Mitochondrial Reactive Oxygen Species and Their Contribution in Chronic Kidney Disease Progression Through Oxidative Stress. Frontiers in Physiology. 2021;12. doi: 10.3389/fphys.2021.627837
  38. Quinlan CL, Perevoshchikova I V., Hey-­Mogensen M, Orr AL, Brand MD. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biology. 2013;1(1):304—312. doi: 10.1016/j.redox.2013.04.005
  39. Nguyen GT, Green ER, Mecsas J. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance. Frontiers in Cellular and Infection Microbiology. 2017;7. doi: 10.3389/fcimb.2017.00373
  40. Catalá A, Díaz M. Editorial: Impact of Lipid Peroxidation on the Physiology and Pathophysiology of Cell Membranes. Frontiers in Physiology. 2016;7. doi: 10.3389/fphys.2016.00423
  41. Baraibar MA, Liu L, Ahmed EK, Friguet B. Protein Oxidative Damage at the Crossroads of Cellular Senescence, Aging, and Age-­Related Diseases. Oxidative Medicine and Cellular Longevity. 2012;2012:1—8. doi: 10.1155/2012/919832.
  42. Balasubramanian B, Pogozelski WK, Tullius TD. DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(17):9738—43. doi: 10.1073/pnas.95.17.9738
  43. Bennett RAO, Demple B. DNA Base Excision Repair Pathways. In: Encyclopedia of Biological Chemistry. Elsevier, 2013, pp 1—8.
  44. Fleming AM, Burrows CJ. Chemistry of ROS-mediated oxidation to the guanine base in DNA and its biological consequences. International Journal of Radiation Biology. 2022;98(3):452—460. doi: 10.1080/09553002.2021.2003464.
  45. Thomas MC, Woodward M, Li Q, Pickering R, Tikellis C, Poulter N, Cooper ME, Marre M, Zoungas S, Chalmers J. Relationship Between Plasma 8-OH-Deoxyguanosine and Cardiovascular Disease and Survival in Type 2 Diabetes Mellitus: Results From the ADVANCE Trial. Journal of the American Heart Association. 2018;7(13). doi: 10.1161/JAHA.117.008226
  46. Rajput VD, Harish, Singh RK, Verma KK, Sharma L, Quiroz-­Figueroa FR, Meena M, Gour VS, Minkina T, Sushkova S, Mandzhieva S. Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. Biology. 2021;10(4):267. doi: 10.3390/biology10040267
  47. Wang Y, Branicky R, Noë A, Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. Journal of Cell Biology. 2018;217(6):1915—1928. doi: 10.1083/jcb.201708007.
  48. Vona R, Pallotta L, Cappelletti M, Severi C, Matarrese P. The Impact of Oxidative Stress in Human Pathology: Focus on Gastrointestinal Disorders. Antioxidants. 2021;10(2):201. doi: 10.3390/antiox10020201
  49. Malekmohammad K, Bezsonov EE, Rafieian-­Kopaei M. Role of Lipid Accumulation and Inflammation in Atherosclerosis: Focus on Molecular and Cellular Mechanisms. Frontiers in Cardiovascular Medicine. 2021;8. doi: 10.3389/fcvm.2021.707529
  50. Shen Z, Ye C, McCain K, Greenberg ML. The Role of Cardiolipin in Cardiovascular Health. BioMed Research International. 2015;2015:1—12. doi: 10.1155/2015/891707
  51. Wan M, Hua X, Su J, Thiagarajan D, Frostegård AG, Haeggström JZ, Frostegård J. Oxidized but not native cardiolipin has pro-inflammatory effects, which are inhibited by Annexin A5. Atherosclerosis. 2014;235(2):592—598. doi: 10.1016/j.atherosclerosis.2014.05.913
  52. Batty M, Bennett MR, Yu E. The Role of Oxidative Stress in Atherosclerosis. Cells. 2022;11(23):3843. doi: 10.3390/cells11233843
  53. Theofilis P, Sagris M, Oikonomou E, Antonopoulos AS, Siasos G, Tsioufis C, Tousoulis D. Inflammatory Mechanisms Contributing to Endothelial Dysfunction. Biomedicines. 2021;9(7):781. doi: 10.3390/biomedicines9070781
  54. Hecker M, Wagner AH. Role of protein carbonylation in diabetes. Journal of Inherited Metabolic Disease. 2018;41(1):29—38. doi: 10.1007/s10545 017 0104 9
  55. Łuczak A, Madej M, Kasprzyk A, Doroszko A. Role of the eNOS Uncoupling and the Nitric Oxide Metabolic Pathway in the Pathogenesis of Autoimmune Rheumatic Diseases. Oxidative Medicine and Cellular Longevity. 2020;2020:1—15. doi: 10.1155/2020/1417981
  56. Szwed P, Gąsecka A, Zawadka M, Eyileten C, Postuła M, Mazurek T, Szarpak Ł, Filipiak KJ. Infections as Novel Risk Factors of Atherosclerotic Cardiovascular Diseases: Pathophysiological Links and Therapeutic Implications. Journal of Clinical Medicine. 2021;10(12):2539. doi: 10.3390/jcm10122539
  57. Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221—225. doi: 10.1038/nature09663
  58. Libby P. Interleukin 1 Beta as a Target for Atherosclerosis Therapy. Journal of the American College of Cardiology. 2017;70(18):2278—2289. doi: 10.1016/j.jacc.2017.09.028
  59. Libby P, Ordovas JM, Auger KR, Robbins AH, Birinyi LK, Dinarello CA. Endotoxin and tumor necrosis factor induce interleukin 1 gene expression in adult human vascular endothelial cells. The American journal of pathology. 1986;124(2):179—85.
  60. Libby P, Ordovas JM, Birinyi LK, Auger KR, Dinarello CA. Inducible interleukin 1 gene expression in human vascular smooth muscle cells. Journal of Clinical Investigation. 1986;78(6):1432—1438. doi: 10.1172/JCI112732
  61. Warner SJ, Auger KR, Libby P. Interleukin 1 induces interleukin 1. II. Recombinant human interleukin 1 induces interleukin 1 production by adult human vascular endothelial cells. The Journal of Immunology. 1987;139(6):1911—1917. doi: 10.4049/jimmunol.139.6.1911
  62. Libby P, Warner SJ, Friedman GB. Interleukin 1: a mitogen for human vascular smooth muscle cells that induces the release of growth-­inhibitory prostanoids. Journal of Clinical Investigation. 1988;81(2):487—498. doi: 10.1172/JCI113346
  63. Castell J V., Gómez-lechón MJ, David M, Fabra R, Trullenque R, Heinrich PC. Acute-phase response of human hepatocytes: Regulation of acute-­phase protein synthesis by interleukin 6. Hepatology. 1990;12(5):1179—1186. doi: 10.1002/hep.1840120517
  64. Abbate A, Salloum FN, Van Tassell BW, Vecile E, Toldo S, Seropian I, Mezzaroma E, Dobrina A. Alterations in the Interleukin 1/Interleukin 1 Receptor Antagonist Balance Modulate Cardiac Remodeling following Myocardial Infarction in the Mouse. PLoS ONE. 2011;6(11): e27923. doi: 10.1371/journal.pone.0027923
  65. Morton AC, Rothman AMK, Greenwood JP, Gunn J, Chase A, Clarke B, Hall AS, Fox K, Foley C, Banya W, Wang D, Flather MD, Crossman DC. The effect of interleukin 1 receptor antagonist therapy on markers of inflammation in non-­ST elevation acute coronary syndromes: the MRC—ILA Heart Study. European Heart Journal. 2015;36(6):377—384. doi: 10.1093/eurheartj/ehu272.
  66. Morton A, Arnold N, Gunn J, Varcoe R, Francis S, Dower S, Crossman D. Interleukin 1 receptor antagonist alters the response to vessel wall injury in a porcine coronary artery model. Cardiovascular Research. 2005;68(3):493—501. doi: 10.1016/j.cardiores.2005.06.026
  67. Merhisoussi F, Kwak B, Magne D, Chadjichristos C, Berti M, Pelli G, James R, Mach F, Gabay C. Interleukin 1 plays a major role in vascular inflammation and atherosclerosis in male apolipoprotein E-knockout mice. Cardiovascular Research. 2005;66(3):583—593. doi: 10.1016/j.cardiores.2005.01.008
  68. Price DT, Loscalzo J. Cellular adhesion molecules and atherogenesis. The American Journal of Medicine. 1999;107(1):85—97. doi: 10.1016/S0002—9343 (99) 00153 9.
  69. Tedgui A, Mallat Z. Cytokines in Atherosclerosis: Pathogenic and Regulatory Pathways. Physiological Reviews. 2006;86(2):515—581. doi: 10.1152/physrev.00024.2005
  70. Walch L, Massade L, Dufilho M, Brunet A, Rendu F. Pro-atherogenic effect of interleukin 4 in endothelial cells: Modulation of oxidative stress, nitric oxide and monocyte chemoattractant protein 1 expression. Atherosclerosis. 2006;187(2):285—291. doi: 10.1016/j.atherosclerosis.2005.09.016
  71. Huang H, Lavoie-­Lamoureux A, Lavoie JP. Cholinergic stimulation attenuates the IL 4 induced expression of E-selectin and vascular endothelial growth factor by equine pulmonary artery endothelial cells. Veterinary Immunology and Immunopathology. 2009;132(2—4):116—121. doi: 10.1016/j.vetimm.2009.05.003
  72. Nam JH, Park KW, Park ES, Lee YB, Lee HG, Baik HH, Kim Y-S, Maeng S, Park J, Jin BK. Interleukin 13/-4-Induced Oxidative Stress Contributes to Death of Hippocampal Neurons in Aβ 1—42 Treated Hippocampus In Vivo. Antioxidants & Redox Signaling. 2012;16(12):1369—1383. doi: 10.1089/ars.2011.4175
  73. Lee YW, Hirani AA. Role of interleukin 4 in atherosclerosis. Archives of Pharmacal Research. 2006;29(1):1—15. doi: 10.1007/BF02977462.
  74. Lee YW, Lee WH, Kim PH. Role of NADPH oxidase in interleukin 4 induced monocyte chemoattractant protein 1 expression in vascular endothelium. Inflammation Research. 2010;59(9):755—765. doi: 10.1007/s00011 010 0187 3
  75. Lee YW, Lee WH, Kim PH. Oxidative mechanisms of IL 4 induced IL 6 expression in vascular endothelium. Cytokine. 2010;49(1):73—79. doi: 10.1016/j.cyto.2009.08.009.
  76. Lee YW, Hennig B, Toborek M. Redox-regulated mechanisms of IL 4 induced MCP 1 expression in human vascular endothelial cells. American Journal of Physiology-­Heart and Circulatory Physiology. 2003;284(1): H185–H192. doi: 10.1152/ajpheart.00524.2002
  77. Lee YW, Kühn H, Hennig B, Neish AS, Toborek M. IL 4 induced Oxidative Stress Upregulates VCAM 1 Gene Expression in Human Endothelial Cells. Journal of Molecular and Cellular Cardiology. 2001;33(1):83—94. doi: 10.1006/jmcc.2000.1278
  78. Willerson JT, Ridker PM. Inflammation as a Cardiovascular Risk Factor. Circulation. 2004;109(21_suppl_1). doi: 10.1161/01.CIR.0000129535.04194.38
  79. Souza JRM, Oliveira RT, Blotta MHSL, Coelho OR. Níveis séricos de interleucina 6 (IL 6), interleucina 18 (IL 18) e proteína C reativa (PCR) na síndrome coronariana aguda sem supradesnivelamento do ST em pacientes com diabete tipo 2. Arquivos Brasileiros de Cardiologia. 2008;90(2):94—99. doi: 10.1590/S0066—782X2008000200004
  80. Koh KK, Han SH, Quon MJ. Inflammatory Markers and the Metabolic Syndrome. Journal of the American College of Cardiology. 2005;46(11):1978—1985. doi: 10.1016/j.jacc.2005.06.082
  81. Lee P-C, Ho I—C, Lee T-C. Oxidative Stress Mediates Sodium Arsenite-­Induced Expression of Heme Oxygenase 1, Monocyte Chemoattractant Protein 1, and Interleukin 6 in Vascular Smooth Muscle Cells. Toxicological Sciences. 2005;85(1):541—550. doi: 10.1093/toxsci/kfi101
  82. Schuett H, Luchtefeld M, Grothusen C, Grote K, Schieffer B. How much is too much? Interleukin 6 and its signalling in atherosclerosis. Thrombosis and Haemostasis. 2009;102(08):215—222. doi: 10.1160/TH09 05 0297
  83. Hägg D, Sjöberg S, Hultén LM, Fagerberg B, Wiklund O, Rosengren A, Carlsson LMS, Borén J, Svensson P-A, Krettek A. Augmented levels of CD44 in macrophages from atherosclerotic subjects: A possible IL 6–CD44 feedback loop? Atherosclerosis. 2007;190(2):291—297. doi: 10.1016/j.atherosclerosis.2006.03.020
  84. Suzuki H, Kusuyama T, Sato R, Yokota Y, Tsunoda F, Sato T, Shoji M, Iso Y, Koba S, Katagiri T. Elevation of matrix metalloproteinases and interleukin‐6 in the culprit coronary artery of myocardial infarction. European Journal of Clinical Investigation. 2008;38(3):166—173. doi: 10.1111/j.1365-2362.2007.01919.x
  85. Hartman J, Frishman WH. Inflammation and Atherosclerosis. Cardiology in Review. 2014;22(3):147—151. doi: 10.1097/CRD.0000000000000021
  86. Wassmann S, Stumpf M, Strehlow K, Schmid A, Schieffer B, Böhm M, Nickenig G. Interleukin 6 Induces Oxidative Stress and Endothelial Dysfunction by Overexpression of the Angiotensin II Type 1 Receptor. Circulation Research. 2004;94(4):534—541. doi: 10.1161/01.RES.0000115557.25127.8D
  87. Kalatsei L V., Sagun YR. Association of beta 3 integrin level with the presence and severity of coronary atherosclerosis in patients with chronic ischemic heart disease. RUDN Journal of Medicine. 2024;28(2):142—152. doi: 10.22363/2313 0245 2024 28 1 142 152
  88. Ido Y, Kilo C, Williamson JR. Interactions between the sorbitol pathway, non-enzymatic glycation, and diabetic vascular dysfunction. Nephrology Dialysis Transplantation. 1996;11(supp5):72—75. doi: 10.1093/ndt/11.supp5.72.
  89. Khanam A, Ahmad S, Husain A, Rehman S, Farooqui A, Yusuf MA. Glycation and Antioxidants: Hand in the Glove of Antiglycation and Natural Antioxidants. Current Protein & Peptide Science. 2020;21(9):899—915. doi: 10.2174/1389203721666200210103304
  90. Ahmad H, Khan I, Wahid A. Antiglycation and antioxidation properties of juglans regia and calendula officinalis: possible role in reducing diabetic complications and slowing down ageing. Journal of Traditional Chinese Medicine. 2012;32(3):411—414. doi: 10.1016/S0254-6272 (13) 60047 3
  91. Raghav A, Ahmad J, Alam K. Nonenzymatic glycosylation of human serum albumin and its effect on antibodies profile in patients with diabetes mellitus. PLOS ONE. 2017;12(5): e0176970. doi: 10.1371/journal.pone.0176970
  92. Plasma Fibrinogen Level and the Risk of Major Cardiovascular Diseases and Nonvascular Mortality. JAMA. 2005;294(14). doi: 10.1001/jama.294.14.1799
  93. Dai Y, Shen Y, Li QR, Ding FH, Wang XQ, Liu HJ, Yan XX, Wang LJ, Yang K, Wang HB, Chen QJ, Shen WF, Zhang RY, Lu L. Glycated Apolipoprotein A-IV Induces Atherogenesis in Patients With CAD in Type 2 Diabetes. Journal of the American College of Cardiology. 2017;70(16):2006—2019. doi: 10.1016/j.jacc.2017.08.053
  94. Toma L, Stancu CS, Botez GM, Sima A V., Simionescu M. Irreversibly glycated LDL induce oxidative and inflammatory state in human endothelial cells; added effect of high glucose. Biochemical and Biophysical Research Communications. 2009;390(3):877—882. doi: 10.1016/j.bbrc.2009.10.066
  95. Ahmad R, Kumar Sah A, Ahsan H. Biochemistry and Pathophysiology of Glycation of DNA: Implications in Diabetes. Archives of Clinical and Biomedical Research. 2017;01(01):32—47. doi: 10.26502/acbr.5017004.
  96. Yan H, Harding JJ. Glycation-­induced inactivation and loss of antigenicity of catalase and superoxide dismutase. Biochemical Journal. 1997;328(2):599—605. doi: 10.1042/bj3280599
  97. Blakytny R, Harding JJ. Glycation (non-enzymic glycosylation) inactivates glutathione reductase. Biochemical Journal. 1992;288(1):303—307. doi: 10.1042/bj2880303
  98. Suravajjala S, Cohenford M, Frost LR, Pampati PK, Dain JA. Glycation of human erythrocyte glutathione peroxidase: Effect on the physical and kinetic properties. Clinica Chimica Acta. 2013;421:170—176. doi: 10.1016/j.cca.2013.02.032
  99. Draznin B. Molecular Mechanisms of Insulin Resistance: Serine Phosphorylation of Insulin Receptor Substrate 1 and Increased Expression of p85α. Diabetes. 2006;55(8):2392—2397. doi: 10.2337/db06-0391
  100. Baumel-­Alterzon S, Scott DK. Regulation of Pdx1 by oxidative stress and Nrf2 in pancreatic beta-cells. Frontiers in Endocrinology. 2022;13. doi: 10.3389/fendo.2022.1011187 doi: 10.3389/fendo.2022.1011187
  101. Ebrahim N, Shakirova K, Dashinimaev E. PDX1 is the cornerstone of pancreatic β-cell functions and identity. Frontiers in Molecular Biosciences. 2022;9. doi: 10.3389/fmolb.2022.1091757
  102. Nishimura W, Iwasa H, Tumurkhuu M. Role of the Transcription Factor MAFA in the Maintenance of Pancreatic β-­Cells. International Journal of Molecular Sciences. 2022;23(9):4478. doi: 10.3390/ijms23094478
  103. Noh J-R, Hwang JH, Kim Y-H, Kim K-S, Gang G-T, S-W, Kim D-K, Shong M, Lee I-K, Choi H-S, Lee C-H. The orphan nuclear receptor small heterodimer partner negatively regulates pancreatic beta cell survival and hyperglycemia in multiple low-dose streptozotocin-­induced type 1 diabetic mice. The International Journal of Biochemistry & Cell Biology. 2013;45(8):1538—1545. doi: 10.1016/j.biocel.2013.05.004
  104. Wang C, Chi Y, Li J, Miao Y, Li S, Su W, Jia S, Chen Z, Du S, Zhang X, Zhou Y, Wu W, Zhu M, Wang Z, Yang H, Xu G, Wang S, Yang J, Guan Y. FAM3A activates PI3K p110α/Akt signaling to ameliorate hepatic gluconeogenesis and lipogenesis. Hepatology. 2014;59(5):1779—1790. doi: 10.1002/hep.26945.
  105. Andreasen AS, Kelly M, Berg RMG, Møller K, Pedersen BK. Type 2 Diabetes Is Associated with Altered NF-κB DNA Binding Activity, JNK Phosphorylation, and AMPK Phosphorylation in Skeletal Muscle after LPS. PLoS ONE. 2011;6(9): e23999. doi: 10.1371/journal.pone.0023999.
  106. Ozaki K, Awazu M, Tamiya M, Iwasaki Y, Harada A, Kugisaki S, Tanimura S, Kohno M. Targeting the ERK signaling pathway as a potential treatment for insulin resistance and type 2 diabetes. American Journal of Physiology-­Endocrinology and Metabolism. 2016;310(8): E643–E651. doi: 10.1152/ajpendo.00445.2015.
  107. Jager J, Grémeaux T, Cormont M, Le Marchand-­Brustel Y, Tanti J-F. Interleukin 1β-­Induced Insulin Resistance in Adipocytes through Down-­Regulation of Insulin Receptor Substrate 1 Expression. Endocrinology. 2007;148(1):241—251. doi: 10.1210/en.2006—0692.
  108. Bouzakri K, Roques M, Gual P, Espinosa S, Guebre-­Egziabher F, Riou J-P, Laville M, Le Marchand-­Brustel Y, Tanti J-F, Vidal H. Reduced Activation of Phosphatidylinositol 3 Kinase and Increased Serine 636 Phosphorylation of Insulin Receptor Substrate 1 in Primary Culture of Skeletal Muscle Cells From Patients With Type 2 Diabetes. Diabetes. 2003;52(6):1319—1325. doi: 10.2337/diabetes.52.6.1319
  109. Vandanmagsar B, Youm Y-H, Ravussin A, Galgani JE, Stadler K, Mynatt RL, Ravussin E, Stephens JM, Dixit VD. The NLRP3 inflammasome instigates obesity-­induced inflammation and insulin resistance. Nature Medicine. 2011;17(2):179—188. doi: 10.1038/nm.2279
  110. Rheinheimer J, de Souza BM, Cardoso NS, Bauer AC, Crispim D. Current role of the NLRP3 inflammasome on obesity and insulin resistance: A systematic review. Metabolism. 2017;74:1—9. doi: 10.1016/j.metabol.2017.06.002
  111. González-­Domínguez Á, Belmonte T, Domínguez-­Riscart J, Ruiz-­Ocaña P, Muela-­Zarzuela I, Saez-­Benito A, Montañez-­Martínez R, Mateos RM, Lechuga-­Sancho AM. Altered insulin secretion dynamics relate to oxidative stress and inflammasome activation in children with obesity and insulin resistance. Journal of Translational Medicine. 2023;21(1):559. doi: 10.1186/s12967 023 04337 7
  112. Stuart CA, Howell MEA, Cartwright BM, McCurry MP, Lee ML, Ramsey MW, Stone MH. Insulin resistance and muscle insulin receptor substrate 1 serine hyperphosphorylation. Physiological Reports. 2014;2(12): e12236. doi: 10.14814/phy2.12236
  113. Ma J, Nakagawa Y, Kojima I, Shibata H. Prolonged Insulin Stimulation Down-regulates GLUT4 through Oxidative Stress-­mediated Retromer Inhibition by a Protein Kinase CK2 dependent Mechanism in 3T3-L1 Adipocytes. Journal of Biological Chemistry. 2014;289(1):133—142. doi: 10.1074/jbc.M113.533240.
  114. Kadenbach B. Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochimica et Biophysica Acta (BBA) — Bioenergetics. 2003;1604(2):77—94. doi: 10.1016/S0005-2728 (03) 00027 6
  115. Ellam TJ, Chico TJA. Phosphate: The new cholesterol? The role of the phosphate axis in non-uremic vascular disease. Atherosclerosis. 2012;220(2):310—318. doi: 10.1016/j.atherosclerosis.2011.09.002.
  116. Zhao M—M, Xu M-J, Cai Y, Zhao G, Guan Y, Kong W, Tang C, Wang X. Mitochondrial reactive oxygen species promote p65 nuclear translocation mediating high-phosphate-­induced vascular calcification in vitro and in vivo. Kidney International. 2011;79(10):1071—1079. doi: 10.1038/ki.2011.18
  117. Scheuner D, Kaufman RJ. The Unfolded Protein Response: A Pathway That Links Insulin Demand with β-­Cell Failure and Diabetes. Endocrine Reviews. 2008;29(3):317—333. doi: 10.1210/er.2007-0039
  118. Nguyen TT, Quan X, Hwang K-H, Xu S, Das R, Choi S-K, Wiederkehr A, Wollheim CB, Cha S-K, Park K-S. Mitochondrial oxidative stress mediates high-phosphate-­induced secretory defects and apoptosis in insulin-­secreting cells. American Journal of Physiology-­Endocrinology and Metabolism. 2015;308(11): E933–E941. doi: 10.1152/ajpendo.00009.2015
  119. Papas AM. Determinants of antioxidant status in humans. Lipids. 1996;31(1Part1). doi: 10.1007/BF02637055
  120. Feillet-­Coudray C, Rock E, Coudray C, Grzelkowska K, Azais-­Braesco V, Dardevet D, Mazur A. Lipid peroxidation and antioxidant status in experimental diabetes. Clinica Chimica Acta. 1999;284(1):31—43. doi: 10.1016/S0009—8981 (99) 00046 7.
  121. Rice-­Evans C, Miller NJ. [241 Total antioxidant status in plasma and body fluids. 1994, pp 279—293.
  122. Likidlilid A, Patchanans N, Peerapatdit T, Sriratanasathavorn C. Lipid peroxidation and antioxidant enzyme activities in erythrocytes of type 2 diabetic patients. Journal of the Medical Association of Thailand = Chotmaihet thangphaet. 2010;93(6):682—93
  123. Sharma T, Singh I, Singh N, Vardey G, Kumawat M, Ghalaut V, Shankar V. Antioxidant enzymes and lipid peroxidation in type 2 diabetes mellitus patients with and without nephropathy. North American Journal of Medical Sciences. 2013;5(3):213. doi: 10.4103/1947-2714.109193
  124. Sena CM, Carrilho F, Seiça RM. Endothelial Dysfunction in Type 2 Diabetes: Targeting Inflammation. In: Endothelial Dysfunction — Old Concepts and New Challenges. InTech, 2018 doi: 10.5772/intechopen.76994
  125. Balabolkin M.I., Kreminskaya V.M. KYeM. A role of oxidative stress in the pathogenesis of diabetic nephropathy and the possibility of its correction with α-lipoic acid preparations. Problems of Endocrinology. 2005. doi: 10.14341/probl200551322—32
  126. Balbi ME, Tonin FS, Mendes AM, Borba HH, Wiens A, Fernandez-­Llimos F, Pontarolo R. Antioxidant effects of vitamins in type 2 diabetes: a meta-analysis of randomized controlled trials. Diabetology & Metabolic Syndrome. 2018;10(1):18. doi: 10.1186/s13098 018 0318 5
  127. Knekt P, Ritz J, Pereira MA, O’Reilly EJ, Augustsson K, Fraser GE, Goldbourt U, Heitmann BL, Hallmans G, Liu S, P, Spiegelman D, Stevens J, Virtamo J, Willett WC, Rimm EB, Ascherio A. Antioxidant vitamins and coronary heart disease risk: a pooled analysis of 9 cohorts. The American Journal of Clinical Nutrition. 2004;80(6):1508—1520. doi: 10.1093/ajcn/80.6.1508
  128. Heitzer T, Schlinzig T, Krohn K, Meinertz T, Münzel T. Endothelial Dysfunction, Oxidative Stress, and Risk of Cardiovascular Events in Patients With Coronary Artery Disease. Circulation. 2001;104(22):2673—2678. doi: 10.1161/hc4601.099485
  129. Silvestrini A, Meucci E, Ricerca BM, Mancini A. Total Antioxidant Capacity: Biochemical Aspects and Clinical Significance. International Journal of Molecular Sciences. 2023;24(13):10978. doi: 10.3390/ijms241310978.
  130. Giulivi C, Cadenas E. Inhibition of Protein Radical Reactions of Ferrylmyoglobin by the Water-­Soluble Analog of Vitamin E, Trolox C. Archives of Biochemistry and Biophysics. 1993;303(1):152—158. doi: 10.1006/abbi.1993.1266
  131. Meulmeester FL, Luo J, Martens LG, Mills K, van Heemst D, Noordam R. Antioxidant Supplementation in Oxidative Stress-­Related Diseases: What Have We Learned from Studies on Alpha-­Tocopherol? Antioxidants. 2022;11(12):2322. doi: 10.3390/antiox11122322
  132. Mehta P, Tawfeeq S, Padte S, Sunasra R, Desai H, Surani S, Kashyap R. Plant-based diet and its effect on coronary artery disease: A narrative review. World Journal of Clinical Cases. 2023;11(20):4752—4762. doi: 10.12998/wjcc.v11.i20.4752

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».