

RUDN Journal of MEDICINE. ISSN 2313-0245 (Print). ISSN 2313-0261 (Online)

DOI 10.22363/2313-0245-2025-29-1-95-103 EDN GBJJXN

REVIEW ОБЗОРНАЯ СТАТЬЯ

Autonomic functions testing

Sawai Man Singh medical college, *Jaipur, Rajasthan, India*⊠ sainiravi414@gmail.com

Abstract. Relevance. The ubiquitous nature of the sympathetic and parasympathetic nervous system has allowed detailed tests in a variety of systems, including cardiovascular, gastrointestinal, urogenital, pupillary, sudomotor, and neuroendocrine. The most important characteristics of these tests are that they should be non-invasive, sensitive, specific, repeatable, quantitative, clinically useful and time-efficient. These tests were designed to investigate the possibility of autonomic failure, measure its severity, and assess its distribution. Clinical testing and research tests are the two main categories of these examinations. Cardiovagal, sudomotor and adrenergic autonomic functions are assessed by standard laboratory tests. The sweat test based on for measurement of the thermoregulation and the quantitative sudomotor axon reflex test (QSART) can be used to assess sudomotor function. Response of blood pressure and response of heart rate to Valsalva maneuver and head tilt are used to assess adrenal function, and extended hand grip tests are effective in determining the presence of autonomic failure, its natural history, and response to treatment. The Autonomic Function Test Battery is a set of tests for autonomous functioning. The Ewing battery is commonly used, which includes several parasympathetic and sympathetic tests. Conclusion. Autonomic function testing has a considerable amount of diagnostic importance, which can have preventive value due to a large number of mortality due to autonomic disorders.

Keywords: cardiovagal, Ewing's battery, parasympathetic, sudomotor, sympathetic

Funding. The authors received no financial support for the research, authorship, and publication of this article.

Author contributions. Ravi Saini — literature review, writing text; Naina Jangid — collection and processing of materials; Kapil Gupta — concept and design of research. All authors have made significant contributions to the development concepts, research and manuscript preparation, read and approved final version before publication.

Conflict of interest statement. The authors declare no conflict of interest.

© Gupta K., Saini R., Jangid N., 2025

This work is licensed under a Creative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by-nc/4.0/legalcode

Ethics approval — not applicable.

Acknowledgements — not applicable.

Consent for publication — not applicable.

Received 24.04.2024. Accepted 27.05.2024.

For citation: Gupta K, Saini R, Jangid N. Autonomic functions testing. *RUDN Journal of Medicine*. 2025;29(1):95—103. doi: 10.22363/2313-0245-2025-29-1-95-103. EDN GBJJXN

Introduction and background

The need for autonomic function tests lies in the fact that patients with autonomic failure show increased mortality [1]. Initially with the development of non-invasive cardio-vascular reflex function tests, a more systematic range is now available that is optimized for the early diagnosis of autonomic neuropathy. The primary need for these tests is to be noninvasive, sensitive, specific, reproducible, quantitative, clinically relevant, and less time-consuming [2, 3]. The appropriate reach of the parasympathetic and sympathetic nervous system to every organ of the body has allowed tests to be described in various organs [4].

Indications for evaluation of autonomic nervous system

Numerous variables such as posture of body, mental condition, consumable meals, drugs, as well as additional chemicals, might impact autonomic processes. The use of caffeine and nicotine need to be resisted for no less than 3–4 hours and 8 hours, correspondingly, before testing [5]. Anticholinergic substances must be ceased for 48 hours and sympathomimetic medications between 24 to 48 hours prior assessment [6]. Different approaches for assessing autonomic functions are represented in Table 1 [7].

Different approaches for assessing autonomic functions

Table 1

Clinical examinations	Research examinations
1. Tests of cardiovagal function	1. Evaluation of baroreflex gain
2. Tests of adrenergic function	2. Pharmacologic dissection studies
3. Plasma catecholamines	3. Skin vasodilation
4. Sudomotor functioning evaluations a. Quantitative sudomotor axon reflex test (QSART) b. Sweat test based on measurement of thermoregulation	4. Microneurography
	5. Splanchnic-mesenteric blood flow
	6. Cerebral vasoregulation
	7. Cardiac innervation
	8. Vasoregulation of the veins

Set of these tests sought to examine the existence of autonomic failure, quantify its severity, and evaluate its distribution (sudomotor, adrenergic, cardiovagal) [8].

This review aims to give a general overview of the neurophysiological assessments utilized to assess autonomous dysfunction [9–11]. Clinical goals in the evaluation of autonomic function are represented in Table 2 [12].

	Table 2
Clinical goals in the evaluation of autonomic function	
To evaluate the severity and distribution of autonomic function	
To diagnose limited autonomic neuropathy	
To diagnose and evaluate orthostatic intolerance	
To monitor the course of dysautonomia	
To monitor response to treatment	
As an instrument in research studies	

Autonomous functional assessments

- **1. Sudomotor function test:** The most commonly used methods for quantification of the sweat response are QSART, Thermoregulatory sweat test, Sympathetic skin response, and the Silastic imprinting method/sweat imprint [13,14].
- a) Thermoregulatory sweat test (TST): In it, adequate stimulus is given for the rise of core temperature to raise blood and mean skin temperature. Modified Guttmann's quinizarin sweat test (QST) is used to conduct the TST. The sodium salt of quinizarin (2–6-sulphonic acid) is used as a color indicator. It is a red-brown dye. The composition of the mixture is commonly used is represented in Table 3.

Table 3
The composition of the mixture is commonly used

Component	Amount
Quinizarin 2–6-disulphonic acid	35 g.
Sodium carbonate (powdered)	30 g.
Rice starch	60-70g.

b) Sweating is usually induced by heat, by giving one or two cups of hot tea and 5–10 gm of aspirin before the powder is applied. The patient is then placed under a Specially designed sweating cabinet having the dimensions as follows: Length 6 ft. 9 inches, Width 3 ft. 3 inches, Height 3 ft. 9 inches used for a variable time, usually from 15 to 45 minutes, depending on the readiness with which sweating is produced. The temperature within the box is regulated by 12 electric lamp bulbs of 25 watts each of them, as well as tube warmers and carbon filaments lights installed has a chromium-platedreflectors; Wall-mounted controls on the exterior of the cabinets operate stacks of 3

carbon filament lights with a power output of 24–32 candle watts. Furthermore, four 6-foot-long tubular heaters with a 60-watt capacity per foot are installed. When the secretion of sweat commences the hydrotic The anhidrotic parts stay the same color while the skin in certain places turns a violet-blue hue and the openings of each sweating ducts appears as tiny black spots. Body temperature measurements like skin temperatures, rectum temperatures, mouth temperatures, potentiometer, and cold junction are measured [15, 16].

c) *QSART*: It quantitatively evaluates the postganglionic sympathetic sudomotor axon recorded from four sites Medial fore-arm site three-fourths of the distance from the ulnar epicondyle to the pisiform bone; proximal lateral leg, 5 cm distal to the fibular head; medial distal leg, 5 cm proximal to the medial malleolus, Proximal foot over the extensor digitorum brevis muscle [17, 18].

Acetylcholine and a constant current of 2 mA for 5 min is delivered and the responses are recorded in a compartment of a multi-compartmental sweat cell. The sweat response is measured by determining the volume of sweat with help of a sudorometer. The composite autonomic scoring scale (CASS) is 10 point scale that Permits 4 points for adrenergic insufficiency and 3 points for cardiovagal and sudomotor failure, respectively. Individuals with a CASS score of less than three have relatively modest autonomic dysfunction, those with scores of 7 to 10 have a severe failure, and those with scores between these two ranges have moderate autonomic failure [19]. Since QSART volumes vary with age and gender, CASS has used the correction of confounding effects of them. The sudomotor index is scored from 0 (no deficit) to 3 (maximal deficit) [20].

d) Sympathetic skin response (SSR): Skin potential recordings is able to identify sympathetic sudomotor deficit in peripheral neuropathies and central autonomic disorders [21]. It is a momentary change of the electrical potential of the skin, which can be evoked by various internal or external stimuli [22]. Following thorough cleansing of the skin's areas, electrolyte gels should be applied and Put the active electrodes in the bottom of your foot or palms. SSR may also be recorded from the forehead, the axilla, or the genitalia. The temperature of a quiet dimly lit room is normally kept at 22–24 °C or higher, with the subject supine and relaxed. Most laboratories keep the skin temperature at >32–36 °C. The stimuli might be coughing, an electrical surge, a loud noise, an inspiring gasp, or a skin stroke; flashing or cold pressor test, hypodermic «injection» and other forms of stress can also induce the SSR. Deep breathing or mixed stimuli (electric and acoustic). Because emotions differ, sweating glands produce sweat which brings a change in resistance of our body. Therefore, different changes were expected at different states of emotion in GSR, and the production of different emotional expressions was reflected whenever there is a change in autonomic activity Table 4 [23].

Table 4
Different GSR ranges

Conditions	GSR range (K ohms)
Normal	25 to 29
Fit	30 to 40
Exercise	22 to 24

As GSR value is > 25K OHMS this will indicate low arousal which means the brain is in a calm state and if < 5 K OHMS then this will indicate a high level.

e) Silastic imprinting method/Sweat imprint (SIM): Kennedy E. systematically measured the number and size of sweat droplets activated in response to direct chemical stimulation. Skin sites on the medial calf and foot dorsum, each measuring 2cm2 stimulated to sweat maximally by iontophoresis of 1 % pilocarpine (2 mA, 5min). The skin test sites are prepped with a 1 % iodine solution. The skin is wiped dry and immediately the camera was pressed against the skin, to begin image

collection and storage. Excreted sweat from each sweat pore after coming in contact with iodine and starch, a tiny dark spot is formed. Transparent tape thinly coated with starch is attached over the lens of the Sensitive Sweat Test (SST) miniature camera. The tape prevents the formation of a drop and sweat is forced to flow centrifugally to form a flat expanding dark spot. The SST device imaged spots from > 200 sweat glands (SGs) at 1 frame/sec (area of 2 cm2) for 60 to 90 seconds, until adjacent spots coalesced [24].

2. Neuroendocrine function test.

Acute exposure to CO2 (acute hypercapnia) can be used as a biological stressor for assessing hypothalamic-pituitary-adrenal (HPA) and sympatho-adrenomedullary (SAM) axes [25]. HPA and SAM are neuroendocrine components of responses to stress. The $\rm CO_2$ test involves taking a single Vital Capacity (VC) breath of four different concentrations respectively 5 %, 25 %, 35 %, 50 % [26, 27]. Physiological, psychological, and neuroendocrine responses against $\rm CO_2$ exposure are measured. Alone 35 % of $\rm CO_2$ can be used.

- a) Physiological measures and psychological measures: Subjects are rested for 30 min before physiological monitoring and blood sampling. Baseline cardiovascular measures are taken at the end of the rest period with continuous monitoring starting 5 min before the CO₂ and continuing 5 min after completion of exposure. Continuous blood pressure and pulse are measured. Subjective feelings of anxiety, fear, breathlessness, relaxed are recorded by a visual analog scale, for the recording of somatic symptoms of panic similar analog scale is used with 39 point questionnaire. Questionnaire and blood samples are taken simultaneously every 15 min, starting 30 min before exposure and continuing 60 min after it [28].
- b) *Biochemical measures:* Plasma cortisol, salivary cortisol, ACTH, prolactin, arginine vasopressin, FSH, LH, GH, TSH, renin, noradrenaline, and adrenaline are measures against $\mathrm{CO_2}$ exposure [29–31].

3. Pupillary function test.

Pupil tests provide a convenient, simple, and non-invasive method for the evaluation of autonomic functions [32]. Balance of activity in parasympathetic and sympathetic are standardized or controlled for the measurement of pupil size and can be used to identify parasympathetic or sympathetic deficits. All modern pupillometers are based on the principles of having an infra-red source that illuminates the iris, a video camera records the reflected light, to detect the pupil computerized image analysis techniques are used within each video frame which provides continuous measurement of pupil size, and a light stimulus to the eye by using a photostimulation.

4. Gastrointestinal function test.

Gastrointestinal scintigraphy: The accuracy and ease of quantification of radiolabeled solids and liquids had made scintigraphy the gold standard for testing gastric emptying [33–35].

5. Urogenital function test.

In these tests, urogenital autonomic functions, sexual dysfunction, and bladder dysfunction are assessed [36, 37].

- a) *Urodynamic tests:* These tests observe using the urethra, sphincters, and bladder to store and release pee. The capacity of the bladder to retain pee and release it consistently fully is the primary objective of these examinations. Additionally, they demonstrate if the bladder is leaking urine due to involuntary spasms [38].
- b) Sexual dysfunction tests: Assessing genitourinary autonomic functions erectile dysfunction (ED), retrograde ejaculation, and female sexual dysfunctions are assessed by a detailed medical history, sexual function history, medication history, assessment of glycemic control; a hormonal and psychological evaluation [39, 40].

6. Cardiovascular function tests.

Cardio vagal and adrenergic function tests

Cardio vagal functions are assessed by the Valsalva ratio and heart rate response to deep breathing or standing up and adrenergic functions are assessed by the blood pressure response to the Valsalva maneuver or Isometric handgrip test [41–50]. A number of other tests of cardiovascular reflex function have been described, the arterial blood pressure response to different stresses including mental calculation, loud noise, ice and lowerbody negative pressure being used [51, 52].

- a) *Mental stress test*. For two minutes, the participant is required to complete a typical arithmetic exam that involves repeatedly deducting 17 from a four-digit figure. Systolic blood pressure increases more than 10 mmHg are regarded as typical.
- b) *Cold-pressor test*. The participant's hand was submerged in ice-cold (0–4 °C) water for three minutes. It is assessed how much the opposing arm's systolic blood pressure increased [53, 54]. The afferent pain and temperature fibers from the skin are activated by the cold stimulation. The nerve impulses cause the contraction of arteries elevated arterial pressure, and an accelerated heart rate as they travel along the spinothalamic tract to reach certain brain regions. A reading of > 15 mmHg is normal.
- c) Cold face test. Participants are asked to breathe normally and to avoid breath-holding, deep breathing, or hyperventilation [55]. After resting for 15 min in the supine position, the CFT was induced by the application of three cold packs bilaterally (0.5C) at the forehead, face(excluding the eyes), and nose, for 1 min. Heart rate, blood pressure, and skin temperature should be recorded from 5 min before CFT (baseline) to 5 min after the CFT.
- d) Lower body negative pressure. The lower body negative pressure (LBNP) test is a useful choice for individuals who are incapable to complete the Valsalva Maneuver (VM). An applied pressure of around -40 mmHg creates a blood volumetric range, identical to what happens with the VM, which leads to a reduction in venous return, a decrease in venous pooling throughout the body, and comparable changes in blood pressure and heart rate. Cardiovascular reflexes and orthostatic tolerance have been studied in relation to submerging, inaction, extended rest in bed, and weightlessness during spaceflight using LBNP [56–58]. Each supine participant positioned his lower body within the cylindrical suction chamber, which is sealed behind the sternum and has a Neoprene skirt on it. To keep people from moving, foot supports were positioned within the room [59, 60].

Baroreflex sensitivity testing

Stretching sensors called baroreceptors, found in the aorta and carotid sinus and react to artery wall expanding detects changes in blood pressure [61–63]. The brain

stem receives burst-like information about each blood pressure pulse from aortic and carotid baroreceptors via the afferent vagal and glossopharyngeal pathways. An increase in afferent input into central autonomic nuclei (nucleus tractus solitarius) is the consequence of this increase in stretching, which also causes a transient rise in blood pressure. The baroreflex's sensitivities may be understood as its reactivity to blood pressure challenges. It can be described as the level of alteration in sympathetic neural activity (SNA) for any variation in blood pressure [64, 65]. A vasoconstrictor drug (phenylephrine) can be injected to raise blood pressure, which will naturally lower heart rate (HR) and raise IBI. This will allow BRS to be assessed. Most often, natural heart rate variability (HRV) and blood pressure variability (BPV), which are derived from a continuous noninvasive finger arterial pressure measurement using the Finapress technique, may also be used to noninvasively assess BRS [66]. The theory is that there is constantly random BPV because of the resonance phenomena described above as well as breathing, which beat-to-beat regulates cardiac filling, stroke volume, and, therefore, the BP pulsations (Mayer [67–70].

Conclusion

Autonomic functions could be tested by various methods most of them noninvasive consist sympathetic and parasympathetic types of tests. Due to the pervasive nature of autonomic functions, autonomic function testing (AFT) includes a wide range of tests related to different physiological systems of the body. AFT has a considerable amount of diagnostic importance, which can have preventive value due to a large number of mortality due to autonomic disorders.

References/ Библиографический список

- 1. Ewing DJ, Campbell IW, Clarke BF. Assessment of cardiovascular effects in diabetic autonomic neuropathy and prognostic implications. *Ann Intern Med.* 1980; 92: 308—11.
- 2. Ewing DJ, Clarke BF. Autonomic neuropathy: its diagnosis and prognosis. *Clin Endocrinol Metab.* 1986;15(4):855—888. doi:10.1016/s0300-595x(86)80078-0
- 3. Low PA. Autonomic Nervous system function. *J Clin Neurophysiol*. 1993;10:14—27.

- 4. Assessment: clinical autonomic testing. Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. 1996;46(3):873—80.
- 5. Scott WA. Assessment of the autonomic nervous system. In: Moss and Adams heart disease in infants and adolescents including the fetus and young adult. Baltimore (et.) Williams and Wilkins. 1995; 172—81.
- 6. Jaradeh SS, Prieto TE. Evaluation of the autonomic nervous system. *Phys Med Rehabil Clin N Am.* 2003;14(2):287—305. doi:10.1016/s1047-9651 (02) 00121-3
- 7. Low PA. Testing the Autonomic Nervous System. *Seminars in neurology*. 2003;23(4):407—21.
- 8. Low PA. Laboratory evaluation of autonomic function. Advances in Clinical *Neurophysiology (Supplements to Clinical Neurophysiology)*. 2004;57:58—68.
- 9. Nahm FK, Freeman R. Autonomic Nervous System Testing. *The Clinical Neurophysiology Primer.* 2007;3:12.
- 10. Low PA. Quantitation of autonomic responses. In: Dyck PJ, Thomas PK, Lambert EH, Bunge R, editors. Peripheral neuropathy. Philadelphia. 2005. 315 p.
- 11. Zygmunt A. Methods of evaluation of autonomic nervous system function. *Arch Med Sci.* 2010;6(1):11—18.
- 12. Low PA. Autonomic Function Tests: Some Clinical Applications. *J Clin Neurol*. 2013;9:1—8.
- 13. Low PA. Evaluation of sudomotor function. *Clin Neurophysiol*. 2004:115:1506—13.
- 14. Kimpinski K, Iodice V, Sandroni P, Fealey RD, Vernino S, Low PA. Sudomotor dysfunction in autoimmune autonomic ganglionopathy. *Neurology*. 2009;73(18):1501—1506. doi:10.1212/WNL.0b013e3181bf995f
- 15. Guttman L. A Demonstration of the Study of Sweat Secretion by the Quinizarin Method. *Proceedings of the Royal Soctety of Medicine*. 1941;35(2): 77—78.
- 16. Guttman L. The Management of the Quinizarin Sweat Test. *Postgrad Med J.* 1947; 23(262):353—66.
- 17. Low PA. Quantitative sudomotor axon reflex test in normal and neuropathic subjects. *Ann Neurol*.1983;14:573—80.
- 18. Low PA. The effect of aging on cardiac autonomic and postganglionic sudomotor function. *Muscle Nerve*.1990; 13:152—57.
- 19. Low PA. Composite Autonomic Scoring Scale for Laboratory Quantification of Generalized Autonomic Failure. *Mayo Clin. Proc.* 1993;68:748—52.
- 20. Low PA, Denq JC, Opfer-Gehrking TL, Dyck PJ, O'Brien PC, Slezak JM. Effect of age and gender on sudomotor and cardiovagal function and blood pressure response to tilt in normal subjects. *Muscle Nerve*. 1997;20(12):1561—1568. doi:10.1002/(sici)1097-4598(199712)20:12<1561:: aid-mus11>3.0.co;2-3
- 21. Shahani E. Sympathetic skin response a method of assessing unmyelinated axon dysfunction in peripheral neuropathies. *J Neurol Neurosurg. Psychiatry.* 1984;47:536—42.
- 22. Roberto V. Sympathetic skin response Basic mechanisms and clinical applications. *Clin Auton Res.* 2003;13: 256—70.
- 23. Sharma T, Kapoor B. Conference on Advances in Communication and Control Systems. Proceedings. Bangalore. 2013;42:45.

- 24. Kennedy E. A Device to Quantify Sweat in Single Sweat Glands to Diagnose Neuropathy. *Journal of Medical Devices*. 2013;7(3):030941.
- 25. Argyropoulos SV, Bailey JE, Hood SD. Inhalation of 35 % CO(2) results in activation of the HPA axis in healthy volunteers. *Psychoneuroendocrinology*. 2002;27(6):715—729. doi:10.1016/s0306-4530 (01) 00075-0
- 26. Kaye JM, Buchanan F, Kendrick A. Acute carbon dioxide exposure in healthy adults: evaluation of a novel means of investigating the stress response. *J Neuroendocrinol*. 2004;16: 256—64.
- 27. Kaye JM, Corrall RJ, Lightman SL. A new test for autonomic cardiovascular and neuroendocrine responses in diabetes mellitus: evidence for early vagal dysfunction. *Diabetologia*. 2005;48(1):180—186. doi:10.1007/s00125-004-1615-0
- 28. Flumazenil provocation of panic attacks. Evidence for altered benzodiazepine receptor sensitivity in panic disorder. 1990;47(10):917—25.
- 29. Scott WA. Assessment of the autonomic nervous system. In: Moss and Adams heart disease in infants and adolescents including the fetus and young adult. Baltimore. Williams and Wilkins. 1995. 181 p.
- 30. Mathias CJ. Autonomic diseases: clinical features and laboratory evaluation. *J Neurol Neurosurg Psychiatry*. 2003;74(Suppl 3):31—41.
- 31. Sinski M. Why study sympathetic nervous system? *J Physiol Pharmacol*. 2006;57(Suppl.11):79—92.
- 32. Bremner F. Pupil evaluation as a test for autonomic disorders. *Clin Auton Res.* 2009:19:88—01.
- 33. Maurer A. Letter from the guest editor: Can we prevent tarnishing a gold standard? *Semin Nucl Med.* 1995;25:288.
- 34. Maurer A. Update on Gastrointestinal Scintigraphy. *Semin Nucl Med.* 2005;36:110—18.
- 35. Marathe CS, Jones KL, Wu T, Rayner CK, Horowitz M. Gastrointestinal autonomic neuropathy in diabetes. *Auton Neurosci*. 2020;229:102718. doi:10.1016/j.autneu.2020.102718
- 36. Moningi S. Autonomic disturbances in diabetes: Assessment and anaesthetic implications. *Indian journal of anaesthesia*. 2018;62(8):575—83.
- 37. Mayo Clinic. Diseases conditions/autonomic neuropathy/diagnosis treatment. https://www.mayoclinic.org/diseases-conditions/autonomic-neuropathy/diagnosis-treatment (Access date 02 March 2024).
- 38. Urodynamic Testing NIH. https://www.niddk.nih.gov/health-information/diagnostic-tests/urodynamic-testing. (Access date 02 March 2024).
- 39. Enzlin P. Diabetes mellitus and female sexuality: A review of 25 years' research. *Diabetes Med.* 1998;15:809—15.
- 40. Bacon CG, Hu FB, Giovannucci E, Glasser DB, Mittleman MA, Rimm EB. Association of type and duration of diabetes with erectile dysfunction in a large cohort of men. *Diabetes Care*. 2002;25(8):1458—1463. doi:10.2337/diacare.25.8.1458
- 41. Ewing DJ. Cardiovascular reflexes and autonomic neuropathy. *Clin Sci Mol Med.* 1978;55:321—7.
- 42. Ziegler D. Assessment of cardio-vascular autonomic function; age-related normal ranges and reproducibility of spectral analysis, vector analysis, and standard tests of heart rate variation and blood pressure responses. *Diabet Med.* 1992;9:166—75.
- 43. Hilz Max J. Quantitative studies of autonomic function. *Muscle Nerve*. 2006;33: 6—20.

- 44. Dharwadkar AA, Dharwadkar AR, Bagali S, Shaikh GB. Decrease in cardiovascular parasympathetic function tests a decade earlier in females. *Indian J Physiol Pharmacol*. 2011;55(1):94—96.
- 45. Gautam S et al. Comparison of cardiac autonomic functions among postmenopausal women with and without hormone replacement therapy, and premenopausal women. Indian J Physiol Pharmacol 2011; 55 (4): 297—03.
- 46. Parashar R. Age Related Changes in Autonomic Functions. Journal of Clinical and Diagnostic Research. 2016;10(3):11—15.
- 47. Saba E. Autonomic nervous system changes associated with rheumatoid arthritis: Clinical and electrophysiological study. *The Egyptian Rheumatologist.* 2014; 36:157—63.
- 48. Lathadevi GV. Evaluation of the Autonomic Functions in Perimenopausal and Menopausal Women. *Journal of Clinical and Diagnostic Research*. 2011;5(6):1148—50.
- 49. Jyotsna VP. Cardiac autonomic function in patients with diabetes improves with practice of comprehensive yogic breathing program. Indian Journal of Endocrinology and Metabolism 2013; 17 (3): 480—85.
- 50. Khanam AA, Sachdeva U, Guleria R, Deepak KK. Study of pulmonary and autonomic functions of asthma patients after yoga training. *Indian J Physiol Pharmacol*. 1996;40(4):318—324.
- 51. Van Den Berg. Bedside Autonomic Function Testing in Patients with Vasovagal Syncope. *PACE*. 1997;20 [Pt. II];2039—42.
- 52. Bannister M. Cardiovascular reflexes and biochemical responses in progressive autonomic failure. *Brain*. 1977;100:327—44.
- 53. Hilz MJ, Dütsch M. Quantitative studies of autonomic function. *Muscle Nerve*. 2006;33(1):6—20. doi:10.1002/mus.20365
- 54. Khaliq F. Autonomic reactivity to cold pressor test in Prehypertensive and hypertensive Medical students. *Indian J Physiol Pharmacol.* 2011;55 (3): 246—52.
- 55. Khurana RK. Cold face test: adrenergic phase. *Clin Auton Res.* 2007:17:211—16.
- 56. Patel AR, Engstrom JE, Tusing LD, McNeeley KJ, Chelimsky TC. Lower body negative pressure: a test of cardiovascular autonomic function. *Muscle Nerve*. 2001;24:481—87. doi: 10.1002/mus.1030
- 57. Essandoh LK. Differential effects of lower body negative pressure on foreman and blood flow. *J Appl Physiol*. 1986; 61:994—98.
- 58. Stevens PM, Lamb LE. Effects of lower body negative pressure on the cardiovascular system. *Am J Cardiol*. 1965;16:506—15.
- 59. Wallin BG. Sympathetic nerve activity in arm and leg muscles during lower body negative pressure in humans. *J Appl Physiol*. 1989;66:2778—81.
- 60. Dikshit MB. Lower-body suction and cardiovascular reflexes: physiological and applied considerations. *Indian J Physiol Pharmacol*. 1990;34:3—12.
- 61. Švigelj V, Šinkovec M, Avbelj V, Trobec R. Simple cardiovagal and adrenergic function tests in carotid artery stenosis patients as a potential tool for determining a transient autonomic dysfunction. *Clin Auton Res.* 2015;25(6):383—90.
- 62. Timmers HJ. Baroreflex failure: a neglected type of secondary hypertension. *Neth J Med.* 2004;62:151—55.
- 63. Eduardo E. Benarroch. The arterial baroreflex Functional organization and involvement in neurologic disease. *Neurology*. 2008;71(21):1733—38.

- 64. Charkoudian N. Sympathetic neural mechanisms in human cardiovascular health and disease. *Mayo Clin Proc.* 2009;84: 822.
- 65. Swenne CA. Baroreflex sensitivity: mechanisms and measurement. *Neth Heart J.* 2013;21(2):58—60. doi:10.1007/s12471-012-0346-v
- 66. Smyth HS. Reflex regulation of arterial pressure during sleep in man. A quantitative method of assessing baroreflex sensitivity. Circ Res. 1969; 24:109—21.
- 67. van de Vooren H, Gademan MG, Swenne CA, TenVoorde BJ, Schalij MJ, Van der Wall EE. Baroreflex sensitivity, blood pressure buffering, and resonance: what are the links? Computer simulation of healthy subjects and heart failure patients. *J Appl Physiol*. 2007;102(4):1348—1356. doi:10.1152/japplphysiol.00158.2006
- 68. Persson PB. Time versus frequency domain techniques for assessing baroreflex sensitivity. *J Hypertens*. 2001 Oct;19(10):1699—705.
- 69. Barthel P, Bauer A, Müller A, Huster KM, Kanters JK, Paruchuri V, Yang X, Ulm K, Malik M, Schmidt G. Spontaneous baroreflex sensitivity: prospective validation trial of a novel technique in survivors of acute myocardial infarction. *Heart Rhythm.* 2012;9(8):1288—1294. doi:10.1016/j.hrthm.2012.04.017
- 70. Martinez-Alanis M, Calderón-Juárez M, Martínez-García P. Baroreflex Sensitivity Assessment Using the Sequence Method with Delayed Signals in End-Stage Renal Disease Patients. *Sensors (Basel)*. 2022;23(1):260. doi:10.3390/s23010260

Тестирование автономных функций

Медицинский колледж Савай Ман Сингх, Джайпур, г. Раджастхан, Индия ⊠ sainiravi414@gmail.com

Аннотация. Актуальность. Повсеместная природа симпатической и парасимпатической нервной системы позволила проводить подробные тесты в различных системах, включая сердечно-сосудистую, желудочно-кишечную, мочеполовую, зрительную, судомоторную и нейроэндокринную. Наиболее важными характеристиками этих тестов являются то, что они должны быть неинвазивными, чувствительными, специфичными, повторяемыми, количественными, клинически полезными и эффективными по времени. Эти тесты были разработаны для исследования возможности автономной недостаточности, измерения ее тяжести и оценки ее распространения. Клинические испытания и исследовательские тесты являются двумя основными категориями этих обследований. Кардиовагальные, судомоторные и адренергические автономные функции оцениваются с помощью стандартных лабораторных тестов. Тест на пот, основанный на измерении терморегуляции, и количественный тест рефлекса судомоторного аксона (QSART) можно использовать для оценки судомоторной функции. Реакция артериального давления и реакция частоты сердечных сокращений на маневр Вальсальвы и наклон головы используются для оценки функции надпочечников, а тесты с расширенным захватом руки эффективны для определения наличия автономной недостаточности, ее естественного течения и реакции на лечение. Набор тестов автономной функции представляет собой совокупность тестов для оценки автономного функционирования. Обычно используется набор Юинга, который включает несколько тестов для парасимпатической и симпатической нервной системы. Выводы. Тестирование функции вегетативной нервной системы имеет большое диагностическое значение, которое также может иметь и профилактическое значение ввиду большого количества смертей из-за расстройств вегетативных функций.

Ключевые слова: кардиовагальный, набор тестов Юинга, парасимпатический, судомоторный, симпатический

Информация о финансировании. Авторы не получали финансовой поддержки за исследование, авторство и публикацию этой статьи.

Вклад авторов. Рави Саини — обзор литературы, написание текста; Наина Джангид — сбор и обработка материалов; Капил Гупта — концепция и дизайн исследования. Все авторы внесли значительный вклад в разработку концепций, исследования и подготовку рукописи, прочитали и одобрили окончательную версию перед публикацией.

Информация о конфликте интересов. Авторы заявляют об отсутствии конфликта интересов.

Этическое утверждение — неприменимо.

Благодарности — неприменимо.

Информированное согласие на публикацию — неприменимо.

Поступила 24.04.2024. Принята 27.05.2024.

Для цитирования: *Gupta K.*, *Saini R.*, *Jangid N.* Autonomic functions testing // Вестник Российского университета дружбы народов. Серия: Медицина. 2025. Т. 29. № 1. С. 95—103. doi: 10.22363/2313-0245-2025-29-1-95-103. EDN GBJJXN

Corresponding author: Ravi Saini- PhD scholar, Department of physiology, Sawai Man Singh Medical College, 302004, Adarsh Nagar, Jaipur, Rajasthan, India. E-mail: sainiravi414@gmail.com
Gupta K. ORCID 0000-0002-6505-4216
Saini R. ORCID 0000-0001-8154-9385
Jangid N. ORCID 0009-0005-3178-6522

Ответственный за переписку: Саини Р.— аспирант, кафедра физиологии, Медицинский колледж Савай Ман Сингх, Индия, 302004, Раджастхан, Джайпур, Адарш Нагар, E-mail: sainiravi414@gmail.com

Гупта К. ORCID 0000-0002-6505-4216 Саини Р. ORCID 0000-0001-8154-9385 Джангид Н. ORCID 0009-0005-3178-6522