Image processing for ASTER remote sensing data to map hydrothermal alteration zones in East Kazakhstan
- 作者: Mahmoud H.A.1, Karelina E.V.1, Markov V.E.1, Diakonov V.V.2, Vikentyev I.V.3
-
隶属关系:
- RUDN University
- Sergo Ordzhonikidze Russian State University for Geological Prospecting
- Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry of the Russian Academy of Sciences
- 期: 卷 24, 编号 1 (2023)
- 页面: 95-104
- 栏目: Articles
- URL: https://journals.rcsi.science/2312-8143/article/view/327608
- DOI: https://doi.org/10.22363/2312-8143-2023-24-1-95-104
- EDN: https://elibrary.ru/CTEBGK
- ID: 327608
如何引用文章
全文:
详细
Porphyry copper deposits are accompanied by extensive aureoles of hydrothermally altered rocks which make it possible to detect them on satellite images in the absence of vegetation. The study is devoted to using the Earth’s remote sensing data, particularly, satellite images from the Japanese sensor ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), which are used to identify areas that are promising for the discovery of porphyry copper deposits and ore occurrences within the copper belt of Kazakhstan. The analysis of numerous publications that offer various methods for processing ASTER images for the interpretation of hydrothermally altered rocks accompanying porphyry copper occurrences showed that the most effective method for this region is the Crosta technique. The Crosta technique, unlike other methods, does not use primary bands, but their combinations are obtained by the principal components analysis method. Thus, the combination of the results of the principal components analysis with the use of index images and analysis of the geological map made it possible to identify areas of hydrothermally altered rocks in the study area. The described technique helps to predict promising areas for porphyry copper mineralization of varying degrees of reliability, associated with their hydrothermal processing.
作者简介
Hamza Mahmoud
RUDN University
Email: 1032205919@rudn.ru
ORCID iD: 0000-0002-2946-7144
SPIN 代码: 1929-6130
master's student, Department of Subsoil and Petroleum Engineering, Academy of Engineering
6 Miklukho-Maklaya St, Moscow, 117198, Russian FederationElena Karelina
RUDN University
编辑信件的主要联系方式.
Email: karelina-ev@rudn.ru
ORCID iD: 0000-0003-4691-4855
SPIN 代码: 4919-8300
Scopus 作者 ID: 57215413670
PhD of Geology, Associate Professor of the Department of Mineral Developing and Oil & Gas Business, Academy of Engineering
6 Miklukho-Maklaya St, Moscow, 117198, Russian FederationVladimir Markov
RUDN University
Email: markov-ve@rudn.ru
ORCID iD: 0000-0001-6594-0763
SPIN 代码: 5882-5663
senior lecturer, Department of Mineral Developing and Oil & Gas Business, Academy of Engineering
6 Miklukho-Maklaya St, Moscow, 117198, Russian FederationViktor Diakonov
Sergo Ordzhonikidze Russian State University for Geological Prospecting
Email: mdf.rudn@mail.ru
ORCID iD: 0000-0002-9153-6489
SPIN 代码: 8780-8588
Scopus 作者 ID: 57200068947
Doctor of Science in Geology, Professor
23 Miklukho-Maklaya St, Moscow, 117997, Russian FederationIlya Vikentyev
Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry of the Russian Academy of Sciences
Email: viken@igem.ru
ORCID iD: 0000-0001-9133-7562
SPIN 代码: 2456-3030
Scopus 作者 ID: 6506542626
Doctor of Geology, leading researcher, Laboratory of Ore Deposits
35 Staromonetnyi Pereulok, Moscow, 119017, Russian Federation参考
- Haldar SK. Mineral exploration principles and applications. 2nd ed. Elsevier; 2018.
- Yong G, Xining Z, Peter MA, Alfred S, Lianfa L. Geoscience-aware deep learning: a new paradigm for remote sensing. Science of Remote Sensing. 2022;5:100047. http://doi.org/10.1016/j.srs.2022.100047
- Sabins FF. Remote sensing for mineral exploration. Ore Geology Reviews. 1999;14:157-183. http://doi.org/10.1016/S0169-1368(99)00007-4
- Di Tommaso I, Rubinstein N. Hydrothermal alteration mapping using ASTER data in the Infiernillo Porphyry Deposit, Argentina. Ore Geology Reviews. 2007; 32:275-290. http://doi.org/10.1016/j.oregeorev.2006.05.004
- Abrams M, Hook SJ. Simulated ASTER data for geologic studies. IEEE Transactions on Geoscience and Remote Sensing. 1995;33:692-699. https://doi.org/10.1109/36.387584
- Pour AB, Hashim M, Marghany M. Using spectral mapping techniques on short wave infrared bands of ASTER remote sensing data for alteration mineral mapping in SE Iran. International Journal of the Physical Sciences. 2011;6(4):917-929.
- Tomislav H. A practical guide to geostatistical mapping of environmental variables. Geoderma. 2007;140: 417-427.
- Lowell JD, Guilbert JM. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Economic Geology. 1970;65:373-408.
- Hunt GR, Ashley P. Spectra of altered rocks in the visible and near infrared. Economic Geology. 1979; 74:1613-1629.
- Mars JC, Rowan LC. Regional mapping of phyllic- and argillic-altered rocks in the Zagros Magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere. 2006;2:161-186.
- Sillitoe RH. Porphyry copper systems. Economic Geology. 2010;105:3-41.
- Kotelnikov AE, Fedosova KI. Paleovolcanic reconstruction of the Mednogorsk Ore District. RUDN Journal of Engineering Research. 2016;(1):94-100. (In Russ.)
- Diakonov VV. Copper-porphyry deposits - conditions of localization and search. Moscow: RUDN University; 2010.
- Pour AB, Hashim M. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geology Reviews. 2012;44:1-9. https://doi.org/10.1016/j.oregeorev.2011.09.009
- Yoshiki N. Rock type mapping with indices defined for multispectral thermal infrared ASTER data: case studies. Remote Sensing for Environmental Monitoring, GIS Applications, and Geology: Proceedings SPIE. 2003;4886:123-132. https://doi.org/10.1117/12.462358
- Rockwell BW, Hofstra AH. Identification of quartz and carbonate minerals across Northern Nevada using ASTER thermal infrared emissivity data - implications for geologic mapping and mineral resource investigations in well-studied and frontier area. Geosphere. 2008;4:218-246.
- Abrams M, Hook S, Ramachandran B. ASTER user handbook (vol. 2). Jet Propulsion Laboratory, California Institute of Technology; 2004. Available from: http://asterweb.jpl.nasa.gov/content/03_data/04_Documents/aster_guide_v2.pdf (accessed: 20.09.2022).
- Shahriari H, Ranjbar H, Honarmand M. Image segmentation for hydrothermal alteration mapping using PCA and concentration - area fractal model. Natural Resources Research. 2013;22(3):191-206. https://doi.org/10.1007/s11053-013-9211-y
- Clark RN, Swayze GA, Gallagher AJ, King TVV, Calvin WM. The U.S. geological survey digital spectral library. Version 1: 0.2 to 3.0 μm. 1993. https://doi.org/10.3133/ofr93592
- Rajendran S, Al-Khirbash S, Pracejus B, Nasir S, Al-Abri AH, Kusky TM, Ghulam A. ASTER detection of chromite bearing mineralized zones in Semail Ophiolite Massifs of the northern Oman mountain: exploration strategy. Ore Geology Reviews. 2012;44:121-135. https://doi.org/10.1016/j.oregeorev.2011.09.010
- Crosta A, Roberto C, Brodie C. Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International Journal of Remote Sensing. 2003;21:4233-4240. https://doi.org/10.1080/0143116031000152291
- El-Desoky HM, Tende AW, Abdel-Rahman AM, Ene A, Awad HA, Fahmy W, El-Awny H, Zakaly HM. Hydrothermal alteration mapping using Landsat 8 and ASTER data and geochemical characteristics of precambrian rocks in the Egyptian shield: a case study from Abu Ghalaga, Southeastern Desert, Egypt. Remote Sensing. 2022;14:3456. https://doi.org/10.3390/rs14143456
- Rowan LC, Schmidt RG, Mars JC. Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sensing Environment. 2006;104:74-87. http://doi.org/10.1016/j.rse.2006.05.014
- Carranza EJM, Hale M. Spatial association of mineral occurrences and curvilinear geological features. Mathematical Geology. 2002;34:203-221. https://doi.org/10.1023/A:1014416319335
补充文件
