Detection of unmanned aerial vehicle trajectory using overlapping images

Capa

Citar

Texto integral

Resumo

Currently, unmanned aerial vehicles are widely used with navigation based on data from onboard integrated systems including inertial and satellite sensors. In this case, to solve many target tasks, their preliminary exit to a given point of the flight route along the shortest horizontal trajectory is provided. However, in practice, there may be situations when the information received from navigation satellites may no longer be available, which leads to a decrease in navigation accuracy. Considered a technique for detecting the trajectory of unmanned aerial vehicles under conditions of loss of signals from navigation satellites using the underlying surface images. As a criterion indicating the occurrence of deviations of unmanned aerial vehicles from a specified trajectory, it is proposed to use the change in parallaxes of adjacent pairs of images. Analytical relations describing the functional relationship between changes in image parallaxes and parameters of linear and angular deviations of unmanned aerial vehicles from a specified trajectory. All possible options of these deviations are also considered. The obtained results provide an a priori estimate of the threshold value of parallax changes corresponding to the acceptable level of unmanned aerial vehicles deviations from the specified trajectory by means of modelling. Based on this estimate, it is possible to improve the accuracy of trajectory detection of unmanned aerial vehicles under conditions of loss of signals from navigation satellites.

Sobre autores

Vladimir Andronov

Southwest State University

Autor responsável pela correspondência
Email: vladia58@mail.ru
ORCID ID: 0000-0003-2578-0026

D.Sc., Senior Researcher, Head of the Department of Space Instrumentation and Communication Systems

Kursk, Russian Federation

Andrey Chuev

Southwest State University

Email: chuev-aa@inbox.ru
ORCID ID: 0000-0002-2980-0533

Lecturer, Department of Space Instrumentation and Communication Systems

Kursk, Russian Federation

Nikita Dubrovsky

Southwest State University

Email: dubrovsky69@icloud.com
ORCID ID: 0000-0003-1261-1928

Student, Faculty of Law

Kursk, Russian Federation

Bibliografia

  1. Veremeenko KK, Antonov DA, Zharkov MV, Zimin RYu, Kuznetsov IM, Pronkin AN. Integrated UAV orientation and navigation system. Navigation News. 2011;4:22-28. (In Russ.) EDN: RBHKYZ
  2. Veremeenko KK, Koshelev BV, Soloviev YA. The analysis of development of the integrated inertial & satellite navigation systems. Navigation News. 2010;4:32-1. (In Russ.) EDN: RBGRIF
  3. Kuznetsov IM, Pronkin AN, Veremeenko KK. Small-sized integrated navigation modules: algorithms and structural features. News of the SFU. Technical sciences. 2010; 3(104):245-250. (In Russ.) EDN: LMCOZF
  4. Pronkin AN, Kuznetsov IM, Veremeenko KK. Integrated UAV navigation system: structure and research of characteristics. Trudy MAI [Proceedings of MAI]. 2010; 41:14. (In Russ.) EDN: NCGDBJ
  5. Arulmurugan L, Raghavendra Prabhu S, Ilangkumaran M, Suresh V, Saravanakumar RR, Raghunath M. Kinematics and plane decomposition algorithm for nonlinear path planning navigation and tracking of unmanned aerial vehicles. IOP Conference Series: Materials Science and Engineering. 2020;995(1):012019. https://doi.org/10.1088/1757-899X/995/1/012019
  6. Hosseini K, Ebadi H, Farnood Ahmadi F. Determining the location of UAVs automatically using aerial or remotely sensed high-resolution images for intelligent navigation of UAVs at the time of disconnection with GPS. Journal of the Indian Society of Remote Sensing. 2020;48(12):1675-1689. https://doi.org/10.1007/s12524-020-01187-4
  7. Kikutis R, Stankūnas J, Rudinskas D. Autonomous unmanned aerial vehicle flight accuracy evaluation for three different path-tracking algorithms. Transport. 2019; 34(6):652-661. https://doi.org/10.3846/transport.2019. 11741
  8. Luo S, Liu H, Hu M, Dong J. Review of multimodal image matching assisted inertial navigation positioning technology for unmanned aerial vehicle. Guofang Keji Daxue Xuebao/Journal of National niversity of Defense Technology. 2020;42(6):1-10.
  9. Salychev OS. UAV autopilot with an Inertial Integrated System is the basis for the safe operation of unmanned complexes. Available from: http://www.teknol. ru/trash/uav_autopilot_salychev_2602182965.pdf. (In Russ). (accessed: 15.02.2023).
  10. Antonov DA, Zharkov MV, Kuznetsov IM, Lunev EM, Pronkin AN. Unmanned aerial vehicle positioning based on photographic image and inertial measurements. Trudy MAI [Proceedings of MAI]. 2016;91:14. (In Russ.) EDN: XEQWYZ
  11. Andronov VG, Chuev AA, Knyazev AA. Determination and assessment of the level of deviations of unmanned aerial vehicles from a given trajectory from images of the underlying surface. Proceedings of the Southwest State University. Series: Control, Computer Engineering, Information Science. Medical Instruments Engineering. 2022;1(12):129-144. (In Russ.) https://doi.org/10.21869/2223-1536-2022-12-1-129-144
  12. Oleinik II, Chernomorets AA, Andronov VG, Zhilyakov EG, Zalivin AN, Mukhin IE, Chuev AA. Small- sized unmanned aerial vehicles: detection tasks and ways to solve them. Kursk: Southwest State University; 2021. (In Russ.) Available from: https://elibrary.ru/download/elibrary_46554248_69730965.pdf (accessed: 15.02.2023)
  13. Ardentov AA, Beschastny IYu, Mashtakov AP, Popov AYu, Sachkov YuL, Sachkova EF. Algorithms for evaluation position and orientation of UAV. Program systems: Theory and applications. 2012;3(3(12):23-38. (In Russ.)
  14. Germak OV. Determination of elements of mutual orientation of images. Online journal of Science Studies. 2012;4(13):150. (In Russ.)
  15. Dobrynin NF, Pimshina TM. Mutual orientation of aerial photographs with a new combination of angular elements in a stereo pair. Engineering Bulletin of the Don. 2014;2(29):43. (In Russ.)
  16. Korshunov RA, Noskov VV, Pogorelov VV. Noncentral reverse photogrammetric notch. News of higher educational institutions. Geodesy and aerial photography. 2013;5:67-71. (In Russ.)
  17. Rakov DN, Nikitin VN. The choice of a digital non-metric camera for an unmanned aerial photography complex. Interexpo Geo-Siberia. 2012;7:27-36. (In Russ.) EDN: QITTPR.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».