Опыт и возможности применения космических систем дистанционного зондирования Земли для прогнозирования золоторудного оруденения на труднодоступных территориях на примере Полярного Урала
- Авторы: Иванова Ю.Н.1,2, Иванов К.С.3, Бондарева М.К.3, Ермолаев В.А.3, Жуков А.О.4
-
Учреждения:
- Институт геологии рудных месторождений, петрографии, минералогии и геохимии Российской академии наук
- Российский университет дружбы народов
- Главный испытательный космический центр Министерства обороны Российской Федерации имени Г.С. Титова
- Московский государственный университет имени М.В. Ломоносова
- Выпуск: Том 20, № 2 (2019)
- Страницы: 123-133
- Раздел: Авиационная и ракетно-космическая техника
- URL: https://journals.rcsi.science/2312-8143/article/view/335238
- DOI: https://doi.org/10.22363/2312-8143-2019-20-2-123-133
- ID: 335238
Цитировать
Полный текст
Аннотация
В представленной статье рассматриваются вопросы применения отечественных и иностранных космических аппаратов (КА), а также их аппаратуры дистанционного зондирования Земли (ДЗЗ) для поиска и прогнозирования золоторудного оруденения на труднодоступных территориях. Приведен пример решения этой задачи на перспективных территориях Полярного и Северного Урала. По материалам многозональной космической съемки аппаратом Landsat 7 выявлены крупные кольцевые, дуговые и радиальные структуры, определяющие позицию золоторудного оруденения Тоупугол-Ханмейшорского (Новогодненское рудное поле, Полярный Урал) и Турьинско-Ауэрбаховского (Ауэрбаховское рудное поле, Северный Урал) рудных районов. Проведен сравнительный анализ существующих КА ДЗЗ, целевая информация о которых имеется в открытом доступе. Показано, что бортовая аппаратура, установленная на отечественных КА, и получаемая с ее помощью информация отвечают существующим требованиям, предъявляемым к ним для решения задачи поиска и прогнозирования оруденения. При этом возможности развернутой отечественной орбитальной группировки КА ДЗЗ превосходят возможности КА ДЗЗ Landsat 7. Рассматривается возможность получения геопространственной информации с использованием нового вида летательных аппаратов - псевдокосмических аппаратов (ПКА), обладающих рядом преимуществ как перед КА, так и перед беспилотными летательными аппаратами (БПЛА).
Об авторах
Юлия Николаевна Иванова
Институт геологии рудных месторождений, петрографии, минералогии и геохимии Российской академии наук; Российский университет дружбы народов
Автор, ответственный за переписку.
Email: jnivanova@yandex.ru
научный сотрудник лаборатории геологии рудных месторождений ИГЕМ РАН; доцент департамента недропользования и нефтегазового дела Инженерной академии РУДН, кандидат геолого-минералогических наук
Российская Федерация, 119017, Москва, Старомонетный пер., 35; Российская Федерация, 117198, Москва, ул. Миклухо-Маклая, 6Кирилл Сергеевич Иванов
Главный испытательный космический центр Министерства обороны Российской Федерации имени Г.С. Титова
Email: jnivanova@yandex.ru
начальник 101 научно-испытательной лаборатории, заместитель начальника 10 научно-испытательного отдела, кандидат технических наук
Российская Федерация, 141090, Московская область, Краснознаменск, ул. Октябрьская, 3Марина Константиновна Бондарева
Главный испытательный космический центр Министерства обороны Российской Федерации имени Г.С. Титова
Email: jnivanova@yandex.ru
ведущий научный сотрудник 11 научноиспытательного отела, доктор технических наук, доцент
Российская Федерация, 141090, Московская область, Краснознаменск, ул. Октябрьская, 3Владимир Андреевич Ермолаев
Главный испытательный космический центр Министерства обороны Российской Федерации имени Г.С. Титова
Email: jnivanova@yandex.ru
старший научный сотрудник 101 научноиспытательной лаборатории
Российская Федерация, 141090, Московская область, Краснознаменск, ул. Октябрьская, 3Александр Олегович Жуков
Московский государственный университет имени М.В. Ломоносова
Email: jnivanova@yandex.ru
ведущий научный сотрудник Государственного астрономического института имени П.К. Штенберга, доктор технических наук, доцент
Российская Федерация, 119234, Москва, Университетский пр-т, 13Список литературы
- Kirensky AS, Korchagin VP, Kuzmenko RG. Opyt tektonicheskogo rayonirovaniya s ispol'zovaniyem kosmicheskikh snimkov [Experience of tectonic zoning with the use of satellite imagery]. Metody distantsionnykh issledovaniy dlya resheniya prirodovedcheskikh zadach. 1986: 54–62. (In Russ.)
- Graham GE, Kokaly RF, Kelley KD, et al. Application of imaging spectroscopy for mineral exploration in Alaska: a study over porphyry Cu deposits in the Eastern Alaska Range. Economic Geology. 2018;11(2): 489–510.
- Menshikov VA, Perminov AN, Rembeza AI, et al. Osnovy analiza i proyektirovaniya kosmicheskikh sistem monitoringa i prognozirovaniya prirodnykh i tekhnogennykh katastrof [Base of analysis and design of space systems for monitoring and predication natural and manmade disasters]. Moscow: Mashinostroenie Publ.; 2014. (In Russ.)
- Nezampour MH, Rassa I. Using remote sensing technology for the determination of mineralization in the Kal-e-Kafi porphyritic deposit, Anarak, Iran. Mineral Deposit Research: Meeting the Global Challenge. 2005: 565–567. Available from: doi.org/10.1007/3-540-27946-6_145
- Zverev AT, Malinnikov VA, Arellano-Baeza A. Prognoz mestorozhdeniy rudnykh poleznykh iskopayemykh na territorii Chili na osnove lineamentnogo analiza kosmicheskikh izobrazheniy [Forecast of mineral deposits in Chile based on lineament analysis of satellite images]. Izvestiya vishchikh uchebnykh zavedeniy. Geodeziya i aerofotosyemka [Proceedings of the Higher Educational Institutions. Geodesy and aerophotosurveying]. 2005; 6: 62–69. (In Russ.)
- Tommaso ID, Rubinstein N. Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geology Reviews. 2007;32(1–2): 275–290.
- Zhang X, Pazner M, Duke N. Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California). Journal of Photogrammetry and Remote Sensing. 2007;62(4): 271–282.
- Milovsky GA, Rudakov VV, Lebedev VV, Korenyuk MK, Shaibakova LA, Filippov DV. Primeneniye kosmicheskoy s"yemki dlya prognoza zolotogo orudeneniya v zonakh glubinnykh razlomov na Severo-Vostoke Rossii [Application of space borne survey for forecasting of gold mineralization in deep fault zones in the NorthEast of Russia]. Earth observation and remote sensing. 2010;3: 30–34. (In Russ.)
- Zverev AT, Gavrilova VV. Razrabotka teorii i metodov otsenki i prognoza sostoyaniya prirodnykh resursov s ispol'zovaniyem kosmicheskikh snimkov [Development of the theory and methods for assessing and prediction of natural resources state with use of satellite imagery]. Izvestiya vishchikh uchebnykh zavedeniy. Geodeziya i aerofotosyemka [Proceedings of the Higher Educational Institutions. Geodesy and aerophotosurveying]. 2012;5: 44–47. (In Russ.)
- Vural A, Corumluoglu Ö, Asri I. Remote sensing technique for capturing and exploration of mineral deposit sites in Gumushane metallogenic province, NE Turkey. Journal Geology Society of India. 2017;90(5): 628–633. Available from: doi.org/10.1007/s12594-017-0762-0
- Yousefi T, Aliyari F, Abedini A, Asghar Calagari A. Integrating geologic and Landsat-8 and ASTER remote sensing data for gold exploration: a case study from Zarshuran Carlin-type gold deposit, NW Iran. Arabian Journal of Geosciences. 2018;11: 1–19.
- Ivanova JN, Vyhristenko RI, Vikentyev IV. Geologicheskaya pozitsiya i strukturnyy kontrol' orudeneniya Toupugol-Khanmeyshorskogo rayona (Polyarnyy Ural) po rezul'tatam distantsionnogo zondirovaniya [Geological position and structural control of ore mineralization of the Toupugol-Khanmeyshorsky district (the Polar Urals) as a result of remote sensing]. Earth Observation and Remote Sensing. 2019. (In press.) (In Russ.)
- Yazeva RG, Bochkarev VV. Voykarskiy vulkanoplutonicheskiy poyas (Polyarnyy Ural) [Voikarsky volcanoplutonic belt (the Polar Urals)]. Sverdlovsk: USC of USSR Academy of Sciences; 1984. (In Russ.)
- Vikentiev IV, Murzin VV, Tyukova EE, et al. Vorontsovskoye zolotorudnoye mestorozhdeniye. Geologiya, formy zolota, genezis [Vorontsovskoe gold deposit. Geology, forms of gold, genesis]. Ekaterinburg: Fort Dialog-Iset Publ.; 2016. (In Russ.)
- Vikentyev IV, Ivanova YN, Tyukova EE, et al. Zoloto-porfirovoye Petropavlovskoye mestorozhdeniye (Polyarnyy Ural): geologicheskaya pozitsiya, mineralogiya i usloviya obrazovaniya [Porphyry-Style Petropavlovskoe Gold Deposit, the Polar Urals: Geological Position, Mineralogy, and Formation Conditions]. Geology of Ore Deposits. 2017;59(6): 482–520. (In Russ.)
- Vyhristenko RI. Paleovulkanicheskiye postroyki Tur'insko-Auerbakhovskogo i Valentorskogo rudnykh rayonov i svyazannyye s nimi mestorozhdeniya zolota i medi [Paleovolcanic structures of the Turiyinsko-Auerbakhovsky and the Valentorsky ore districts and the gold and copper deposits connected with them]. Bulletin of Peoples' Friendship University of Russia. Series: Engineering researches. 2014;4: 122–128. (In Russ.)
- Verba VS. (ed.) Radiolokatsionnyye sistemy zemleobzora kosmicheskogo bazirovaniya [Radiolocation system of ground view of space-based ground]. Moscow: Radiotekhnika Publ.; 2010. (In Russ.)
- The scientific center for operational Earth monitoring. Available from: http://www.ntsomz.ru/ks_dzz/satellites
- Characteristic of the shooting devices. Available from: https://eos.com
- Yemelyanova JG, Khachumov VM, Vatutin VM, et al. Analiz baz dannykh resheniya zadach monitoringa Arkticheskoy zony [Analysis of databases for solving problems of monitoring the Arctic zone]. Aktual'nyye problemy raketno-kosmicheskogo priborostroyeniya i informatsionnykh tekhnologiy: Sbornik trudov VIII Vserossiyskoy nauchno-tekhnicheskoy konferentsii, 1–3 iyunya 2016 [Actual problems of rocket and space instrument engineering and information technologies: Collection of works of the VIII All-Russian Scientific and Technical Conference, June 1–3, 2016]. Moscow: AO “RKS”; 2016. (In Russ.)
- Klimenko NN. Psevdokosmicheskiye apparaty dlya dlitel'nogo nepreryvnogo nablyudeniya lokal'nykh rayonov [Pseudo-spacecrafts for long-term continuous observation of local areas]. Vestnik NPO imeni S.A. Lavochkina. 2017;4(38): 122–134. (In Russ.)
Дополнительные файлы

