Разработка методики проектирования теплонагруженных размеростабильных элементов конструкций из углепластика для космического аппарата дистанционного зондирования Земли
- Авторы: Городецкий М.А.1, Михайловский К.В.1
-
Учреждения:
- Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)
- Выпуск: Том 21, № 3 (2020)
- Страницы: 159-165
- Раздел: Авиационная и ракетно-космическая техника
- URL: https://journals.rcsi.science/2312-8143/article/view/327453
- DOI: https://doi.org/10.22363/2312-8143-2020-21-3-159-165
- ID: 327453
Цитировать
Полный текст
Аннотация
Одной из наиболее важных задач Федеральной космической программы России на период до 2025 года является создание космических аппаратов дистанционного зондирования Земли. Неотъемлемой частью проектирования космических аппаратов такого класса считается определение параметров орбит, которые наиболее эффективны с позиций информативности, энергообеспечения и срока активного существования. В орбитальном полете температурное состояние космических аппаратов сложным образом меняется во времени и пространстве. Неоднородное температурное поле элементов конструкции космических аппаратов может стать причиной искажения формы, отрицательно влияющего на выполнение целевых задач. Предложена методика комплексного анализа и определения параметров конструкции платформы из полимерного композиционного материала, входящей в состав космического аппарата дистанционного зондирования Земли. Рассмотрены условия теплового нагружения для полета по солнечно-синхронной орбите и выполнено математическое моделирование условий функционирования, обеспечивающих эффективную эксплуатацию такого рода космических аппаратов. Представлены результаты моделирования теплового режима вариантов конструкций платформы из полимерного композиционного материала. Методика будет полезна при определении комплекса орбитальных характеристик космических аппаратов дистанционного зондирования Земли на этапе технических предложений.
Об авторах
Михаил Алексеевич Городецкий
Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)
Автор, ответственный за переписку.
Email: Konst_mi@mail.ru
аспирант кафедры СМ-13 «Ракетно-космические композитные конструкции» МГТУ имени Н.Э. Баумана
Российская Федерация, 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1Константин Валерьевич Михайловский
Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)
Email: Konst_mi@mail.ru
доцент кафедры СМ-13 «Ракетно-космические композитные конструкции» МГТУ имени Н.Э. Баумана; кандидат технических наук
Российская Федерация, 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1Список литературы
- Meseguer J, Pérez-Grande I, Sanz-Anrés A. Spacecraft thermal control. 1st ed. Cambridge: Woodhead Publishing Limited; 2012.
- Schaub H, Junkins JL. Analytical mechanics of space systems. 2nd ed. Reston, VA; 2009.
- Montenbruck O, Gill E. Satellite orbits: models, methods, applications. Berlin: Heidelberg Springer - Verlag; 2000.
- Hastings D, Garrett H. Spacecraft-Environment interactions. Cambridge: Cambridge University Press; 2004.
- Hengeveld DW, Mathison MM, Braun JE, Groll EA, Williams AD. Review of Modern Spacecraft Thermal Control Technologies. HVAC&R Research. 2010;16(2): 189-220.
- Reznik SV, Prosuntsov PV, Mikhailovsky KV, Shafikova IR. Material science problems of building space antennas with a transformable reflector 100 m in diameter IOP. Conference Series: Materials Science and Engineering. 2016;153(1):10.
- Sayapin SN, Shkapov PM. Kinematics of deployment of petal-type large space antenna reflectors with axisymmetric petal packaging. J. of Machinery Manufacture and Reliability. 2016;45(5):387-397.
- Reznik SV, Prosuntsov PV, Azarov AV. Substantiation of the structural-layout scheme of the mirror-space-antenna reflector with a high shape stability and a low density per unit length. J. Eng. Phys. Thermophy. 2015;88(3):699-705.
- Golovatov D, Mikhaylov M, Bosov A. Optimization of technological parameters of impregnation of load-bearing rod elements of reflector made of polymer composite materials by transfer molding method. Indian J. of Science and Technology. 2016;9(46):107492.
- Prosuntsov PV, Reznik SV, Mikhailovsky KV, Novikov AD, Zaw Ye Aung. Study variants of hard CFRP reflector for intersatellite communication. IOP Conf. Series: Materials Science and Engineering. 2016;153(1):7.
- Reznik SV, Novikov AD. Comparative analysis of the honeycomb and thin-shell space antenna reflectors MATEC Web of Conferences. Thermophysical Basis of Energy Technologies. 2017;92(01012):1-5. doi: 10.1051/ matecconf/20179201012.
- Escobar E, Diaz M, Zagal JC. Evolutionary design of a satellite thermal control system: real experiments for a CubeSat mission. Applied Thermal Engineering. 2016; 105:490-500.
- Mikhaylovskiy KV, Gorodetsky MA. Development of method for determining and correcting parameters of the working orbit of the earth remote sensing satellite. RUDN Journal of Engineering Researches. 2017;18(3): 361-372. (In Russ.) https://doi.org/10.22363/2312-8143-2017-18-3-361-372.
- Bolton W. Engineering materials: pocket book. Newnes, 2000.
- Latyev LN, Petrov VA, Chekhovskoy VY, Shestakov EN. Izluchatelnye svojstva tverdyh materialov [Emitting Properties of Solid Materials]. Moscow: Energiya Publ.; 1974. (In Russ.)
Дополнительные файлы
