Analysing the Feasibility of Adopting Gas Turbine Technology for Electric Power Generation in Iraq

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

A study was undertaken to understand the status of electric power demand, generation and supply in Iraq and the feasibility for adopting gas turbine technology for generating electric power. Based on the climatic and weather data, it was found that Iraq in general experiences a hot and dry climate with cooler nights. Apart from the coastal regions of the country, the relative humidity is generally low. This was found to be an encouraging factor for adopting cost effective evaporative cooling systems for the air entering gas turbine used for power generation (GTPG). The higher frequency dust storms in Iraq can result in operational problems, shorter life span and higher maintenance costs for GTPG, making air filtration mandatory for efficient operation of GTPG. Taking into account the district wise climatic and weather conditions, the district of Nineweh was found to be more suitable for the establishment of gas turbine plant for electric power generation (GTPEG). Among the different cooling systems available taking into to account the cost effectiveness and the simplicity in design, construction, operation and maintenance, it was found that evaporative cooling system was more suitable. Further, it was found that the effectiveness of evaporative cooling system can be enhanced by taking advantage of the low night temperature and cooling the water to be used in the evaporative cooling system. Analysing the performance of the gas turbine, it was found that adopting the cooling system will result in reducing the power loss from 6.68-46.89 % to 2.77 to 21.17 %.

Авторлар туралы

Wissam Alaabidy

RUDN University

Email: 1042238172@pfur.ru
ORCID iD: 0009-0008-9824-1852

Postgraduate Student of the Department of Energy Engineering of Academy of Engineering

Moscow, Russia

Majid Al-Rubaiawi

Shiite Endowment Office

Email: majed.sbbar@yahoo.com
ORCID iD: 0009-0003-4279-5761
Iraq

Mikhail Chertousov

RUDN University

Email: Chertousov.mikhail@gmail.com
ORCID iD: 0009-0001-3719-6292

Postgraduate Student of the Department of Energy Engineering of Academy of Engineering

Moscow, Russia

Mikhail Frolov

RUDN University

Хат алмасуға жауапты Автор.
Email: michel-f@yandex.ru
ORCID iD: 0000-0003-2356-6587
SPIN-код: 3995-2331

PhD (Technical Sciences), Associate Professor of the Department of Energy Engineering of Academy of Engineering

Moscow, Russia

Әдебиет тізімі

  1. Bashir MF, Sadiq M, Talbi B, Shahzad L, Adnan Bashir M. An outlook on the development of renewable energy, policy measures to reshape the current energy mix, and how to achieve sustainable economic growth in the post COVID-19 era. Environmental Science and Pollution Research. 2022;29(29):43636-43647. https://doi.org/10.1007/s11356-022-20010-w
  2. Tian J, Yu L, Xue R, Zhuang S, Shan Y. Global low-carbon energy transition in the post-COVID-19 era. Applied Energy. 2022;307:118205. https://doi.org/10.1016/j.apenergy.2021.118205
  3. Altawell N. (ed.). 12 - Energy technologies and energy storage systems for sustainable development. In: Rural Electrification. Academic Press; 2021. p. 231-248.
  4. Alhazmy MM, Jassim RK, Zaki GM. Performance enhancement of gas turbines by inlet air-cooling in hot and humid climates. International Journal of Energy Research. 2006;30(10):777-797. https://doi.org/10.1002/er.1184
  5. Hashmi MB, Majid MAA, Lemma TA. Combined effect of inlet air cooling and fouling on performance of variable geometry industrial gas turbines. Alexandria Engineering Journal. 2020;59(3):1811-1821. https://doi.org/10.1016/j.aej.2020.04.050
  6. de Gouw JA, Parrish DD, Frost GJ, Trainer M. Reduced emissions of CO2, NOx, and SO2 from U.S. power plants owing to switch from coal to natural gas with combined cycle technology. Earth’s Futur. 2014; 2(2):75-82. https://doi.org/10.1002/2014EF000196
  7. Jasim DJ, Mohammed J, Abid MF. Natural Gas in Iraq, Currently and Future Prospects: A Review. Journal of Engineering Research. 2021;1-15. https://doi.org/10.36909/jer.11989
  8. Barakat S, Ramzy A, Hamed AM, El-Emam SH. Augmentation of gas turbine performance using integrated EAHE and Fogging Inlet Air Cooling System. Energy. 2019;189:116133. https://doi.org/10.1016/j.energy.2019. 116133
  9. Majdi Yazdi MR, Ommi F, Ehyaei MA, Rosen MA. Comparison of gas turbine inlet air cooling systems for several climates in Iran using energy, exergy, economic, and environmental (4E) analyses. Energy Convers Manag. 2020;216:112944. https://doi.org/10.1016/j.enconman. 2020.112944
  10. Al-Ansary HA, Orfi JA, Ali ME. Impact of the use of a hybrid turbine inlet air cooling system in arid climates. Energy Convers Manag. 2013;75:214-223. https://doi.org/10.1016/j.enconman.2013.06.005
  11. Erdem HH, Sevilgen SH. Case study: Effect of ambient temperature on the electricity production and fuel consumption of a simple cycle gas turbine in Turkey. Appl Therm Eng. 2006;26(2):320-326. https://doi.org/10.1016/j.applthermaleng.2005.08.002
  12. Iraq Population 2022. World Population Review. Available from: https://worldpopulationreview.com/countries/iraq-population (cited 2022 Oct 5)
  13. Majhool MH, Salim ALRikabi HTH, Farhan MS. Design and Implementation of Sunlight Tracking Based on the Internet of Things. IOP Conf Ser Earth Environ Sci. 2021;877(1):12026.
  14. Al-Khafaji H. Electricity generation in Iraq Problems and solutions. Iraq. 2018.
  15. Almusawi HM, Farnoosh A. Economic Analysis of the Electricity Mix of Iraq using Portfolio Optimization Approach. Int Energy J. 2021;21:235-244.
  16. Altai HDS, Abed FT, Lazim MH, Alrikabi HTS. Analysis of the problems of electricity in Iraq and recommendations of methods of overcoming them. Period Eng Nat Sci. 2022;10(1):607-614. http://doi.org/10.21533/pen.v10i1.2722
  17. Saeed IM, Ramli AT, Saleh MA. Assessment of sustainability in energy of Iraq, and achievable opportunities in the long run. Renew Sustain Energy Rev. 2016; 58:1207-1215. https://doi.org/10.1016/j.rser.2015.12.302
  18. Mills R, Salman M. Powering Iraq: Challenges facing the Electricity Sector in Iraq. 2020.
  19. Gordon MR, Coles I. Defeat of ISIS in Iraq Caused $45.7 Billion in Damage to Infrastructure, Study Finds. The Wall Street Journal. 2018 Feb 11;
  20. Abass AZ, Pavlyuchenko DA, AlRikabi HT, Abed FT, Gaidukov J. Economic Feasibility Study of a Hybrid Power Station Between Solar Panels and Wind Turbine with The National Grid in Al-Hayy City in the Central of Iraq. IOP Conf Ser Mater Sci Eng. 2021;1184 (1):12001.
  21. Marzouk AM, Hanafi AS. Thermo-economic analysis of inlet air cooling in gas turbine plants. J Power Technol. 2013;93(2).
  22. Al-Fehdly H, ElMaraghy W, Wilkinson S. Carbon Footprint Estimation for Oil Production: Iraq Case Study for The Utilization of Waste Gas in Generating Electricity. Procedia CIRP. 2019;80:389-92.
  23. Hussein MMF. Comparison of Time Series Models before and after Using Wavelet Shrinkage Filtering to Forecast the Amount of Natural Gas in Iraq. Cihan Univ Sci J. 2022;6(1):32-46.
  24. Alnasur F, Al-Furaiji MA. Estimation the Performance of Gas Turbine Power Station with Air Cooling Fog System. J Phys Conf Ser. 2021;1973(1):12040.
  25. Shirazi A, Najafi B, Aminyavari M, Rinaldi F, Taylor RA. Thermal-economic-environmental analysis and multi-objective optimization of an ice thermal energy storage system for gas turbine cycle inlet air cooling. Energy. 2014;69:212-26.
  26. Farzaneh-Gord M, Deymi-Dashtebayaz M. A new approach for enhancing performance of a gas turbine (case study: Khangiran refinery). Appl Energy. 2009;86 (12):2750-2759.
  27. Ehyaei MA, Mozafari A, Alibiglou MH. Exergy, economic & environmental (3E) analysis of inlet fogging for gas turbine power plant. Energy. 2011;36(12): 6851-6861.
  28. Soleimani Z, Teymouri P, Darvishi Boloorani A, Mesdaghinia A, Middleton N, Griffin DW. An overview of bioaerosol load and health impacts associated with dust storms: A focus on the Middle East. Atmos Environ. 2020;223:117187.
  29. Mathioudakis K, Tsalavoutas T. Uncertainty Re- duction in Gas Turbine Performance Diagnostics by Accounting for Humidity Effects. J Eng Gas Turbines Power. 2002 Sep 24;124(4):801-808.
  30. Rice IG. Thermodynamic Evaluation of Gas Turbine Cogeneration Cycles: Part I-Heat Balance Method Analysis. J Eng Gas Turbines Power. 1987 Jan 1;109(1):1-7.
  31. Osman Y, Abdellatif M, Al-Ansari N, Knutsson S, Jawad S. Climate change and future precipitation in an arid environment of the Middle East: case study of Iraq. J Environ Hydrol. 2017;25(3):1-22.
  32. Salman SA, Shahid S, Ismail T, Chung E-S, AlAbadi AM. Long-term trends in daily temperature extremes in Iraq. Atmos Res. 2017;198:97-107.
  33. Zakaria S, Al-Ansari N, Knutsson S. Historical and future climatic change scenarios for temperature and rainfall for Iraq. J Civ Eng Archit. 2013;7(12):1574-94.
  34. Khwarahm NR, Ararat K, HamadAmin BA, Najmaddin PM, Rasul A, Qader S. Spatial distribution modeling of the wild boar (Sus scrofa) under current and future climate conditions in Iraq. Biologia (Bratisl). 2022;77(2):369-83.
  35. Climate Change Knowledge Portal. The World Bank Group. 2021. Available from: https://climateknowledgeportal.worldbank.org/download-data (accessed: 10.10. 2022).
  36. Salman SA, Shahid S, Ismail T, Ahmed K, Wang X-J. Selection of climate models for projection of spatiotemporal changes in temperature of Iraq with uncertainties. Atmos Res. 2018;213:509-22.
  37. Baakeem SS, Orfi J, Al-Ansary H. Performance improvement of gas turbine power plants by utilizing turbine inlet air-cooling (TIAC) technologies in Riyadh, Saudi Arabia. Appl Therm Eng. 2018;138:417-32.
  38. MacPhee DW, Beyene A. Impact of Air Quality and Site Selection on Gas Turbine Engine Performance. J Energy Resour Technol. 2017;140(2).
  39. Yahya BM, Seker DZ. The Impact of Dust and Sandstorms in Increasing Drought Areas in Nineveh Province, North-western Iraq. J Asian Afr Stud. 2018 Nov 21;54(3):346-359.
  40. Hasanean HM. Middle East Meteorology [Inter- net]. Encyclopedia of Life Support Systems. Available from: https://www.eolss.net/sample-chapters/c01/E6-158-19.pdf (accessed: 11.07.2022)
  41. Mohammadpour K, Sciortino M, Kaskaoutis DG. Classification of weather clusters over the Middle East associated with high atmospheric dust-AODs in West Iran. Atmos Res. 2021;259:105682.
  42. Parolari AJ, Li D, Bou-Zeid E, Katul GG, Assouline S. Climate, not conflict, explains extreme Middle East dust storm. Environ Res Lett. 2016;11(11):114013.
  43. Hafeznia MR, Taheri A, Asl MF. Political Effects Resulting from Dust Storms in Tigris and Euphrates Basins. Geopolit Q. 2017;12(4):13-38.
  44. Shukur OB, Ali SH, Saber LA. Climatic Temperature Data Forecasting in Nineveh Governorate Using the Recurrent Neutral Network Method. Int J Adv Sci Eng Inf Technol. 2021;11(1):113-123.
  45. El-Shazly AA, Elhelw M, Sorour MM, El-Maghlany WM. Gas turbine performance enhancement via utilizing different integrated turbine inlet cooling techniques. Alexandria Eng J. 2016;55(3):1903-1914.
  46. Zeitoun O. Two-Stage Evaporative Inlet Air Gas Turbine Cooling. Energies. 2021;14(5):1382. https://doi.org/10.3390/en14051382
  47. Ameri M, Hejazi SH. The study of capacity enhancement of the Chabahar gas turbine installation using an absorption chiller. Appl Therm Eng. 2004;24(1):59-68.
  48. Shukla AK, Singh O. Thermodynamic investigation of parameters affecting the execution of steam injected cooled gas turbine based combined cycle power plant with vapor absorption inlet air cooling. Appl Therm Eng. 2017;122:380-388.
  49. Kakaras E, Doukelis A, Prelipceanu A, Karellas S. Inlet Air Cooling Methods for Gas Turbine Based Power Plants. J Eng Gas Turbines Power. 2005;128(2): 312-317.
  50. Mostafa M, Eldrainy YA, EL-Kassaby MM. A comprehensive study of simple and recuperative gas turbine cycles with inlet fogging and overspray. Therm Sci Eng Prog. 2018;8:318-326.
  51. Hosseini R, Beshkani A, Soltani M. Performance improvement of gas turbines of Fars (Iran) combined cycle power plant by intake air cooling using a media evaporative cooler. Energy Convers Manag. 2007;48(4): 1055-1064.
  52. AL-Salman KY, Rishack QA, AL-Mousawi SJ. Parametric study of gas turbine cycle with fogging system. J Basrah Res. 2007;33(4):16-30.
  53. Meher-Homji CB, Mee III TR. Inlet Fogging of Gas Turbine Engines: Part A - Theory, Psychrometrics and Fog Generation. 2000.
  54. Savic S, Hemminger B, Mee T. High fogging application for alstom gas turbines. In: Proceedings of PowerGen november. Orlando, USA; 2013.
  55. Chaker MA, Meher-Homji CB. Effect of Water Temperature on the Performance of Gas Turbine Inlet Air-Fogging Systems. 2013.
  56. Chaker M, Meher-Homji CB, Mee III T. Inlet fogging of gas turbine engines - part B: Fog droplet sizing analysis, nozzle types, measurement and testing. In: American Society of Mechanical Engineers, International Gas Turbine Institute, Turbo Expo (Publication) IGTI. 2002. P. 4 A 429-441.
  57. Santos AP, Andrade CR. Analysis of Gas Turbine Performance with Inlet Air Cooling Techniques Applied to Brazilian Sites. J Aerosp Technol Manag. 2012;4(3): 341-353.
  58. Dizaji SH, Hu EJ, Chen L, Pourhedayat S. Using novel integrated Maisotsenko cooler and absorption chiller for cooling of gas turbine inlet air. Energy Convers Manag. 2019;195:1067-1078.
  59. Kwon HM, Kim TS, Sohn JL, Kang DW. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy. 2018;163: 1050-1061.
  60. Sanaye S, Tahani M. Analysis of gas turbine operating parameters with inlet fogging and wet compression processes. Appl Therm Eng. 2010;30(2):234-244.
  61. Dawoud B, Zurigat YH, Bortmany J. Thermodynamic assessment of power requirements and impact of different gas-turbine inlet air cooling techniques at two different locations in Oman. Appl Therm Eng. 2005;25 (11):1579-1598.
  62. Farzaneh-Gord M, Deymi-Dashtebayaz M. Effect of various inlet air cooling methods on gas turbine performance. Energy. 2011;36(2):1196-1205.
  63. Yang C, Yang Z, Cai R. Analytical method for evaluation of gas turbine inlet air cooling in combined cycle power plant. Appl Energy. 2009;86(6):848-856.
  64. Zurigat YH, Dawoud B, Bortmany J. On the technical feasibility of gas turbine inlet air cooling utilizing thermal energy storage. Int J Energy Res. 2006 Apr 1;30(5):291-305.
  65. Sanaye S, Fardad A, Mostakhdemi M. Thermoeconomic optimization of an ice thermal storage system for gas turbine inlet cooling. Energy. 2011;36(2):1057- 1067.
  66. Bédécarrats J-P, Strub F. Gas turbine performance increase using an air cooler with a phase change energy storage. Appl Therm Eng. 2009;29(5):1166-1172.
  67. Alasfour FN, Al-Fahed SF, Abdulrahim HK. The effect of elevated inlet air temperature and relative humidity on Gas Turbine cogeneration system: exergy assessment. Int J Exergy. 2011;8(3):247-264.
  68. Lugo-Leyte R, Zamora-Mata JM, Toledo-Velázquez M, Salazar-Pereyra M, Torres-Aldaco A. Methodology to determine the appropriate amount of excess air for the operation of a gas turbine in a wet environment. Energy. 2010;35(2):550-555.
  69. Ameri M, Shahbazian HR, Nabizadeh M. Comparison of evaporative inlet air cooling systems to enhance the gas turbine generated power. Int J Energy Res. 2007;31(15):1483-1503.
  70. Ibrahim TK, Rahman MM, Abdalla AN. Improvement of gas turbine performance based on inlet air cooling systems: A technical review. Int J Phys Sci. 2011;6(6):620-627.
  71. Effiom SO, Abam FI, Ohunakin OS. Performance modeling of industrial gas turbines with inlet air filtration system. Case Stud Therm Eng. 2015;5:160-167.
  72. Schroth T, Cagna M. Economical Benefits of Highly Efficient Three-Stage Intake Air Filtration for Gas Turbines. Conference ASME Turbo Expo 2008: Power for Land, Sea, and Air, 2008:889-894. https://doi.org/10.1115/GT2008-50280
  73. Brake C. Identifying Areas Prone to Dusty Winds for Gas Turbine Inlet Specification. 2007:749-759.
  74. Jin Y, Liu C, Tian X, Huang H, Deng G, Guan Y, et al. A novel integrated modeling approach for filter diagnosis in gas turbine air intake system. Proc Inst Mech Eng Part A J Power Energy. 2021;236(3):435-449. https://doi.org/10.1177/09576509211044392
  75. Zaba T, Lombardi P. Experience in the Operation of Air Filters in Gas Turbine Installations. 1984.
  76. Lebele-Alawa BT, Le-ol AK. Improved Design of a 25 MW Gas Turbine Plant Using Combined Cycle Application. Journal of Power and Energy Engineering. 2015;3(8):1-14. https://doi.org/10.4236/jpee.2015.38001
  77. Nineveh, Iraq Climate. The Global Historical Weather and Climate Data. 2022. Available from: https://tcktcktck.org/iraq/nineveh (accessed: 02.10.2022)
  78. Watt JR. Evaporative air conditioning hand-book. Springer Science & Business Media; 2012.
  79. Hamedani AM, Manesh MHK, Salehi G, Masoomi M. Performance Analysis of Gas Turbine Inlet Air Cooling Plant with Hybrid Indirect Evaporative Cooling and Absorption Chiller System. Int J Thermodyn. 2021; 24(3):248-259. https://doi.org/10.5541/ijot.840496
  80. Dinc A, Tahe R, Derakhshandeh JF, Fayed M, Elbadawy I, Gharbia Y. Performance Degradation of a 43 MW Class Gas Turbine Engine in Kuwait Climate. Int Res J Innov Eng Technol. 2021;5(4):108-113. https://doi.org/10.47001/IRJIET/2021.504016
  81. Punwani DV. Hybrid Systems for Cooling Turbine Inlet Air for Preventing Capacity Loss and Energy Efficiency Reduction of Combustion Turbine Systems. Proceedings of the ASME 2010 Power Conference. ASME 2010 Power Conference. Chicago, Illinois, USA. July 13-15, 2010. p. 485-488. https://doi.org/10.1115/POWER 2010-27010
  82. Chacartegui R, Jiménez-Espadafor F, Sánchez D, Sánchez T. Analysis of combustion turbine inlet air cooling systems applied to an operating cogeneration power plant. Energy Convers Manag. 2008;49(8):2130-2141.
  83. Kakaras E, Doukelis A, Karellas S. Compressor intake-air cooling in gas turbine plants. Energy. 2004; 29(12):2347-2358.
  84. Oyedepo S, Kilanko O. Thermodynamic Analysis of a Gas Turbine Power Plant Modelled with an Evaporative Cooler. International Journal of Thermodynamics. 2014;1(1):14-20. https://doi.org/10.5541/ijot.76988
  85. Alwan IA, Karim HH, Aziz NA. Agro-Climatic Zones (ACZ) Using Climate Satellite Data in Iraq Republic. IOP Conf Ser Mater Sci Eng. 2019;518(2): 22034.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».