Modified Algorithm for Calculating the Parameters of Maneuvers of Coplanar Meeting of Spacecraft in a Near-Circular Orbit Using Low-Thrust Engines


Cite item

Full Text

Abstract

A modified algorithm is presented for solving the problem of spacecraft rendezvous in a near-circular orbit. The study considers the calculation of maneuver parameters executed on several turns using a low-thrust propulsion system. It is assumed that the active spacecraft performs maneuvers within a predefined region around the target spacecraft, while the perturbative effects of Earth’s gravitational field non-centrality and atmospheric drag are neglected. Well-established approximate mathematical models of spacecraft motion are employed to address the rendezvous problem. The methodology of determining the parameters of maneuvers is structured into three key stages: in the first and third stages, the parameters of impulsive transfer and low-thrust transfer are determined using analytical methods. In the second stage, maneuvers are allocated across the available turns to ensure a successful rendezvous by minimizing a selected control variable. The proposed approach is distinguished by its computational efficiency and robustness, making it suitable for onboard implementation in autonomous spacecraft navigation systems. As a case study, the paper analyzes the dependence of total characteristic velocity required for rendezvous on the magnitude of engine thrust and provides a comparative assessment of the total characteristic velocity for both impulsive and low-thrust maneuvering scenarios.

About the authors

Andrey A. Baranov

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Email: andrey_baranov@list.ru
ORCID iD: 0000-0003-1823-9354
SPIN-code: 6606-3690

Candidate of Physical and Mathematical Sciences, leading researcher

4, Miusskaya square, Moscow, 125047, Russian Federation

Adilson P. Olivio

RUDN University

Author for correspondence.
Email: pedrokekule@mail.ru
ORCID iD: 0000-0001-5632-3747

Postgraduate of Department of Mechanics and Control Processes, Academy of Engineering

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

References

  1. Lebedev VN. Calculation of the motion of a spacecraft with low thrust. Moscow: Publishing House of the USSR Academy of Sciences, 1968. (In Russ.)
  2. Baranov AA. Methods of calculating maneuver parameters for rendezvous with orbital station. Preprints of the Keldysh Institute of Applied Mathematics. 2008;6:32. (In Russ.) EDN: OYFIUN
  3. Petukhov VG, Olívio AP. Optimization of the Finite-Thrust Trajectory in the Vicinity of a Circular Orbit. Advances in the Astronautical Sciences. 2021;174:5-15. EDN: NYSWPX
  4. Baranov A.A. Maneuvering in the Vicinity of a Circular Orbit. Мoscow: Sputnik+ Publ.; 2016. (In Russ.) ISBN 978-5-9973-3872-5
  5. Petukhov VG, Ivanyukhin А, Popov G, Testoyedov N, Yoon SW. Optimization of finite-thrust trajectories with fixed angular distance. Acta Astronautica. 2022;197:354-367. https://doi.org/10.1016/j.actaastro.2021.03.012 EDN: RDCMOJ
  6. Petukhov VG. Method of continuation for optimization of interplanetary low-thrust trajectories. Cosmic Research. 2012;50(3):249-261. https://doi.org/10.1134/S0010952512030069 EDN: HWNTUM
  7. Baranov AA, De Prado AFB, Razumny VY, Baranov Jr. Optimal low-thrust transfers between close near-circular coplanar orbits. Cosmic Research. 2011;49(3); 269-279. https://doi.org/10.1134/S0010952511030014 EDN: OHRJVL
  8. Ulybyshev YuP. Optimization of Multi-Mode Rendezvous Trajectories with Constraints. Cosmic Research. 2008;46(2):133-145. https://doi.org/10.1134/S0010952508020056 EDN: LLKRDR
  9. Baranov AA, Olivio AP. Coplanar multi-turn rendez-vous in near-circular orbit using a low-thrust engine. RUDN Journal of Engineering Research. 2023;23(4):283-292. http://doi.org/10.22363/2312-8143-2022-23-4-283-292 EDN: VBVJJK
  10. Baranov AA, Roldugin DS. Six-impulse maneuvers for rendezvous of spacecraft in near-circular non-coplanar orbits. Cosmic Research. 2012;50(6):441-448. http://doi.org/10.1134/S0010952512050012 EDN: RGNPGR
  11. Prussing JE. Optimal two- and three-impulse fixed-time rendezvous in the vicinity of a circular orbit. AIAA Journal. 1970;8(7):46-56. https://doi.org/10.2514/3.5876
  12. Marec JP. Optimal Space Trajectories. Studies in Astronautics; Vol.1. Amster-dam-Oxford-New York: El-sevier Sci. Publ.; 1979.
  13. Bulynin YuL. 2008. Ballistic support for control of orbital motion of geostationary spacecraft at various stages of operation. 13th International Scientific Conference “System Analysis, Control and Navigation”, abstracts of reports, Crimea, Evpatoria, June 29 - July 6, 2008;73-74. (In Russ.)
  14. Rylov YuP. Control of a spacecraft entering a sa-tellite system using electric rocket engines. Space Research. 1985;23(5):691-700. (In Russ.)
  15. Kulakov AYu. Model and algorithms for reconfiguration of the spacecraft motion control system. St. Petersburg, 2017. (In Russ.)
  16. Tkachenko IS. Analysis of key technologies for creating multisatellite orbital constellations of small spacecraft. Ontology of designing. 2021;11(4): 478-499. (In Russ.) http://doi.org/10.18287/2223-9537-2021-11-4-478-499 EDN: SGVMYK
  17. Bazhinov IK, Gavrilov VP, Yastrebov VD, et al. Navigation support for the flight of the orbital complex” “Salyut-6-Soyuz-Progress”. Moscow: Science, Nauka Publ.; 1985. (In Russ.)
  18. Baranov AA. Algorithm for calculating the parameters of four-impulse transitions between close al-most-circular orbits. Cosmic Research. 1986;24(3):324-327.
  19. Lidov ML. 1971. Mathematical analogy between some optimal problems of trajectory corrections and selection of measurements and algorithms of their solution. Cosmic Res. 1971;5:687-706.
  20. Gavrilov V, Obukhov E. Correction problem with fixed number of impulses. Cosmic Res. 1980;2:163-172.
  21. Lyon PM, Handelsman M. Basis vector for im-pulsive trajectories with a given flight time. Rocketry and Cosmonautics. 1968;6(1):153-160. (In Russ.)
  22. Bragazin AF, Uskov AV. Transfers with a ren-dezvous lasting no more than one orbit between close near-circular coplanar orbits. Space Engineering and Technology. 2020;3(30):82-93. (In Russ.) https://doi.org/10.33950/spacetech-2308-7625-2020-3-82-93 EDN: DTVFZH
  23. Clohessy WH, Wiltshire RS. Terminal Guidance System for Satellite Rendezvous. Journal of the Aerospace Sciences. 1960;27(9):653-678. https://doi.org/10.2514/8.8704
  24. Hill GW. Researches in Lunar Theory. American Journal of Mathematics. 1878;1(1):5-26. https://doi.org/10.2307/2369430
  25. Elyasberg PE. Introduction to the Theory of Flight of Artificial Earth Satellites. Moscow: Science, 1965. (In Russ.)
  26. Edelbaum TN. Minimum Impulse Transfer in the Vicinity of a Circular Orbit. Journal of the Astronautical Sciences. 1967;XIV(2):66-73.
  27. Olivio A. Complanar encounter of two space vehicles in a near-circular orbit using a low thrust engine. International research journal. 2024;4(142):7. https://doi.org/10.23670/IRJ.2024.142.155 EDN: TPMDHL

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».