Coplanar multi-turn rendezvous in near-circular orbit using a low-thrust engine

Cover Page

Cite item

Full Text

Abstract

The authors describe an algorithm that allows calculating the parameters of maneuvers performed on several turns by the low-thrust engine, which ensure the flight of the active spacecraft to the specified vicinity of the target space object. The movement takes place in the vicinity of a circular orbit. Linearized equations of motion are used in solving the problem. The influence of the non-centrality of the gravitational field and the atmosphere is not taken into account. The determination of maneuver parameters takes place in three stages. At the first and third stages, the parameters of the pulse transition and the transition performed by the low-thrust engine, are determined analytically. At the second stage, the distribution of maneuvering between turns, which provides a solution to the meeting problem, is carried out by iterating over one variable. This method of solving the problem provides simplicity and high reliability of determining the parameters of maneuvers, which allows it to be used on board the spacecraft. The paper investigates the dependence of the total characteristic speed of solving the meeting problem on the number of turns of the flight and the magnitude of the engine thrust.

About the authors

Andrey A. Baranov

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Email: andrey_baranov@list.ru
ORCID iD: 0000-0003-1823-9354

Candidate of Physical and Mathematical Sciences, leading researcher

4 Miusskaya Ploshchad', Moscow, 125047, Russian Federation

Adilson Pedro Olivio

Peoples’ Friendship University of Russia (RUDN University)

Author for correspondence.
Email: pedrokekule@mail.ru
ORCID iD: 0000-0001-5632-3747

postgraduate, Department of Mechanics and Control Processes, Academy of Engineering

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

References

  1. Prussing JE. Optimal two- and three-impulse fixed-time rendezvous in the vicinity of a circular orbit. AIAA Journal. 1970;8(7):46-56. https://doi.org/10.2514/3.5876
  2. Marec JP. Optimal space trajectories. Studies in Astronautics (vol. 1). Amsterdam, Oxford, New York: Elsevier Sci. Pub. Co.; 1979.
  3. Bulynin YuL. Ballistic support for orbital motion control of geostationary spacecraft at various stages of operation. System Analysis, Control and Navigation: Abstracts of Reports. Crimea, Yevpatoria; 2008. p. 73-74. (In Russ.)
  4. Rylov YuP. Control of a spacecraft entering the satellite system using electric rocket engines. Kosmicheskie Issledovaniya. 1985;23(5):691-700.
  5. Kulakov AYu. Model and algorithms of reconfiguration of the spacecraft motion control system (dissertation of the candidate of Technical Sciences). St. Petersburg; 2017. (In Russ.)
  6. Baranov AA. Algorithm for calculating the parameters of four-impulse transitions between close almost-circular orbits. Cosmic Research. 1986;24(3):324-327.
  7. Lidov ML. Mathematical analogy between some optimal problems of trajectory corrections and selection of measurements and algorithms of their solution. Kosmicheskie Issledovaniya. 1971;9(5):687-706. (In Russ.)
  8. Gavrilov V, Obukhov E. Correction problem with fixed number of impulses. Kosmicheskie Issledovaniya. 1980;18(2):163-172. (In Russ.)
  9. Lion PM, Handelsman M. Basis-vector for pulse trajectories with a given flight time. Rocket Technology and Cosmonautics. 1968;6(1):153-160. (In Russ.)
  10. Jezewski DJ, Rozendaal HL. An efficient method for calculating optimal free-space n-impulse trajectories. AIAA Journal. 1968;6(11):2160-2165. (In Russ.)
  11. Baranov AA. Geometric solution of the problem of a rendezvous on close nearly circular coplanar orbits. Cosmic Research. 1989;27(6):689-697.
  12. Baranov AA, Roldugin DS. Six-impulse maneuvers for rendezvous of spacecraft in near-circular noncoplanar orbits. Cosmic Research. 2012;50(6):441-448.
  13. Edelbaum TN. Minimum impulse transfer in the vicinity of a circular orbit. Journal of the Astronautical Sciences. 1967;XIV(2):66-73.
  14. Lebedev VN. Calculation of the motion of a spacecraft with low thrust. Moscow: Publishing House of the USSR Academy of Sciences, 1968. (In Russ.)
  15. Grodzovsky GL, Ivanov YuN, Tokarev VV. Mechanics of low-thrust space flight. Moscow: Nauka Publ.; 1966. (In Russ.)
  16. Petukhov VG. Method of continuation for optimization of interplanetary low-thrust trajectories. Cosmic Research. 2012;50(3):249-261. (In Russ.)
  17. Petukhov VG, Olívio AP. Optimization of the finite-thrust trajectory in the vicinity of a circular orbit. Advances in the Astronautical Sciences. 2021;174:5-15.
  18. Baranov AA. Maneuvering in the vicinity of a circular orbit. Moscow: Sputnik+ Publ.; 2016. (In Russ.)
  19. Baranov AA. Development of methods for calculating parameters of spacecraft maneuvers in the vicinity of a circular orbit (dissertation of the Doctor of Physical and Mathematical Sciences). Moscow; 2019. (In Russ.) Available from: http://library.keldysh.ru/diss.asp?id=2019-baranov (accessed: 12.08.2022).
  20. Ulybyshev YuP. Optimization of multi-mode rendezvous trajectories with constraints. Cosmic Research. 2008;46(2):133-145. (In Russ.)
  21. Clohessy WH, Wiltshire RS. Terminal guidance system for satellite rendezvous. Journal of the Aerospace Sciences. 1960;27(9):653-678. https://doi.org/10.2514/8.8704
  22. Hill GW. Researches in lunar theory. American Journal of Mathematics. 1878;1:5-26.
  23. Elyasberg PE. Introduction to the theory of flight of artificial Earth satellites. Moscow: Nauka Publ.; 1965. (In Russ.)
  24. Baranov AA, Prado AFB, Razumny VY, Baranov Jr. Optimal low thrust transfers between close near-circular coplanar orbits. Cosmic Research. 2011;49(3): 269-279. https://doi.org/10.1134/S0010952511030014

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».