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Аннотация. Рассмотрена проблема низкочастотного шума — дрейфа базо-
вой линии — в сигналах цифровой электрокардиограммы (ЭКГ) большой 
длительности, который может искажать критические диагностические при-
знаки, такие как морфология ST-сегмента и T-зубца. Изучены методы циф-
ровой фильтрации с упором на извлечение и коррекцию низкочастотных по-
мех с использованием фильтров Чебышева II типа и Баттерворта, синтезиро-
ванных на Python. Результаты исследования продемонстрировали, что 
фильтр верхних частот 7-го порядка с частотой среза 1 Гц эффективно изо-
лирует линию нулевого потенциала, тогда как функция filtfilt необходима 
для предотвращения фазовых искажений. Успех метода фильтрации зависит 
от скорости изменения линии нулевого потенциала, и требуется дальнейшая 
разработка количественных критериев оценки и коррекции искажений, вы-
званных фильтром. Предлагаемый подход направлен на улучшение автома-
тизированного анализа ЭКГ и снижение ложных тревог в системах монито-
ринга сердца. 
Ключевые слова: ЭКГ-фильтрация, фильтр Баттерворта, фильтр Чебышева, 
кардиосигналы, QRS-комплекс 
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Abstract. The problem of low-frequency noise (baseline wander) in long-duration digital 
electrocardiogram (ECG) signals, which can distort critical diagnostic features such as the ST-
segment and T-wave morphology, is considered. Digital filtering methods are studied with an 
emphasis on low-frequency noise extraction and correction using Chebyshev type II and 
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Введение 
 

Процесс постановки правильного диагноза 
всегда был сложным и нетривиальным. Развитие 
медицинской техники в значительной мере обес-
печило этот процесс информационно. Однако воз-
росший поток информации потребовал введения 
в клиническую практику средств автоматизиро-
ванной обработки этой информации при диагно-
стике. Так, длительность записи кардиограмм мо-
жет достигать десятков часов, а число сердечных 
сокращений в такой записи — десятков тысяч. 
Поэтому автоматизированная диагностика, гармо-
нично сочетающая врачебный опыт с машинной 
точностью обработки биологических сигналов, 
приобретает всё большую актуальность. Одно-
временно возрастает и потребность в выделении 
из биологических сигналов значимых для диагно-
стики составляющих, то есть фильтрации этих 
сигналов. 

Сигналы электрокардиограммы (ЭКГ) ча-
сто искажаются низкочастотными колебаниями 
(дрейф базовой линии), вызванными дыханием 
(0,1–0,5 Гц), движением пациента (артефакты 
движения), плохим контактом электродов (изме-
нение импеданса кожи). Эти нарушения искаже-
ния могут быть критическими для исследова-
ния морфологии ST-сегмента и T-зуб-ца, кото-
рые важны для диагностики депрессии/подъема 
ST или некоторых аритмий (удлинение QT-интер-
вала). Ниже представлены всесторонний обзор и 
сравнение различных цифровых фильтров для 
снижения шума ЭКГ [1]. 

В медицинской практике часто используются 
некоторые методы фильтрации, такие как удале-
ние базовой линии без искажения ST/T-зубцов и 

сохранение сверхнизкочастотных компонентов для 
анализа вариабельности сердечного ритма. Суще-
ствует множество методов шумоподавления на 
низких частотах: методы вейвлетов [2; 3], филь-
трация Калмана [4; 5], другие методы [6; 7; 8]. 

В современных условиях цифровая обра-
ботка сигналов (ЦОС) получает все более широ-
кое применение. Помимо традиционной сферы 
обработки сигналов (телевидение, радиолокация, 
связь) появляются новые области применения — 
анализ речи и телефония, медицина, обработка 
изображений, анализ явлений различной физиче-
ской природы [9]. 

Развитие вычислительной техники обеспе-
чило создание надежных и недорогих устройств 
для цифровой обработки, с высоким быстродей-
ствием и качеством обработки сигналов. Однако 
расширение сферы применения ЦОС на явления 
материального мира неизбежно приводит к услож-
нению как полезного сигнала, так и помехи. 
Усложнение полезного сигнала может выражаться, 
например, в нестабильности периода во времени, 
в наличии коротких импульсов значительной ам-
плитуды, нестабильности формы огибающей и 
частоты модуляции и в других аналогичных про-
явлениях. Помеха может быть обусловлена не-
случайным процессом, спектр сигнала которого 
перекрывается со спектром полезного сигнала в 
относительно широком диапазоне частот [10]; по-
меха также может быть нестационарной, иметь 
переменный во времени спектр; спектр помехи 
может значительно отличаться от хорошо изучен-
ных спектров распространенных шумов. 

Поэтому решение одной из основных задач 
обработки сигналов — задачи фильтрации — 
для природных, в частности биологических, нес- 
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тационарных сигналов сложной формы является 
нетривиальным и требует разработки специфи-
ческих методов и соответствующих цифровых 
фильтров. 

1. Методы и материалы 

1.1. Постановка задачи 

Задача фильтрации решается применительно 
к цифровому кардиосигналу (ЭКГ) большой дли-
тельности, от десятков до десятков тысяч перио-
дов сердечных сокращений. Цель исследова-
ния — максимальная адаптация ЭКГ к последу-
ющей компьютерной обработке. ЭКГ-сигналы 
большой длительности содержат уникальную 
информацию о динамике сердечной деятельно-
сти в процессе повседневной активности чело-
века. Однако эта информация искажается, напри-
мер, при смещении электродов в результате дви-
жения, появления потенциалов, не связанных с 
сердечно-сосудистой деятельностью, в местах 
размещения электродов. Подобные посторонние 
воздействия на ЭКГ проявляются в виде зашум-
ленности и низкочастот-ных колебаний линии ну-
левого потенциала цифровой ЭКГ. Примеры та-
ких помех на одном сигнале одной кардио-
граммы из базы данных РОХМИНЭ (Российское 
общество Холтеровского мониторирования и не-
инвазивной электрофизиологии) (доступность 
данных: http://rohmine.org/baza-dannykh-rokhmine) 
показаны на рис. 1–3. 

На рис. 1 присутствует практически посто-
янное смещение линии нулевого потенциала, на 
рис. 2 и 3 просматриваются достаточно медлен-
ные, продолжительностью не менее трех перио-
дов сердечных сокращений, колебания линии ну-
левого потенциала. При этом амплитуда таких ко-
лебаний (рис. 3) может в несколько раз превы-
шать размах QRS-комплекса. 

На рис. 2 также просматриваются области 
высокочастотных всплесков с периодом, сравни-
мым с длительностью QRS-комплекса, но значи-
тельно меньшим, чем длительности Р- и Т-зуб-
цов. При этом для однозначной идентификации 
таких высокочастотных всплесков как помех нет 
достаточных оснований, возможно, эти шумы ха-
рактеризуют протекающие в сердце процессы. 

Кроме того, предполагаемой проблемой филь-
трации ЭКГ-сигнала является мощный высокоча-
стотный спектр QRS-комплекса малой длитель-
ности. Так как QRS-комплекс имеет безусловную 

диагностическую ценность, то его необходимо 
сохранить с минимальными искажениями на про-
тяжении всех манипуляций с ЭКГ.  

 

 
Рис. 1. Смещение линии нулевого потенциала 

И с т о ч н и к: выполнено С.В. Курбановым в программе Python 

 

 
Рис. 2. Малые колебания линии нулевого потенциала 

И с т о ч н и к: выполнено С.В. Курбановым в программе Python 

 

 
Рис. 3. Большие колебания линии нулевого потенциала 

И с т о ч н и к: выполнено С.В. Курбановым в программе Python 
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В связи с изложенными особенностями ЭКГ 
задача фильтрации цифрового сигнала может 
быть сведена к поиску последовательности при-
менения цифровых фильтров определенных ти-
пов с целью: 

  идентификации отклонения линии нуле-
вого потенциала ЭКГ;  

  численной оценки величины этого откло-
нения; 

  коррекции линии нулевого потенциала 
ЭКГ, если величина отклонения позволяет такую 
коррекцию; 

  удаления участка ЭКГ, если величина от-
клонения не позволяет его коррекцию; 

  идентификации участков высокочастот-
ных всплесков, сохранения исходной формы ЭКГ, 
в частности QRS-комплекса, при манипуляциях 
с ЭКГ. 

1.2. Виды цифровых фильтров и методы 
их синтеза 

Декомпозиция задачи фильтрации ЭКГ поз-
воляет предположить, что низкочастотная помеха 
сама по себе является достаточно ценным инфор-
мационным ресурсом, заслуживающим отдель-
ного изучения. Поэтому в предлагаемом исследо-
вании применен нестандартный подход к филь-
трации цифрового биологического сигнала, за-
ключающийся в максимально точном явном вы-
делении помехи с последующей коррекцией по-
лезного сигнала путем вычитания из него выде-
ленной помехи. Этот подход аналогичен адап-
тивной фильтрации и характеризуется практиче-
ски идеальной настройкой весовых коэффициен-
тов фильтра. Для такой настройки на каждом шаге 
дискретизации из обрабатываемого сигнала с вы-
сокой точностью вычитается действительная ве-
личина помехи, что должно привести к выделе-
нию практически свободного от шумов полезного 
сигнала. Если же помеха настолько велика, что 
гарантировать выделение полезного сигнала не-
возможно, то можно четко определить времен-
ной интервал существования «плохого» сигнала 
для исключения «плохого» сигнала из дальней-
шей обработки. Недостатком предлагаемого ме-
тода является его ограниченная применимость для 
обработки сигнала в реальном времени в связи со 
значительным запаздыванием выделения помехи 
и получения отфильтрованного сигнала [11]. 

Теория цифровых фильтров и методика их 
синтеза достаточно хорошо разработана и изло- 

жена. Наиболее простым методом представляется 
синтез цифрового фильтра на основе аналогового 
прототипа, такой фильтр устойчив при условии 
устойчивости прототипа. Выбор прототипа про-
изводится исходя из требуемой амплитудно-ча-
стотной характеристики (АЧХ) фильтра. Так, для 
выделения из сигнала низкочастотной составля-
ющей с максимальной точностью АЧХ фильтра в 
полосе пропускания должна быть максимально 
плоской. Из основных типов аналоговых филь-
тров такое свойство имеют фильтр Баттерворта и 
инверсный фильтр Чебышева (называемый также 
фильтром Чебышева II типа). Остальные филь-
тры имеют небольшую неравномерность в полосе 
пропускания, выражающуюся в колебаниях АЧХ 
величиной в несколько децибел (неравномер-
ность АЧХ). Обычно в теории допускается нерав-
номерность АЧХ порядка 3 дБ, что соответствует 
ослаблению сигнала на 30 %; такое ослабление 
в предлагаемой модели фильтрации очевидно не-
приемлемо. 

Для синтеза цифровых фильтров был исполь-
зован Python, поэтому исследование и сравнение 
АЧХ намеченных к применению фильтров выпол-
нялось средствами Python, использовались биб-
лиотеки numpy, scipy и math. Математическое 
описание достаточно подробно изложено, напри-
мер, в [12]. Оба фильтра-прототипа синтезиро-
ваны как фильтры с бесконечной импульсной 
характеристикой (БИХ-фильтры) с помощью 
функции iirfilter, возвращающей числитель b и 
знаменатель a передаточной функции фильтра 

b, a = iirfilter(Nf, wsr, rs = 40, btype = 'low�
pass',analog = True,ftype = 'cheby2') 

по заданным параметрам: Nf — порядок фильтра, 
определяющий крутизну падения его АЧХ в об-
ласти средних частот между полосами пропуска-
ния и задерживания; wsr — круговая частота 
среза фильтра (ω), определяемая через обычную 
частоту среза по формуле [2*np.pi*fsr]; rs = 40 — 
минимальное ослабление в полосе задержива-
ния в дБ, ослабление 40 дБ соответствует ослаб-
лению в 100 раз; btype = ‘lowpass’ — вид филь-
тра (низких частот, высоких частот, полосовой 
и т.д.), здесь задан фильтр низких частот; 
analog = True — логическая константа, опреде-
ляющая тип синтезируемого фильтра, True соот-
ветствует аналоговому фильтру, False — цифро-
вому фильтру; ftype = ‘cheby2’ — тип фильтра, 
здесь задан фильтр Чебышева II типа. 
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Результат сравнения фильтров Чебышева 
II типа и Баттерворта показан на рис 4. 

 

 
Рис. 4. Сравнение фильтров 

Чебышева II типа и Баттерворта 
И с т о ч н и к: выполнено С.В. Курбановым в программе Python 

 
Были построены АЧХ фильтров обоих типов 

7-го и 15-го порядков. Следует отметить ряд осо-
бенностей фильтров: 

1) заданная частота среза для фильтров Бат-
терворта характеризует высшую частоту пропус-
кания, а фильтров Чебышева II типа — низшую 
частоту полосы задерживания; 

2) для фильтров Баттерворта характерно 
плавное падение АЧХ по сравнению с фильтрами 
Чебышева II типа (подтверждает теоретические 
выводы); при этом для фильтра 7-го порядка за-
данное ослабление 40 дБ достигается на ча-
стоте почти в 2 Гц, а для фильтра 15-го порядка 
на частоте примерно 1,4 Гц, т.е. спектр отфиль-
трованного сигнала будет содержать значитель-
ное количество частот выше заданной частоты 
среза; 

3) фильтры Чебышева II типа имеют круто 
падающую АЧХ; при этом для фильтра 7-го 
порядка искажения появятся на частоте 0,7 Гц, 
а для фильтра 15-го порядка на частоте 0,9 Гц, 
т.е. в спектре отфильтрованного сигнала будет по-
давлено незначительное количество частот ниже 
заданной частоты среза. 

Таким образом, можно сделать вывод о це-
лесообразности применения фильтра Чебышева 
II типа, для выделения низкочастотных помех 
из кардиосигнала. Далее будут рассматриваться 
только такие фильтры [13]. 

1.3. Исследование цифровых фильтров 
применительно к задаче фильтрации 
сигналов ЭКГ 

Решение задачи фильтрации обычно сводится 
к выбору параметров фильтров, что предполагает 
определение частоты среза и порядка фильтра.  

Определение частоты среза фильтра прово-
дилось на основании хорошо известных времен-
ных и частотных характеристик периодических 
процессов, протекающих в организме человека. 
Наиболее близким к частоте сердечных сокра-
щений является частота дыхания, в норме состав-
ляющая примерно 20 вдохов-выдохов в минуту, 
что соответствует частоте 0,3 Гц. При этом ча-
стота у взрослых находится в пределах 60…80 уда- 
ров в минуту, а уменьшение этой частоты ниже 
60 ударов в минуту относят к брадикардии. Вме-
сте с тем тренированные люди в норме могут 
иметь и меньшую частоту сердечных сокраще-
ний (до 45–50 ударов в минуту). Таким образом, 
нижняя граница спектра сердечных сокраще-
ний находится в окрестности значения частоты 
0,75 Гц, а предполагаемая частота полосы про-
пускания фильтра нижних частот лежит в диапа-
зоне от 0,3 до 0,7 Гц. Учитывая характер АЧХ 
фильтра Чебышева 2-го типа (рис. 4), частота 
среза фильтра низких частот для предлагаемого 
метода фильтрации должна быть в интервале 
0,2…0,8 Гц. 

Установление пределов изменения порядка 
фильтра проводилось преимущественно методом 
вычислительного эксперимента, при планирова-
нии которого учитывалось, что порядок цифро-
вого фильтра определяет число слагаемых раз-
ностного уравнения. С одной стороны, увеличе-
ние порядка фильтра ведет к более точному раз-
делению сигнала по частоте из-за увеличения 
крутизны характеристики. С другой стороны, при 
этом возрастает объем вычислений и длина мас-
сива данных, необходимых для решения разност-
ного уравнения. Исходя из того, что число дан-
ных одного периода сердечных сокращений при 
частоте дискретизации 200 Гц примерно равно 
100, представляется разумным ограничить поря-
док фильтра числом 15. Попытка синтезировать 
такие фильтры в Python выявила явление искаже-
ния АЧХ в полосе пропускания в зависимости от 
порядка фильтра. На рис. 5 изображена неиска-
женная АЧХ фильтра 5-го порядка с частотой среза 
0,2 Гц, а на рис. 6 изображена искаженная АЧХ 
фильтра 7-го порядка с той же частотой среза. 
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Рис. 5. АЧХ фильтра 5�го порядка 

с частотой среза 0,2 Гц 
И с т о ч н и к: выполнено С.В. Курбановым в программе Python 

 

 
Рис. 6. АЧХ фильтра 7�го порядка 

с частотой среза 0,2 Гц 
И с т о ч н и к: выполнено С.В. Курбановым в программе Python 

 
Такой эффект проявляется при частоте среза 

0,3 Гц выше 6-го порядка; при частоте среза 0,4 и 
0,5 Гц также выше 6-го порядка; при частоте среза 
0,6…0.8 Гц выше 7-го порядка. 

Критерий эффективности фильтрации при-
менительно к задачам диагностики должен ха-
рактеризовать условия, в которых применение 
фильтра не вносит существенных искажений в 
ЭКГ на частотах выше частоты f0 = 0,7 Гц, так 
как этот диапазон частот важен для диагностики. 
Отсюда следует, что для появления существен-
ных искажений диагностической области спек-
тра длительность фронта или спада низкоча-
стотной составляющей ЭКГ должна быть по-
рядка 1/f0 ≈ 1,4 с. Увеличение электрического 
потенциала за это время должно быть одного 
порядка со средним размахом QRS-комплекса, 

т.е. составлять примерно 4 мВ. Иначе говоря, 
для успешной реализации эффективного фильтра 
фронты или спады низкочастотной составляющей 
ЭКГ должны иметь крутизну не более 3 мВ/с. 
Уточнение данного критерия требует значитель-
ного объема дополнительных исследований. 

Результаты исследования параметров фильтра 
сведены в таблицу. 

 
Влияние частоты среза фильтров Чебышева II типа 

на допустимый порядок фильтра 

Частота 
среза, Гц 

Порядок фильтра 
максимальный 

Критерий эффективности 
по фронту или спаду 

низкочастотной 
составляющей, мВ/с

0.2 5 3 

0.3 5 3 

0.4…0.5 5 3 

0.6…0.8 6 3 

И с т о ч н и к: выполнено С.В. Курбановым  

 
Таким образом, максимальный порядок 

фильтра низких частот в интервале 0,2…0,8 Гц ра-
вен 5, в случае реализации средствами Python без 
разработки специальных функций. Для фильтров 
высоких частот, обрабатывающих сигналы с ча-
стотами от 300 колебаний в минуту (5 Гц), огра-
ничений для фильтров порядка не выше 15 не об-
наружено. Например, те же методы есть в [3], 
только для вейвлетов. 

2. Результаты применения 
синтезированных фильтров 
к реальным ЭКГ%сигналам 

Фильтрация и детрендирование временного 
ряда ЭКГ имеют свои преимущества, такие как 
упрощение процесса распознавания и анализа 
ЭКГ. Как правило, полученные данные либо сразу 
анализируются, либо подвергаются дальнейшей 
обработке. Однако такие методы имеют ограни-
чения: например, смещение базовой линии может 
вызвать изменение амплитуды зубцов и сегмен-
тов кардиограммы, а также появление ложных 
элементов, которые могут быть ошибочно интер-
претированы как патология. Все зависит от того, 
насколько будет изменяться потенциал отсчетов 
ЭКГ по сравнению с исходными данными, так 
как на выбросе линии он может быть один, а на 
линии нулевого уровня другой, что также влияет 
на диагностику [14]. 

Результат применения фильтра 5-го порядка 
к реальному кардиосигналу (одно ответвление 
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V2) показан на рис. 7, приведен фрагмент кар-
диограммы. Были проверены два реализованных 
в Python алгоритма из библиотеки scipy.signal: 
1) lfilter, реализующий фильтрацию сначала до 
конца, при этом отфильтрованный сигнал имеет 
сдвиг по фазе; 2) filtfilt, реализующий фильтра-
цию с возвратом начало — конец — начало, ко-
торый исправляет фазовые сдвиги. Для предлага-
емого метода фильтрации сдвиг по фазе оказыва-
ется критичным параметром. Без компенсации 

этого сдвига метод в принципе неработоспосо-
бен. В данном случае фазовый сдвиг оказался ра-
вен пяти периодам сердечных сокращений, что 
для картины на рис. 7 соответствует примерно 
четверти периода медленных колебаний. 

Очевидно, дальнейшего исследования заслу-
живает только фильтрация с компенсацией фазо-
вого сдвига. Результат вычитания выделенной 
низкочастотной составляющей из исходного кар-
диосигнала показан на рис. 8, 9 и 10.

 

 
Рис. 7. Результат фильтрации реальной кардиограммы

И с т о ч н и к: выполнено С.В. Курбановым в программе Python

 

 
Рис. 8. Коррекция небольших медленных изменений 

И с т о ч н и к: выполнено С.В. Курбановым в программе Python 

 

 
Рис. 9. Коррекция больших быстрых изменений 

И с т о ч н и к: выполнено С.В. Курбановым в программе Python 

 
На рис. 8 показана корректировка линии ну-

левого потенциала для случая небольших мед-
ленных изменений. Видно, что эти изменения 
успешно компенсируются, при этом ЭКГ оказы-
вается в области положительных потенциалов, 
кроме Q- и S-зубцов. 

На рис. 9 показана корректировка линии ну-
левого потенциала для случая значительных и 
быстрых изменений. В этом случае корректи-
ровка оказывается недостижимой вблизи зон рез-
ких изменений, как, например, вблизи индекса 
124 200 на рис. 9. 

Визуальное сравнение исходных и отфиль-
трованных данных ЭКГ позволяет сформулиро-
вать гипотезу о том, что фактором, определяю-
щим успешность предлагаемого метода филь-
трации, является скорость изменения исходного 
сигнала. На это обстоятельство указывает успеш-
ная коррекция большого отклонения в интер-
вале 125 500…126 500 индексов, тогда как на 
крутом фронте изменения линии нулевого потен-
циала при 124 200 индексах коррекция не наблю-
дается. Наоборот, фильтр вносит в линию нуле-
вого потенциала дополнительные искажения. Ме-
тод улучшения визуального сигнала, основанный 
на цифровом вейвлет-преобразовании, может дать 
точный результат [15], но в случае вейвлета нам 
настоятельно необходимо найти наилучшую ма-
теринскую вейвлет-функцию и определить пра- 
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вильный масштаб, чтобы сделать рисунок при-
годным для исследования. Поэтому предлагае-
мый метод по сравнению с цифровым вейвлет-
преобразованием представляется значительно 
более простым средством улучшения кардиосиг-
нала. Для устранения искажений были прове-
дены исследования по модификации предлагае-
мого метода цифровой фильтрации. 

В связи с искажением линии нулевого потен-
циала была предпринята попытка выделения этой 
линии в форме, максимально близкой к той, что 
наблюдается в исходном сигнале. Для этого к ис-
ходному кардиосигналу был применен фильтр 
высокой частоты 7-го порядка с частотой среза 
1 Гц с последующим вычислением разности ис-
ходного и фильтрованного сигналов. Результат 
представлен на рис. 10. 

 

 
Рис. 10. Результат выделения низкочастотной 

составляющей высокочастотным фильтром 
И с т о ч н и к: выполнено С.В. Курбановым в программе Python 

 

 
Рис. 11. Результат выделения полезного 

сигнала высокочастотным фильтром 
И с т о ч н и к: выполнено С.В. Курбановым в программе Python 

Полученная в результате фильтрации кривая 
практически точно повторяет линию нулевого по-
тенциала для локально взятого периода сердце-
биения. Очевидно, что откорректированный по-
лезный сигнал, возможно с небольшими искаже-
ниями, получается сразу в результате фильтрации 
(рис. 11). 

Здесь также наблюдается искажение полез-
ного сигнала на крутом переднем фронте при ин-
дексах 124 100…124 250, что подтверждает ранее 
выдвинутую гипотезу. 

Оба исследования направлены на удаление 
шума и дрейфа базовой линии из сигналов ЭКГ с 
сохранением диагностически важных признаков 
(QRS-комплекс, ST-сегмент, T-зубец). 

Данное исследование оценивает производи-
тельность фильтров Чебышева II типа (обратный 
Чебышев) и Баттерворта для коррекции дрейфа 
базовой линии с акцентом на минимизацию фазо-
вых искажений посредством фильтрации нулевой 
фазы. Результаты сравниваются с работой Чавана 
[16] и Каура [17], которые анализировали фильтры 
Чебышева I и II типа для снижения шума ЭКГ. 

Данное исследование оценивает производи-
тельность фильтров Чебышева II типа (обратный 
Чебышев) и Баттерворта для коррекции дрейфа 
базовой линии с акцентом на минимизацию фазо-
вых искажений посредством фильтрации нулевой 
фазы. Результаты сравниваются с работой Чавана 
[16] и Каура [17], которые анализировали фильтры 
Чебышева I и II типа для снижения шума ЭКГ. 

В этой работе тестировались фильтры Чебы-
шева II типа (7-го порядка, среза 1 Гц) и Баттер- 
ворта, реализующие фильтрацию нулевой фазы 
с использованием scipy.signal.filtfilt Python для 
устранения искажений во временной области. 
Фильтр Чебышева II типа продемонстрировал 
превосходную производительность при коррек-
ции базовой линии из-за более резкого затухания 
в полосе задерживания, в то время как фильтры 
Баттерворта показали более медленный спад, что 
привело к искажению ST-сегмента. Было обнару-
жено, что выравнивание фаз имеет решающее 
значение, при этом фильтрация нулевой фазы сни- 
жает артефакты временного сдвига до менее чем 
пяти периодов сердцебиения. 

Чаван [16] сравнил фильтры Чебышева I типа 
(равномерная полоса пропускания) и типа II (рав-
номерная полоса задерживания), измеряя произ-
водительность посредством улучшения отноше- 
ния сигнал/шум (SNR) и сохранения QRS-ком- 
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плекса. Фильтр Чебышева типа II превзошел 
фильтры I типа по удалению шума и сохране-
нию энергии QRS, что соответствует результа-
там настоящего исследования. Оба исследова-
ния подчеркивают ограничения фильтров Баттер-
ворта в сохранении диагностических признаков. 

Вычислительную сложность предлагаемого 
алгоритма можно оценить следующим образом. 
Разностное уравнение для каждой точки исход-
ного сигнала решается за фиксированное число 
операций, сложность его решения О(1). Для филь-
трации цифровой ЭКГ длиной n отсчетов алго-
ритм имеет линейную сложность О(n). Если срав-
нивать с нейросетевыми алгоритмами, то они 
имеют минимум квадратичную сложность О(n2), 
как показано в [17]. Предлагаемый метод требует 
значительно меньших вычислительных ресурсов, 
чем нейросетевые алгоритмы. 

Результаты показывают, что фильтры Чебы-
шева II типа оптимальны для шумоподавления 
ЭКГ, обеспечивая баланс между эффективным 
подавлением шума и минимальным искажением 
критических компонентов сигнала. Фильтрация 
нулевой фазы имеет важное значение для поддер- 
жания целостности формы сигнала, особенно 
для автоматизированной диагностики и долго-
срочного мониторинга. В будущих работах воз-
можно изучение гибридных методов, такие как 
объединение вейвлет-преобразований с филь-
трами Чебышева, для устранения нестационар-
ного шума и дальнейшего улучшения обработки 
в реальном времени. 

Заключение 

Подводя итоги, следует отметить, что это ис-
следование подтверждает превосходство филь-
тров Чебышева типа II для шумоподавления сиг-
нала ЭКГ, что согласуется с предыдущими иссле-
дованиями. Акцент на реализацию нулевой фазы 
обеспечивает практические идеи для клиниче-
ских приложений, гарантируя точную интерпре-
тацию данных ЭКГ. Определены ограничения на 
порядок фильтров в зависимости от частоты 
среза — при частоте среза 0,2…0,8 Гц жела-
тельно использовать фильтр не выше 5-го по-
рядка, на более высоких частотах среза не выше 
7-го порядка. 

Для минимизации искажений критически 
важно отсутствие фазовых искажений, поэтому в 
Python следует пользоваться функцией filtfilt из 
библиотеки scipy.signal, реализующей два про- 

хода в прямом и обратном направлении по мас-
сиву значений сигнала. 

Сравнение результатов применения фильтров 
высокой и низкой частот для выделения линии 
нулевого потенциала позволяет однозначно сде-
лать выбор в пользу применения фильтра высо-
кой частоты 7-го порядка с частотой среза 1 Гц. 
При этом фильтрованный сигнал представляет со-
бой сигнал ЭКГ с коррекцией линии нулевого по-
тенциала, а разность исходного и фильтрованного 
сигнала саму линию нулевого потенциала. Сфор-
мулирована и проверена гипотеза о том, что фак-
тором, определяющим успешность предлагае-
мого метода фильтрации, является скорость изме-
нения линии нулевого потенциала исходного сиг-
нала. Для численной оценки величины искажений, 
вносимых фильтром, и коррекции этих искажений 
необходима разработка критерия оценки искаже-
ний и алгоритма вычисления этого критерия.  

Будущая  работа :  классификация источ-
ников дрейфа (дыхание, движение и патология) 
и интеграция с программным обеспечением для 
клинических ЭКГ без необходимости ручной на-
стройки. Это улучшит автоматизированную диа-
гностику (например, интерпретацию ЭКГ на ос-
нове ИИ) и сократит количество ложных тревог в 
системах кардиомониторинга. 
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