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Abstract. The problem of low-frequency noise (baseline wander) in long-duration digital 
electrocardiogram (ECG) signals, which can distort critical diagnostic features such as the 
ST-segment and T-wave morphology, is considered. Digital filtering methods are studied 
with an emphasis on low-frequency noise extraction and correction using Chebyshev type II 
and Butterworth filters synthesized in Python. The results show that a 7th-order high-pass 
filter with a cutoff frequency of 1 Hz effectively isolates the zero-potential line, whereas the 
filtfilt function is essential to avoid phase distortions. The success of the filtering method 
depends on the rate of change of the zero-potential line, and further work is required to 
develop quantitative criteria for evaluating and correcting filter-induced distortions. The 
proposed approach aims to improve automated ECG analysis and reduce false alarms in 
cardiac-monitoring systems. 
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Аннотация. Рассмотрена проблема низкочастотного шума — дрейфа ба-
зовой линии — в сигналах цифровой электрокардиограммы (ЭКГ) боль-
шой длительности, который может искажать критические диагностиче-
ские признаки, такие как морфология ST-сегмента и T-зубца. Изучены 
методы цифровой фильтрации с упором на извлечение и коррекцию 
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низкочастотных помех с использованием фильтров Чебышева II типа и 
Баттерворта, синтезированных на Python. Результаты исследования про-
демонстрировали, что фильтр верхних частот 7-го порядка с частотой 
среза 1 Гц эффективно изолирует линию нулевого потенциала, тогда как 
функция filtfilt необходима для предотвращения фазовых искажений. 
Успех метода фильтрации зависит от скорости изменения линии нулевого 
потенциала, и требуется дальнейшая разработка количественных крите-
риев оценки и коррекции искажений, вызванных фильтром. Предлагае-
мый подход направлен на улучшение автоматизированного анализа ЭКГ 
и снижение ложных тревог в системах мониторинга сердца. 

Ключевые слова: ЭКГ-фильтрация, фильтр Баттерворта, фильтр Чебы-
шева, кардиосигналы, QRS-комплекс 
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Introduction 

The process of making a correct diagnosis has 
always been complex and challenging. Advances 
in medical technology have significantly improved 
this process. However, the increased flow of infor-
mation has necessitated the introduction of auto-
mated diagnostic data processing tools into clinical 
practice. Cardiogram recordings can last tens of 
hours, and the number of heartbeats in such re-
cordings can reach tens of thousands. Therefore, 
automated diagnostics, which harmoniously com-
bines medical expertise with the machine-like 
precision of biological signal processing, is be-
coming increasingly important. At the same time, 
the need to extract diagnostically significant com-
ponents from biological signals, i.e., filter these 
signals, is also growing. 

Electrocardiogram (ECG) signals are often 
distorted by low-frequency fluctuations (baseline 
drift) caused by respiration (0.1–0.5 Hz), patient 
movement (motion artifacts), and poor electrode 
contact (skin impedance changes). These distortion 
disturbances can be critical for assessing ST-seg-
ment and T-wave morphology, which are important 
for diagnosing ST depression/elevation or certain 
arrhythmias (QT prolongation). A comprehensive 

review and comparison of various digital filters 
for ECG noise reduction is presented below [1]. 

In medical practice, some filtering methods 
are often used, such as baseline removal without 
distorting ST/T waves and preserving ultra-low-
frequency components for heart rate variability 
analysis. There are many low-frequency noise re-
duction methods: wavelet methods [2; 3], Kalman 
filtering [4; 5], and other methods [6; 7; 8]. 

In modern conditions, digital signal processing 
(DSP) is becoming increasingly widespread. In ad-
dition to the traditional fields of signal processing 
(television, radar, communications), new areas of 
application are emerging — speech analysis and 
telephony, medicine, image processing, and the 
analysis of various physical phenomena [9]. 

The development of computing technology 
has enabled the creation of reliable and inexpensive 
digital signal processing devices with high speed 
and quality. However, the expansion of the scope 
of application of digital signal processing to 
phenomena in the material world inevitably leads 
to the complexity of both the useful signal and the 
interference. The complication of the useful signal 
can be expressed, for example, in the instability of 
the time period, in the presence of short pulses of 
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significant amplitude, instability of the envelope 
shape and modulation frequency, and in other 
similar manifestations. Interference can be caused 
by a non-random process, the signal spectrum of 
which overlaps with the spectrum of the useful 
signal over a relatively wide frequency range [10]; 
interference can also be non-stationary, having a 
spectrum that varies over time; the interference 
spectrum can differ significantly from the well-
studied spectra of widespread noise. 

Therefore, the solution to one of the main 
problems of signal processing — the filtering 
problem — for natural, in particular biological, 
non-stationary signals of complex shape is non-
trivial and requires the development of specific 
methods and corresponding digital filters. 

1. Methods and Materials 

1.1. Problem Statement 

In this paper, the filtering problem is addressed 
for a long-duration digital cardiac signal (ECG), 
ranging from tens to tens of thousands of heart-
beats. The objective is to maximize the ECG’s 
adaptability to subsequent computer processing. 
Long-duration ECG signals contain unique infor-
mation about the dynamics of cardiac activity 
during a person’s daily activities. However, this 
information is distorted, for example, by electrode 
displacement due to movement or the appearance 
of potentials unrelated to cardiovascular activity at 
the electrode sites. Such extraneous influences on 
the ECG manifest themselves as noise and low-
frequency oscillations in the zero potential line 
of the digital ECG. Examples of such interference 
in a single signal from a single ECG from 
the Russian Society of Holter Monitoring and 
Noninvasive Electrophysiology database (data 
availability: http://rohmine.org/baza-dannykh-
rokhmine/) are shown in Figures 1–3. 

Figure 1 shows a nearly constant shift of the 
zero potential line. Figures 2 and 3 show fairly slow 
oscillations of the zero potential line, lasting at least 
three heartbeats. The amplitude of these oscillations, 
as seen in Figure 3, can be several times greater 
than the QRS complex amplitude. 

 
Figure 1. The zero�potential line offset 

S o u r c e: by S.V. Kurbanov in the Python software 

 

 
Figure 2. The zero�potential line small oscillations 

S o u r c e: by S.V. Kurbanov in the Python software 

 

 
Figure 3. The zero�potential line large oscillations 

S o u r c e: by S. V. Kurbanov in the Python software 

Indexes 

Indexes 

Indexes 
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Figure 2 also shows areas of high-frequency 
bursts with a period comparable to the duration of 
the QRS complex but significantly shorter than the 
duration of the P- and T-waves. However, there is 
insufficient evidence to unambiguously identify 
these high-frequency bursts as interference; it is 
possible that this noise characterizes processes 
occurring in the heart. 

Furthermore, the powerful high-frequency 
spectrum of the short-duration QRS complex is a 
potential problem in ECG signal filtering. Since 
the QRS complex has unconditional diagnostic 
value, it must be preserved with minimal distortion 
throughout all ECG manipulations. 

Due to the described ECG characteristics, 
the task of filtering the digital ECG signal can be 
reduced to finding a sequence of applying digital 
filters of certain types, with the aim of: 

  identifying the deviation of the ECG zero 
potential line, 

  numerically estimating the magnitude of 
this deviation, 

  correcting the ECG zero potential line if the 
deviation magnitude allows such correction, 

  removing an ECG section if the deviation 
magnitude does not allow its correction, 

  identifying areas of high-frequency bursts, 
preserving the original ECG shape, in particular 
the QRS complex, during ECG manipulations. 

1.2. Types of Digital Filters and Methods 
of Their Synthesis 

Decomposing the ECG filtering problem 
suggests that low-frequency interference itself is 
a valuable information resource. Therefore, the pro-
posed study applies a non-standard approach to 
filtering a digital biological signal, which involves 
explicitly and precisely identifying the interference, 
followed by correcting the useful signal by sub-
tracting the identified interference. This approach 
is similar to adaptive filtering and is characterized 
by a virtually perfect tuning of the filter weighting 
coefficients. To achieve this tuning, the actual 
magnitude of the interference is subtracted from 
the processed signal with high accuracy at each 
sampling step, which should result in the isolation 

of a virtually noise-free useful signal. If the inter-
ference is so significant that the isolation of the 
useful signal cannot be guaranteed, then the time 
interval during which the “bad” signal exists can 
be precisely defined, thereby eliminating it from 
further processing. The disadvantage of the pro-
posed method is its limited applicability for signal 
processing in real time, due to the significant delay 
in isolating the interference and obtaining the 
filtered signal [11]. 

The theory of digital filters and the methods 
for their synthesis are well developed and described. 
The simplest method is to synthesize a digital filter 
based on an analog prototype, such a filter is stable 
provided the prototype is stable. The prototype is 
selected based on the required amplitude-frequency 
response (AFR) of the filter. Thus, to isolate the 
low-frequency component from the signal with 
maximum accuracy, the filter’s AFR in the pass-
band must be as flat as possible. Of the main types 
of analog filters, the Butterworth filter and the 
inverse Chebyshev filter (also called the Chebyshev 
type 2 filter) have this property. The remaining 
filters have a slight unevenness in the passband, 
expressed as frequency response fluctuations of 
several decibels (AFR unevenness). Typically, 
in theory, an AFR of about 3 dB is allowed, which 
corresponds to a 30% signal attenuation; such 
attenuation is clearly unacceptable in the proposed 
filtering model. 

Python was used to synthesize the digital 
filters, so the study and comparison of the frequency 
responses of the filters planned for use were per-
formed using Python tools, using the numpy, scipy, 
and math libraries. The mathematical description 
is presented in sufficient detail in the literature, 
for example, [12]. Both prototype filters were 
synthesized as filters with an infinite impulse 
response (IIR filters) using the iirfilter function, 
which returns the numerator b and the denominator 
a of the filter transfer function: 

b, a = iirfilter(Nf, wsr, rs = 40, btype = 
'lowpass',analog = True,ftype = 'cheby2') 

according to specified parameters: Nf — the order 
of the filter, which determines the steepness of 
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the drop in its frequency response in the mid-
frequency region between the pass and stop bands; 
wsr — circular cutoff frequency of the filter (ω), 
determined through the normal cutoff frequency 
according to the formula [2*np.pi*fsr]; rs = 40 — 
minimum attenuation in the stopband in dB, 
attenuation of 40 dB corresponds to attenuation by 
a factor of 100 times; btype = ‘lowpass’ — filter 
type (low pass, high pass, band pass, etc.), here the 
low pass filter is specified; analog = True — 
a logical constant that determines the type of filter 
being synthesized; True corresponds to an analog 
filter, False to a digital filter; ftype = ‘cheby2’ —
filter type: Chebyshev Type II filter is specified 
here. 

The comparison result between Chebyshev 
Type II and Butterworth filters is shown in Figure 4. 

 

 
Figure 4. Comparison of Chebyshev 

type II and Butterworth filters 
S o u r c e: by S.V. Kurbanov in the Python software 

 
Frequency responses of both types of 7th and 

15th order filters were constructed. Filter features 
are listed below: 

1) The specified cutoff frequency for Butter-
worth filters characterizes the highest passband 
frequency, while for Type II Chebyshev filters it 
characterizes the lowest stopband frequency; 

2) Butterworth filters are characterized by a 
smooth frequency response drop compared to 
Type II Chebyshev filters (confirming the theoretical 
conclusions); for a 7th-order filter, the specified 

attenuation of 40 dB is achieved at a frequency of 
almost 2 Hz, and for a 15th-order filter, at a fre-
quency of approximately 1.4 Hz, i.e., the spectrum 
of the filtered signal will contain a significant 
number of frequencies above the specified cutoff 
frequency; 

3) Type II Chebyshev filters have a steeply 
falling frequency response; for a 7th-order filter, 
distortion will appear at a frequency of 0.7 Hz, and 
for a 15th-order filter, at a frequency of 0.9 Hz, i.e. 
In the filtered signal spectrum, a small number of 
frequencies below the specified cutoff frequency 
will be suppressed. 

Thus, it can be concluded that it is advisable 
to use a Type II Chebyshev filter to isolate low-
frequency interference from a cardiac signal. Only 
such filters will be considered below [13]. 

1.3. Study of Digital Filters Applied 
to the Problem of Filtering ECG Signals 

Solving a filtering problem usually comes 
down to selecting filter parameters, which involves 
determining the cutoff frequency and filter order. 

The filter cutoff frequency was determined 
based on well-known time and frequency characte- 
ristics of periodic processes occurring in the human 
body. The closest approximation to the heart rate 
is the respiratory rate, which normally is approxi-
mately 20 breaths per minute, corresponding to a 
frequency of 0.3 Hz. In adults, the heart rate ranges 
from 60 to 80 beats per minute, and a decrease in 
this rate below 60 beats per minute is considered 
to be bradycardia. However, trained individuals 
can normally have a lower heart rate (up to 45 to 
50 beats per minute). Thus, the lower limit of the 
heart rate spectrum is located near a frequency 
of 0.75 Hz, and the expected frequency of the low-
pass filter passband lies in the range of 0.3 to 
0.7 Hz. Taking into account the nature of the 
frequency response of the Chebyshev filter of the 
2nd type (Figure 4), the cutoff frequency of the 
low-pass filter for the proposed filtering method 
should be in the range of 0.2...0.8 Hz. 

The limits for changing the filter order were 
determined primarily by means of a computational 
experiment, the design of which took into account 
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that the digital filter order determines the number 
of terms in the difference equation. On the one 
hand, increasing the filter order leads to a more 
accurate separation of the signal by frequency due 
to an increase in the slope of the characteristic. 
On the other hand, this increases the volume of 
calculations and the length of the data array 
required to solve the difference equation. Based on 
the fact that the number of data for one heart period 
at a sampling frequency of 200 Hz is approximately 
100, it seems reasonable to limit the filter order 
to 15. An attempt to synthesize such filters in 
Python revealed the phenomenon of frequency 
response distortion in the passband depending 
on the filter order. Figure 5 shows the undistorted 
frequency response of a 5th-order filter with a 
cutoff frequency of 0.2 Hz, and Figure 6 shows the 
distorted frequency response of a 7th order filter 
with the same cutoff frequency. 

This effect is evident at a cutoff frequency of 
0.3 Hz above the 6th order; at cutoff frequencies 
of 0.4 Hz and 0.5 Hz, also above the 6th order; and 
at cutoff frequencies of 0.6–0.8 Hz, above the 7th 
order. 

The filtering efficiency criterion for diagnostic 
purposes should characterize the conditions under 
which the filter application does not introduce 
significant distortions to the ECG at frequencies 
above f0 = 0.7 Hz, as this frequency range is 
important for diagnostics. It follows that for 
significant distortions to occur in the diagnostic 
spectrum, the rise or fall time of the low-frequency 
component of the ECG must be approximately 
1/f0 ≈ 1.4 seconds. The increase in electrical 
potential during this time should be of the same 
order of magnitude as the average peak-to-peak 
amplitude of the QRS complex, i.e., approximately 
4 mV. In other words, for the effective filter to be 
successfully implemented, the rise and fall slopes 
of the low-frequency component of the ECG must 
be no more than 3 mV/s. Refining this criterion 
requires significant additional research. 

The results of the filter parameter study are 
summarized in the Table. 

Thus, the maximum order of a low-pass filter 
in the 0.2–0.8 Hz range is 5, when implemented 
using Python without developing special functions. 

For high-pass filters processing signals with fre-
quencies of 300 oscillations per minute (5 Hz), no 
restrictions were found for filters of order no higher 
than 15. For example, the same methods are avail- 
able in [3] only for wavelets. 

 

 
Figure 5. AFC of 5th order filter with cutoff frequency 0.2 Hz 

S o u r c e: by S.V. Kurbanov in the Python software 

 

 
Figure 6. AFC of 7th order filter with cutoff frequency 0.2 Hz 

S o u r c e: by S.V. Kurbanov in the Python software 

 
The Effect of the Cutoff Frequency of Chebyshev Filters 

of the Second Kind on the Allowable Filter Order 

Cutoff 
frequency, Hz

The maximum 
filter order 

Efficiency criterion 
for the front or decline
of the low%frequency 

component, mV/s 

0.2 5 3 

0.3 5 3 

0.4…0.5 5 3 

0.6…0.8 6 3 

S o u r c e: by S.V. Kurbanov 
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2. Results of Applying Synthesized Filters 
to Real ECG Signals 

Filtering and detrending ECG time series have 
their advantages, such as simplifying the process 
of ECG recognition and analysis. Typically, the 
obtained data is either analyzed immediately or 
subjected to further processing. However, such 
methods have limitations: for example, baseline 
shifts can cause changes in the amplitude of the 
waves and segments of the ECG, as well as the 
appearance of false elements that can be mistakenly 
interpreted as pathology. Everything depends on 
how much the potential of the ECG readings 
changes compared to the original data, since it can 
be one value at the peak line and another at the zero 
level line, which also affects diagnostics [14]. 

The result of applying a 5th-order filter to a 
real cardiac signal (one branch of V2) is shown in 
Figure 7; a fragment of the cardiogram is shown. 
Two algorithms from the scipy.signal library im-
plemented in Python were tested: 1) lfilter, which 
implements filtering from beginning to end, with 
the filtered signal having a phase shift; 2) filtfilt, 
which implements filtering with start-end-start 
return, which corrects phase shifts. For the proposed 
filtering method, the phase shift is a critical para-
meter. Without compensation for this shift, the 
method is fundamentally ineffective. In this case, 
the phase shift was equal to five heartbeat periods, 
which for the pattern in Figure 7 corresponds 
to approximately a quarter of the period of slow 
oscillations. 

Clearly, only filtering with phase shift com-
pensation merits further study. The result of sub-
tracting the extracted low-frequency component 
from the original cardiac signal is shown in Figures 
8, 9, and 10. 

Figure 8 shows the zero potential line correc-
tion for small and slow changes. It is evident that 
these changes are successfully compensated, with 
the ECG remaining in the positive potential region, 
except for the Q and S waves. 

Figure 9 shows the zero potential line correc-
tion for significant and rapid changes. In this case 
correction is unachievable near areas of abrupt 
changes, such as near index 124200 in Figure 9. 

 
Figure 7. The result of filtering a real cardiogram 

S o u r c e: by S.V. Kurbanov in the Python software 

 

 
Figure 8. Correction of small slow changes 
S o u r c e: by S.V. Kurbanov in the Python software 

 

 
Figure 9. Correction of large rapid changes 

S o u r c e: by S.V. Kurbanov in the Python software 

Indexes 

Indexes 

Indexes 
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A visual comparison of the original and 
filtered ECG data allows us to formulate a hypo- 
thesis that the factor determining the success of the 
proposed filtering method is the rate of change 
of the original signal. This is indicated by the 
successful correction of a large deviation in the 
range of 125,500...126,500 indices, whereas no 
correction is observed at the steep front of the 
change in the zero potential line at 124,200 indices. 
On the contrary, the filter introduces additional 
distortions into the zero potential line. A visual 
signal enhancement method based on the digital 
wavelet transform can provide an accurate result 
[15], but in the case of a wavelet, we urgently need 
to find the best wavelet mother function and de-
termine the correct scale to make the figure suitable 
for study. Therefore, the proposed method, com-
pared to the digital wavelet transform, appears to 
be a significantly simpler means of improving the 
cardiac signal. To eliminate distortions, studies 
were conducted to modify the proposed digital 
filtering method. Due to the distortion of the zero 
potential line, an attempt was made to extract this 
line in a form as close as possible to that observed 
in the original signal. To achieve this, a seventh-
order high-pass filter with a cutoff frequency of 
1 Hz was applied to the original cardiac signal, 
followed by calculating the difference between the 
original and filtered signals. The result is shown in 
Figure 10. 

 

 
Figure 10. The result of the selection of a low�frequency 

component by a high�frequency filter 
S o u r c e: by S.V. Kurbanov in the Python software 

Here, the distortion of the useful signal at the 
steep leading edge at indices 124100–124250 is 
also observed, which confirms the previously pro-
posed hypothesis. 

Both studies aim to remove noise and baseline 
drift from ECG signals while preserving diagnosti-
cally important features (QRS complex, ST segment, 
T-wave). 

This study evaluates the performance of Che-
byshev II (inverse Chebyshev) and Butterworth 
filters for baseline drift correction, with an emphasis 
on minimizing phase distortion through zero-
phase filtering. The results are compared with the 
work of Chavan [16] and Kaur [17], who analyzed 
Chebyshev I and II filters for ECG noise reduction. 
In this study, Chebyshev Type II filters (7th order, 
1 Hz cutoff) and Butterworth filters implementing 
zero-phase filtering were tested using Python’s 
scipy.signal.filtfilt to remove time-domain artifacts. 
The Chebyshev Type II filter demonstrated superior 
performance in baseline correction due to a sharper 
stopband rolloff, while Butterworth filters exhibited 
a slower rolloff, resulting in ST segment distortion. 
Phase alignment was found to be critical, with zero-
phase filtering reducing time-shift artifacts to less 
than five heartbeat periods. 

The curve obtained as the result of the filtering 
process almost exactly replicates the zero-potential 
line for a locally selected heartbeat period. Clearly, 
the corrected useful signal, possibly with minor 
distortions, is obtained immediately as a result of 
filtering (Figure 11). 

Chavan [16] compared Chebyshev Type I (flat 
passband) and Type II (flat stopband) filters, meas-
uring performance through improved signal-to-
noise ratio (SNR) and QRS complex preservation. 
The Chebyshev Type II filter outperformed Type I 
filters in noise removal and QRS energy preser-
vation, consistent with the results of the present 
study. Both studies highlight the limitations of 
Butterworth filters in preserving diagnostic features. 

The computational complexity of the pro-
posed algorithm can be estimated as follows. The 
difference equation for each point of the original 
signal is solved in a fixed number of operations, 
with a solution complexity of O(1). For filtering 

Indexes 
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a digital ECG with a length of n samples, the algo-
rithm has a linear complexity of O(n). Compared 
to neural network algorithms, they have a minimum 
quadratic complexity of O(n2), as shown in [17]. 
The proposed method requires significantly fewer 
computational resources than neural network algo-
rithms. 

 

 
Figure 11. The result of the selection of a useful 

signal by a high�frequency filter 
S o u r c e: by S.V. Kurbanov in the Python software 

 
The results show that Chebyshev Type II filters 

are optimal for ECG noise reduction, providinga 
balance between effective noise suppression and 
minimal distortion of critical signal components. 
Zero-phase filtering is essential for maintaining 
signal integrity, especially for automated diagnos-
tics and long-term monitoring. Future work may 
explore hybrid methods, such as combining wavelet 
transforms with Chebyshev filters, to remove non-
stationary noise and further improve real-time pro-
cessing. 

Conclusion 

On balance, this study confirms the advantage 
of Chebyshev type II filters for ECG signal noise 
reduction, consistent with previous studies. The 
emphasis on zero-phase implementation provides 
practical insights for clinical applications, ensuring 
accurate interpretation of ECG data. Limitations 
on the filter order are determined depending on 
the cutoff frequency: for cutoff frequencies of 

0.2–0.8 Hz, it is recommended to use a filter of 
no higher than 5th order, and for higher cutoff 
frequencies, no higher than 7th order. 

To minimize distortion, the absence of phase 
distortion is critical, so in Python, the filtfilt function 
from the scipy.signal library should be used, which 
implements two forward and reverse passes through 
the signal value array. 

Comparison of the results of using high-pass 
and low-pass filters to extract the zero-potential line 
allows a clear choice in favor of using a 7th-order 
high-pass filter with a cutoff frequency of 1 Hz. 
The filtered signal represents an ECG signal with 
a zero-potential line correction, and the difference 
between the original and filtered signals represents 
the zero-potential line itself. A hypothesis was 
formulated and tested that the factor determining 
the success of the proposed filtering method is the 
rate of change of the zero-potential line of the 
original signal. To numerically estimate the mag-
nitude of distortions introduced by the filter and 
correct these distortions, it is necessary to develop 
a distortion assessment criterion and an algorithm 
for calculating this criterion. 

Future work: classification of drift sources 
(respiration, movement, and pathology) and integ-
ration with clinical ECG software without the 
need for manual adjustments. This will improve 
automated diagnostics (e.g., AI-based ECG inter-
pretation) and reduce the number of false alarms in 
cardiac monitoring systems. 
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