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HHU3KOYAaCTOTHBIX TIOMEX C UcIonb3oBaHueM (uisTpoB YeoObimesa II Tuma u
barrepBopra, cuHTe3upoBaHHbIX Ha Python. Pe3ynbTarsl uccienoBaHus npo-
JEMOHCTPHPOBAIH, YTO (QHIBTP BEPXHUX YaCTOT 7-rO MOpSAKA C 4acTOTOH
cpe3a 1 't 3¢ ek THBHO M30MUPYET JIMHHUIO HYJICBOTO MOTCHINATA, TOIA KaK
¢dynkuus filtfilt HeoOxomuma i mpenoTBparineHuss (Ha30BbIX HCKAKCHHH.
VYenex metona GUIBTpaniy 3aBHCUT OT CKOPOCTH N3MEHEHHS JINHUH HYJIEBOTO
NOTEHIHaNa, 1 TpedyeTcs nainbHeimas pa3paboTka KOMMIeCTBEHHBIX KpUTe-
pHCB OLICHKH M KOPPEKLUH MCKAKCHUH, BbI3BaHHBIX (uiabsTpoM. [pemarae-
MBI ITOAXO0]] HATIPaBJIeH Ha YIy4IIeHHe aBTOMAaTH3UpOBaHHOTO aHann3a DKI
U CHIDKCHHUE JIOKHBIX TPEBOT B CHCTEMaX MOHMTOPHHIA CEP/LIa.

3asiBiieHHE 0 KOH(IMKTE HHTEPECOB

ABTOPBI 3asBIISAIOT 00 OTCYTCTBUH
KOH(IMKTa HHTEPECOB.

KunioueBsble cioBa: OKI-punstpanus, Gunsrp barrepsopra, ¢punstp Yeowl-
mIeBa, KapauocurHaisl, QRS-kommmexc
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Introduction

The process of making a correct diagnosis has
always been complex and challenging. Advances
in medical technology have significantly improved
this process. However, the increased flow of infor-
mation has necessitated the introduction of auto-
mated diagnostic data processing tools into clinical
practice. Cardiogram recordings can last tens of
hours, and the number of heartbeats in such re-
cordings can reach tens of thousands. Therefore,
automated diagnostics, which harmoniously com-
bines medical expertise with the machine-like
precision of biological signal processing, is be-
coming increasingly important. At the same time,
the need to extract diagnostically significant com-
ponents from biological signals, i.e., filter these
signals, is also growing.

Electrocardiogram (ECG) signals are often
distorted by low-frequency fluctuations (baseline
drift) caused by respiration (0.1-0.5 Hz), patient
movement (motion artifacts), and poor electrode
contact (skin impedance changes). These distortion
disturbances can be critical for assessing ST-seg-
ment and T-wave morphology, which are important
for diagnosing ST depression/elevation or certain
arrhythmias (QT prolongation). A comprehensive
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review and comparison of various digital filters
for ECG noise reduction is presented below [1].

In medical practice, some filtering methods
are often used, such as baseline removal without
distorting ST/T waves and preserving ultra-low-
frequency components for heart rate variability
analysis. There are many low-frequency noise re-
duction methods: wavelet methods [2; 3], Kalman
filtering [4; 5], and other methods [6; 7; §].

In modern conditions, digital signal processing
(DSP) is becoming increasingly widespread. In ad-
dition to the traditional fields of signal processing
(television, radar, communications), new areas of
application are emerging — speech analysis and
telephony, medicine, image processing, and the
analysis of various physical phenomena [9].

The development of computing technology
has enabled the creation of reliable and inexpensive
digital signal processing devices with high speed
and quality. However, the expansion of the scope
of application of digital signal processing to
phenomena in the material world inevitably leads
to the complexity of both the useful signal and the
interference. The complication of the useful signal
can be expressed, for example, in the instability of
the time period, in the presence of short pulses of
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significant amplitude, instability of the envelope
shape and modulation frequency, and in other
similar manifestations. Interference can be caused
by a non-random process, the signal spectrum of
which overlaps with the spectrum of the useful
signal over a relatively wide frequency range [10];
interference can also be non-stationary, having a
spectrum that varies over time; the interference
spectrum can differ significantly from the well-
studied spectra of widespread noise.

Therefore, the solution to one of the main
problems of signal processing — the filtering
problem — for natural, in particular biological,
non-stationary signals of complex shape is non-
trivial and requires the development of specific
methods and corresponding digital filters.

1. Methods and Materials

1. 1. Problem Statement

In this paper, the filtering problem is addressed
for a long-duration digital cardiac signal (ECG),
ranging from tens to tens of thousands of heart-
beats. The objective is to maximize the ECG’s
adaptability to subsequent computer processing.
Long-duration ECG signals contain unique infor-
mation about the dynamics of cardiac activity
during a person’s daily activities. However, this
information is distorted, for example, by electrode
displacement due to movement or the appearance
of potentials unrelated to cardiovascular activity at
the electrode sites. Such extraneous influences on
the ECG manifest themselves as noise and low-
frequency oscillations in the zero potential line
of the digital ECG. Examples of such interference
in a single signal from a single ECG from
the Russian Society of Holter Monitoring and
Noninvasive Electrophysiology database (data
availability: http://rohmine.org/baza-dannykh-
rokhmine/) are shown in Figures 1-3.

Figure 1 shows a nearly constant shift of the
zero potential line. Figures 2 and 3 show fairly slow
oscillations of the zero potential line, lasting at least
three heartbeats. The amplitude of these oscillations,
as seen in Figure 3, can be several times greater
than the QRS complex amplitude.
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Figure 1. The zero-potential line offset
Source:byS.V. Kurbanov in the Python software
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Figure 2. The zero-potential line small oscillations
Source:byS.V. Kurbanov in the Python software
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Figure 3. The zero-potential line large oscillations
Source:byS. V. Kurbanovin the Python software
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Figure 2 also shows areas of high-frequency
bursts with a period comparable to the duration of
the QRS complex but significantly shorter than the
duration of the P- and T-waves. However, there is
insufficient evidence to unambiguously identify
these high-frequency bursts as interference; it is
possible that this noise characterizes processes
occurring in the heart.

Furthermore, the powerful high-frequency
spectrum of the short-duration QRS complex is a
potential problem in ECG signal filtering. Since
the QRS complex has unconditional diagnostic
value, it must be preserved with minimal distortion
throughout all ECG manipulations.

Due to the described ECG characteristics,
the task of filtering the digital ECG signal can be
reduced to finding a sequence of applying digital
filters of certain types, with the aim of:

® identifying the deviation of the ECG zero
potential line,

® pnumerically estimating the magnitude of
this deviation,

m correcting the ECG zero potential line if the
deviation magnitude allows such correction,

® removing an ECG section if the deviation
magnitude does not allow its correction,

® identifying areas of high-frequency bursts,
preserving the original ECG shape, in particular
the QRS complex, during ECG manipulations.

1.2. Types of Digital Filters and Methods
of Their Synthesis

Decomposing the ECG filtering problem
suggests that low-frequency interference itself is
a valuable information resource. Therefore, the pro-
posed study applies a non-standard approach to
filtering a digital biological signal, which involves
explicitly and precisely identifying the interference,
followed by correcting the useful signal by sub-
tracting the identified interference. This approach
is similar to adaptive filtering and is characterized
by a virtually perfect tuning of the filter weighting
coefficients. To achieve this tuning, the actual
magnitude of the interference is subtracted from
the processed signal with high accuracy at each
sampling step, which should result in the isolation
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of a virtually noise-free useful signal. If the inter-
ference is so significant that the isolation of the
useful signal cannot be guaranteed, then the time
interval during which the “bad” signal exists can
be precisely defined, thereby eliminating it from
further processing. The disadvantage of the pro-
posed method is its limited applicability for signal
processing in real time, due to the significant delay
in isolating the interference and obtaining the
filtered signal [11].

The theory of digital filters and the methods
for their synthesis are well developed and described.
The simplest method is to synthesize a digital filter
based on an analog prototype, such a filter is stable
provided the prototype is stable. The prototype is
selected based on the required amplitude-frequency
response (AFR) of the filter. Thus, to isolate the
low-frequency component from the signal with
maximum accuracy, the filter’s AFR in the pass-
band must be as flat as possible. Of the main types
of analog filters, the Butterworth filter and the
inverse Chebyshev filter (also called the Chebyshev
type 2 filter) have this property. The remaining
filters have a slight unevenness in the passband,
expressed as frequency response fluctuations of
several decibels (AFR unevenness). Typically,
in theory, an AFR of about 3 dB is allowed, which
corresponds to a 30% signal attenuation; such
attenuation is clearly unacceptable in the proposed
filtering model.

Python was used to synthesize the digital
filters, so the study and comparison of the frequency
responses of the filters planned for use were per-
formed using Python tools, using the numpy, scipy,
and math libraries. The mathematical description
is presented in sufficient detail in the literature,
for example, [12]. Both prototype filters were
synthesized as filters with an infinite impulse
response (IIR filters) using the iirfilter function,
which returns the numerator b and the denominator
a of the filter transfer function:

b, a=iirfilter(Nf, wsr, rs = 40, btype =
'lowpass’,analog = True,ftype = ‘cheby2’)

according to specified parameters: Nf — the order
of the filter, which determines the steepness of
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the drop in its frequency response in the mid-
frequency region between the pass and stop bands;
wsr — circular cutoff frequency of the filter (o),
determined through the normal cutoff frequency
according to the formula [2*np.pi*fsr]; rs =40 —
minimum attenuation in the stopband in dB,
attenuation of 40 dB corresponds to attenuation by
a factor of 100 times; btype = ‘lowpass’ — filter
type (low pass, high pass, band pass, etc.), here the
low pass filter is specified; analog =True —
a logical constant that determines the type of filter
being synthesized; True corresponds to an analog
filter, False to a digital filter; ftype = ‘cheby2’ —
filter type: Chebyshev Type II filter is specified
here.

The comparison result between Chebyshev
Type II and Butterworth filters is shown in Figure 4.

filter frequency response

— ch2_7
0 -== ch2_15 1

A — butt_7

\ --- butt_15
-20 ® alich2 |

| \ e allbutt
-40 o

-60 i

Amplitude [dB]

=

107t 10° 10*
Frequency [Hz]

Figure 4. Comparison of Chebyshev
type Il and Butterworth filters
Source:byS.V. Kurbanov in the Python software

Frequency responses of both types of 7th and
15th order filters were constructed. Filter features
are listed below:

1) The specified cutoff frequency for Butter-
worth filters characterizes the highest passband
frequency, while for Type II Chebyshev filters it
characterizes the lowest stopband frequency;

2) Butterworth filters are characterized by a
smooth frequency response drop compared to
Type II Chebyshev filters (confirming the theoretical
conclusions); for a 7th-order filter, the specified

attenuation of 40 dB is achieved at a frequency of
almost 2 Hz, and for a 15th-order filter, at a fre-
quency of approximately 1.4 Hz, i.e., the spectrum
of the filtered signal will contain a significant
number of frequencies above the specified cutoff
frequency;

3) Type II Chebyshev filters have a steeply
falling frequency response; for a 7th-order filter,
distortion will appear at a frequency of 0.7 Hz, and
for a 15th-order filter, at a frequency of 0.9 Hz, i.e.
In the filtered signal spectrum, a small number of
frequencies below the specified cutoff frequency
will be suppressed.

Thus, it can be concluded that it is advisable
to use a Type II Chebyshev filter to isolate low-
frequency interference from a cardiac signal. Only
such filters will be considered below [13].

1.3. Study of Digital Filters Applied
to the Problem of Filtering ECG Signals

Solving a filtering problem usually comes
down to selecting filter parameters, which involves
determining the cutoff frequency and filter order.

The filter cutoff frequency was determined
based on well-known time and frequency characte-
ristics of periodic processes occurring in the human
body. The closest approximation to the heart rate
is the respiratory rate, which normally is approxi-
mately 20 breaths per minute, corresponding to a
frequency of 0.3 Hz. In adults, the heart rate ranges
from 60 to 80 beats per minute, and a decrease in
this rate below 60 beats per minute is considered
to be bradycardia. However, trained individuals
can normally have a lower heart rate (up to 45 to
50 beats per minute). Thus, the lower limit of the
heart rate spectrum is located near a frequency
of 0.75 Hz, and the expected frequency of the low-
pass filter passband lies in the range of 0.3 to
0.7 Hz. Taking into account the nature of the
frequency response of the Chebyshev filter of the
2nd type (Figure 4), the cutoff frequency of the
low-pass filter for the proposed filtering method
should be in the range of 0.2...0.8 Hz.

The limits for changing the filter order were
determined primarily by means of a computational
experiment, the design of which took into account
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that the digital filter order determines the number
of terms in the difference equation. On the one
hand, increasing the filter order leads to a more
accurate separation of the signal by frequency due
to an increase in the slope of the characteristic.
On the other hand, this increases the volume of
calculations and the length of the data array
required to solve the difference equation. Based on
the fact that the number of data for one heart period
at a sampling frequency of 200 Hz is approximately
100, it seems reasonable to limit the filter order
to 15. An attempt to synthesize such filters in
Python revealed the phenomenon of frequency
response distortion in the passband depending
on the filter order. Figure 5 shows the undistorted
frequency response of a Sth-order filter with a
cutoff frequency of 0.2 Hz, and Figure 6 shows the
distorted frequency response of a 7th order filter
with the same cutoff frequency.

This effect is evident at a cutoff frequency of
0.3 Hz above the 6th order; at cutoff frequencies
of 0.4 Hz and 0.5 Hz, also above the 6th order; and
at cutoff frequencies of 0.6-0.8 Hz, above the 7th
order.

The filtering efficiency criterion for diagnostic
purposes should characterize the conditions under
which the filter application does not introduce
significant distortions to the ECG at frequencies
above f0 =0.7 Hz, as this frequency range is
important for diagnostics. It follows that for
significant distortions to occur in the diagnostic
spectrum, the rise or fall time of the low-frequency
component of the ECG must be approximately
1/f0 = 1.4 seconds. The increase in electrical
potential during this time should be of the same
order of magnitude as the average peak-to-peak
amplitude of the QRS complex, i.e., approximately
4 mV. In other words, for the effective filter to be
successfully implemented, the rise and fall slopes
of the low-frequency component of the ECG must
be no more than 3 mV/s. Refining this criterion
requires significant additional research.

The results of the filter parameter study are
summarized in the Table.

Thus, the maximum order of a low-pass filter
in the 0.2-0.8 Hz range is 5, when implemented
using Python without developing special functions.
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For high-pass filters processing signals with fre-
quencies of 300 oscillations per minute (5 Hz), no
restrictions were found for filters of order no higher
than 15. For example, the same methods are avail-
able in [3] only for wavelets.
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Figure 5. AFC of 5" order filter with cutoff frequency 0.2 Hz
Source:byS.V. Kurbanov in the Python software
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Figure 6. AFC of 7" order filter with cutoff frequency 0.2 Hz
Source:byS.V. Kurbanov in the Python software

The Effect of the Cutoff Frequency of Chebyshev Filters
of the Second Kind on the Allowable Filter Order

Efficiency criterion
Cutoff The maximum for the front or decline
frequency, Hz filter order of the low-frequency

component, mV/s
0.2 5 3
0.3 5 3
0.4...0.5 5 3
0.6...0.8 6 3

Source: by S.V. Kurbanov
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2. Results of Applying Synthesized Filters
to Real ECG Signals

Filtering and detrending ECG time series have
their advantages, such as simplifying the process
of ECG recognition and analysis. Typically, the
obtained data is either analyzed immediately or
subjected to further processing. However, such
methods have limitations: for example, baseline
shifts can cause changes in the amplitude of the
waves and segments of the ECG, as well as the
appearance of false elements that can be mistakenly
interpreted as pathology. Everything depends on
how much the potential of the ECG readings
changes compared to the original data, since it can
be one value at the peak line and another at the zero
level line, which also affects diagnostics [14].

The result of applying a Sth-order filter to a
real cardiac signal (one branch of V2) is shown in
Figure 7; a fragment of the cardiogram is shown.
Two algorithms from the scipy.signal library im-
plemented in Python were tested: 1) Ifilter, which
implements filtering from beginning to end, with
the filtered signal having a phase shift; 2) filtfilt,
which implements filtering with start-end-start
return, which corrects phase shifts. For the proposed
filtering method, the phase shift is a critical para-
meter. Without compensation for this shift, the
method is fundamentally ineffective. In this case,
the phase shift was equal to five heartbeat periods,
which for the pattern in Figure 7 corresponds
to approximately a quarter of the period of slow
oscillations.

Clearly, only filtering with phase shift com-
pensation merits further study. The result of sub-
tracting the extracted low-frequency component
from the original cardiac signal is shown in Figures
8,9, and 10.

Figure 8 shows the zero potential line correc-
tion for small and slow changes. It is evident that
these changes are successfully compensated, with
the ECG remaining in the positive potential region,
except for the Q and S waves.

Figure 9 shows the zero potential line correc-
tion for significant and rapid changes. In this case
correction is unachievable near areas of abrupt
changes, such as near index 124200 in Figure 9.

mvV

ECG V2-Ref

-- data
———————— beg-end
—— beg-end-beg ||

41500 42000 42500 43000 44600 445IOO

Indexes

43500

Figure 7. The result of filtering a real cardiogram
Source:byS.V. Kurbanov in the Python software
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A visual comparison of the original and
filtered ECG data allows us to formulate a hypo-
thesis that the factor determining the success of the
proposed filtering method is the rate of change
of the original signal. This is indicated by the
successful correction of a large deviation in the
range of 125,500...126,500 indices, whereas no
correction is observed at the steep front of the
change in the zero potential line at 124,200 indices.
On the contrary, the filter introduces additional
distortions into the zero potential line. A visual
signal enhancement method based on the digital
wavelet transform can provide an accurate result
[15], but in the case of a wavelet, we urgently need
to find the best wavelet mother function and de-
termine the correct scale to make the figure suitable
for study. Therefore, the proposed method, com-
pared to the digital wavelet transform, appears to
be a significantly simpler means of improving the
cardiac signal. To eliminate distortions, studies
were conducted to modify the proposed digital
filtering method. Due to the distortion of the zero
potential line, an attempt was made to extract this
line in a form as close as possible to that observed
in the original signal. To achieve this, a seventh-
order high-pass filter with a cutoff frequency of
1 Hz was applied to the original cardiac signal,
followed by calculating the difference between the
original and filtered signals. The result is shown in
Figure 10.
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Figure 10. The result of the selection of a low-frequency
component by a high-frequency filter
Source: byS.V. Kurbanov in the Python software
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Here, the distortion of the useful signal at the
steep leading edge at indices 124100-124250 is
also observed, which confirms the previously pro-
posed hypothesis.

Both studies aim to remove noise and baseline
drift from ECG signals while preserving diagnosti-
cally important features (QRS complex, ST segment,
T-wave).

This study evaluates the performance of Che-
byshev II (inverse Chebyshev) and Butterworth
filters for baseline drift correction, with an emphasis
on minimizing phase distortion through zero-
phase filtering. The results are compared with the
work of Chavan [16] and Kaur [17], who analyzed
Chebyshev I and II filters for ECG noise reduction.
In this study, Chebyshev Type II filters (7th order,
1 Hz cutoff) and Butterworth filters implementing
zero-phase filtering were tested using Python’s
scipy.signal filtfilt to remove time-domain artifacts.
The Chebyshev Type I filter demonstrated superior
performance in baseline correction due to a sharper
stopband rolloff, while Butterworth filters exhibited
a slower rolloff, resulting in ST segment distortion.
Phase alignment was found to be critical, with zero-
phase filtering reducing time-shift artifacts to less
than five heartbeat periods.

The curve obtained as the result of the filtering
process almost exactly replicates the zero-potential
line for a locally selected heartbeat period. Clearly,
the corrected useful signal, possibly with minor
distortions, is obtained immediately as a result of
filtering (Figure 11).

Chavan [16] compared Chebyshev Type I (flat
passband) and Type 11 (flat stopband) filters, meas-
uring performance through improved signal-to-
noise ratio (SNR) and QRS complex preservation.
The Chebyshev Type Il filter outperformed Type I
filters in noise removal and QRS energy preser-
vation, consistent with the results of the present
study. Both studies highlight the limitations of
Butterworth filters in preserving diagnostic features.

The computational complexity of the pro-
posed algorithm can be estimated as follows. The
difference equation for each point of the original
signal is solved in a fixed number of operations,
with a solution complexity of O(1). For filtering
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a digital ECG with a length of n samples, the algo-
rithm has a linear complexity of O(n). Compared
to neural network algorithms, they have a minimum
quadratic complexity of O(n2), as shown in [17].
The proposed method requires significantly fewer
computational resources than neural network algo-
rithms.
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Figure 11. The result of the selection of a useful
signal by a high-frequency filter
Source:byS.V. Kurbanov in the Python software

The results show that Chebyshev Type II filters
are optimal for ECG noise reduction, providinga
balance between effective noise suppression and
minimal distortion of critical signal components.
Zero-phase filtering is essential for maintaining
signal integrity, especially for automated diagnos-
tics and long-term monitoring. Future work may
explore hybrid methods, such as combining wavelet
transforms with Chebyshev filters, to remove non-
stationary noise and further improve real-time pro-
cessing.

Conclusion

On balance, this study confirms the advantage
of Chebyshev type Il filters for ECG signal noise
reduction, consistent with previous studies. The
emphasis on zero-phase implementation provides
practical insights for clinical applications, ensuring
accurate interpretation of ECG data. Limitations
on the filter order are determined depending on
the cutoff frequency: for cutoff frequencies of

0.2-0.8 Hz, it is recommended to use a filter of
no higher than 5th order, and for higher cutoff
frequencies, no higher than 7th order.

To minimize distortion, the absence of phase
distortion is critical, so in Python, the filtfilt function
from the scipy.signal library should be used, which
implements two forward and reverse passes through
the signal value array.

Comparison of the results of using high-pass
and low-pass filters to extract the zero-potential line
allows a clear choice in favor of using a 7th-order
high-pass filter with a cutoff frequency of 1 Hz.
The filtered signal represents an ECG signal with
a zero-potential line correction, and the difference
between the original and filtered signals represents
the zero-potential line itself. A hypothesis was
formulated and tested that the factor determining
the success of the proposed filtering method is the
rate of change of the zero-potential line of the
original signal. To numerically estimate the mag-
nitude of distortions introduced by the filter and
correct these distortions, it is necessary to develop
a distortion assessment criterion and an algorithm
for calculating this criterion.

Future work: classification of drift sources
(respiration, movement, and pathology) and integ-
ration with clinical ECG software without the
need for manual adjustments. This will improve
automated diagnostics (e.g., Al-based ECG inter-
pretation) and reduce the number of false alarms in
cardiac monitoring systems.
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