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Аннотация. Рассмотрена минимаксная постановка задачи линейного ста-
ционарного управления по неполным данным многомерными стационар-
ными в широком смысле случайными процессами (векторного полезного 
сигнала), наблюдаемого в аддитивной смеси с помехой типа «белый шум», 
когда спектральные плотности возмущений в канале измерений и в помехе 
измерений полностью неизвестны и принадлежат к некоторому множеству 
Ξ неотрицательно определенных функций. На наблюдаемый векторный 
процесс налагается лишь условие линейной регулярности. Рассмотрена га-
рантирующая оценка, под которой понимается наилучшая оценка парамет-
ров полезного сигнала в смысле минимума среднеквадратической ошибки 
при наихудшем поведении ошибок измерений и возмущений со спектраль-
ными плотностями, принадлежащими множеству Ξ, по отношению к кото-
рой определяется оптимальное управление по неполным данным. Относи-
тельно спектральной плотности полезного сигнала известно лишь, что она 
удовлетворяет заданной системе моментных условий и сосредоточена на 
заданном измеримом подмножестве оси частот. Показано, что фактори-
зация матричной спектральной плотности позволяет получить решение
задачи оптимальной минимаксной линейной фильтрации и необходима для 
решения задачи линейного оптимального управления по неполным дан-
ным. Отыскание оптимального управления по неполным данным у воз-
никающей многомерной антагонистической игры сводится к решению
некоторой системы соотношений. При решении использованы методы мат-
ричных краевых задач, матричные преобразования Гильберта и свойства 
матричных частотных характеристик. Приведен иллюстрирующий пример.
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Abstract. The minimax formulation of the problem of linear stationary control based on 
incomplete data of multidimensional stationary in a broad sense random processes (vector 
useful signal) observed in an additive mixture with interference of the “white noise” type, when 
the spectral densities of disturbances in the measurement channel and in the measurement 
interference are completely unknown and belong to a certain set of non-negatively defined 
functions, is considered. Only the condition of linear regularity is imposed on the observed vector 
process. A guaranteeing estimate is considered, which means the best estimate of the parameters 
of a useful signal in the sense of a minimum standard error with the worst behavior of 
measurement errors and disturbances with spectral densities belonging to the set, with respect 
to which the optimal control is determined based on incomplete data.  Regarding the spectral 
density of the useful signal, it is only known that it satisfies a given system of moment conditions 
and is concentrated on a given measurable subset of the frequency axis. It is shown that the 
factorization of the matrix spectral density makes it possible to obtain a solution to the problem 
of optimal minimax linear filtration and is necessary to solve the problem of linear optimal control 
based on incomplete data. The search for optimal control based on incomplete data from the 
emerging multidimensional antagonistic game is reduced to solving a specific system of 
relations. Matrix boundary value problem methods, Hilbert matrix transformations, and properties
of matrix frequency characteristics are used in the solution. An illustrative example is presented.
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filter, uncertainty, matrix spectral density, guaranteeing matrix frequency response, control, 
saddle point 
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Введение 
 
Задача управления и оценивания марков-

ских процессов по наблюдениям за другим, свя-
занным с ним процессом находилась в центре 
внимания исследователей многие годы [1–13]. 
Обсуждена общая формулировка этой задачи 
для случая линейных систем с постоянными па-
раметрами, а также в частотном синтезе адап-
тивного оптимального управления для частично 
наблюдаемых стохастических систем на случай 
произвольного конечного числа ограничений 
на спектральную плотность векторного воз-
мущения и ошибок измерения, присутствую-
щих в канале наблюдения векторного полез-
ного сигнала. Проблематика рассматриваемой 

задачи тесно связана с факторизацией матрич-
ной спектральной плотности (МСП), которая 
возникает в задачах оптимальной стационарной 
линейной фильтрации и оптимального линей-
ного управления [1–2; 9; 13]. В исследовании 
(раздел 2) показано, что факторизация МСП 
необходима и для решения задачи оптимального 
линейного управления многомерными стацио-
нарными случайными процессами в условиях 
неопределенности их спектральных плотно-
стей, она также возникает в теории минимакс-
ной линейной фильтрации стационарных про-
цессов [14]. В рамках теории линейной филь-
трации и в ее терминах проблема фактори- 
зации равноценна отысканию формирующего и 
отбеливающего фильтра и в конечном счете 
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переходу от исходного наблюдаемого процесса 
к эквивалентному ему белому шуму, называе-
мому фундаментальным процессом. Близкой 
к задаче факторизации МСП является проблема 
факторизации матричной передаточной функ-

ции (МПФ), возникающая в H∞  теории управ-
ления [2–12; 15]. Заметим, что задача фактори-
зации применительно к рациональным МСП 
решена полностью в [16], в частности, в послед-
ние десятилетия особое внимание уделяется 
методам построения таких систем, математиче-
ские модели которых представляются элемен-
тами с минимальными нормами в простран-
ствах Харди, в [18] рассмотрен частотный ме-
тод синтеза оптимальных регуляторов для ли-
нейных систем со скалярным возмущением на 
множестве рациональных функций. Однако 
важным является получение решения задачи 
оптимального линейного управления с фактори-
зацией именно для процессов с нерациональ-
ными спектрами, т. е. в конечном счете в общем 
случае. Заметим, что задача линейной фильтра-
ции процессов при рациональных спектрах су-
щественно перекрывается теорией Калмана —
Бьюси [28], и потому для общего решения за-
дачи линейной фильтрации многомерных ста-
ционарных случайных процессов требуется 
факторизация в общем случае необязательно 
рациональных МСП. В [19–20] было получено 
решение задачи факторизации спектральной 
плотности с использованием преобразования 
Гильберта для фильтров с непрерывным [19] и 
дискретным [20] временем. Задача факториза-
ции МСП для многомерных процессов с непре-
рывным временем была рассмотрена в [21]. 
В [15] для решения задачи факторизации МСП 
было предложено использовать математиче-
ский аппарат теории граничных значений ана-
литических функций [22–24] и теории краевых 
задач [25; 26]. 

В отличие от универсального подхода, осно-
ванного на решении уравнений Риккати [1; 22], 
предлагаемый ниже метод использует спек-
тральные особенности синтезируемых систем, 
позволяя существенно упростить анализ и поиск 
линейного оптимального управления по непол- 
ным данным. В [9] указана возможность син- 

теза минимаксного управления процессом в 
линейной неопределенно-стохастической си-
стеме с неполными данными, где постоянные 
интенсивности шумов в уравнениях состояния 
и наблюдения заданы лишь с точностью до 
принадлежности некоторым известным множе-
ствам. Использование спектрального подхода 
для задач с одним управлением позволяет су-
щественно упростить анализ и синтез опти-
мальных решений по сравнению с методами 
«2-Риккати» и LMI [17]. Такое упрощение 
имеет особый смысл при реализации алгорит-
мов адаптивной настройки законов управления 
для различных объектов в режиме реального 
времени. Это связано с тем, что, с одной сто-
роны, несмотря на бурное развитие цифровых 
устройств, по-прежнему остаются актуальными 
ограничения, связанные с недостаточными вы-
числительными ресурсами для подвижных объ-
ектов и разных встраиваемых систем, как след-
ствие, порождающих особые требования к про-
стоте применяемых алгоритмов. С другой сто-
роны, достаточно остро ставится вопрос каче-
ства управления. Предлагаемый подход мо-
жет послужить основой для проектирования 
систем управления с использованием нейрон-
ных сетей, нечеткой логики, прогнозирующих 
моделей и других эффективных средств, базиру-
ющихся на современных компьютерных техно-
логиях. В связи с отмеченными обстоятель-
ствами в настоящей статье разобран ряд вопро-
сов, связанных с обобщением использования 
спектрального подхода к синтезу оптимального 
многомерного управления по интегральному 
среднеквадратическому критерию качества для 
многомерных стационарных случайных про-
цессов в условиях неопределенности их спек-
тральных плотностей. 

1. Постановки задачи линейного 
стационарного оптимального управления 
многомерными стационарными 
случайными процессами 

Будем считать, что движение динамиче-
ского объекта описывается векторным рекур-
рентным уравнением 
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( ) ( ) ( ) ( )11 1n n n n+ = + + + +ςX LX BU  

( ) ( )2 01 , 0n+ + =ς X X , (1) 

( ) ( )2
1

N

k k
k

n u n
=

=   ς P . 

Наблюдаемый векторный случайный про-

цесс и выходной ( )W n , подлежащий оцени-

ванию, процесс описывается стохастическим 
уравнением 

( ) ( ) ( ) ( )11 1n n n n+ = + + + +ηY CX DU  

( ) ( )2 0,1 , 0n+ + =η Y Y   (2) 

( ) ( )2
1

M

k k
k

n v n
=

=   η Q  

и выражением ( ) ( )n n=W EX . 

Здесь ( )nX  — вектор фазовых координат 

объекта; ( )0X  — случайный вектор начальных 

условий; ( )0Y  — случайный вектор; ( )1 nς  — 

дискретный векторный белый шум, называемый 
далее шумом объекта; ( )2 nς  — дискретный 

случайный векторный процесс с неизвестной 
матричной спектральной положительно опре-
деленной диагональной плотностью ( )λ

cxH , 

порожденный возмущениями ( )ku n , называе-

мый шумом канала наблюдения; ( )1 nη  — дис-

кретный векторный белый шум, называемый 
далее шумом канала измерений; ( )2 nη  — дис-

кретный случайный векторный процесс с неиз-
вестной матричной спектральной плотностью 

( )1λcyH , порожденный возмущениями ( )kv n ; 

 k kP ,Q , L, B,C, D, E  — матрицы или матрич-

ные функции времени соответствующих раз-
меров. 

В уравнения (1) и (2) входит также вектор-
ный управляющий процесс ( )nU , имеющий 

( ) 0M n =U и ограниченные дисперсии компо- 

нент ( )2 2
i iMU n a= . Корреляционные функции 

компонент процесса ( )nU  неизвестны. Будем 

при этом считать, что условия некоррелирован-
ности возмущающих процессов, шумов объ-
екта и канала измерений наложены. Относи-
тельно матриц L, B,C  сделаем следующие до-
пущения: 

1) система объект — измеритель (1), (2) 
является полностью наблюдаемой системой, т.е. 

rang( ) ,q=T n-1 TC,L C,...,(L ) C  

где q  размерность вектора состояния ( )nX  

системы объекта (1); 
2) система объект (1) является полностью 

управляемой системой, т.е. 

rang( ) .q=n-1B,LB,...,L B  

Спектральные матричные диагональные неот-

рицательные плотности ( )λ
cxH  и ( )1λcyH  

процессов u  и ν  удовлетворяют моментным  
векторным неравенствам 

( )
1

1λ Φ λ , 1, , ;
cx j jd j m

Λ
≤ = … H b  (3) 

( )
1

2λ Ψ λ , 1, ,
cy j jd j m

Λ
≤ = … cH ; 

( ) ( )λ 0, λ 0,
c cx y≥ ≥H H  

где ( ) ( )1 2Φ λ ,Ψ λm m
j jR R+ +∈ ∈  — неотрицатель-

ные, четные по λ  заданные векторные функции 

частоты; { }0 ,, ,| 1i
n nx R i nR x+ >= ∈ = …  — по-

ложительный ортант пространства nR ; ,j jb c  — 

заданные неотрицательные постоянные век-

торы; { }0 ,, ,| 1i
n nx R i nR x+ ≥= ∈ = …  — неот-

рицательный ортант  (замыкание nR+ ). 

Физический смысл ограничений (3) со-
стоит в том, что на определенные возмущения 
в системе объект — измеритель (1), (2), корре-
ляционные функции которых точно неизвестны, 
однако известны верхние оценки их диспер-
сий и (или) дисперсий производных и т.п., 
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наложены ограничения на их моменты и на об-
ласти их сосредоточения спектра (ожидаемые 
полосы частот). 

На наблюдаемый процесс ( )nY  налага-

ется лишь условие линейной регулярности 
максимального ранга, т. е. в терминах матрич-
ной спектральной плотности условие Пэли — 
Винера имеет аналогичный вид [27] для случая 
рациональной матричной спектральной плот-
ности (μ)S  относительно μ  

π

2
π

ln det (μ)
μ

1 μ
d

−

> −∞
+

S
,  (4) 

обеспечивающего представление — фактори-
зацию 

( ) ( )λ * λ(λ) i ie e− −=S F F , (4a) 

где матричные функции ( )λiF  и ( )1 λi−F  — 

аналитические в нижней полуплоскости пере-
менной λ , т. е. являются частотными характе-
ристиками физически осуществимых (форми-
рующего и отбеливающего) фильтров; ( *) — 
знак сопряжения матриц. 

В настоящей статье решение задачи фак-
торизации будет основываться на разработан-
ном ранее методе преобразования Гильберта 
в [19] для скалярного стационарного случай-
ного процесса. Там показано, что граничное 
значение функции ( )λieГ  аналитической в ниж-

ней полуплоскости удовлетворяет граничному 

значению МСП ( ) ( ) 2
λ .λ ie=S Γ  По наблюде-

нию процесса ( )nY  на полубесконечном 

отрезке времени , ,v n∞= − …  требуется 

найти оптимальную линейную оценку ( )ˆ nX  

случайного вектора ( )nX , т. е. вектор 

( ) ( ) ( )( ),ˆ ˆ,ˆ
qn X n X n= …X  ортогональных проекций 

( ) ( ) ( )( )|ˆ ˆ Y
j jX n M X n H n=  случайных величин 

( ) , 1, ,jX n j q= …  на линейное подпростран-

ство ( )YH n , порожденное случайыми величи-

нами ( ) ,kY v  1, , ,k m= …  , ,v n∞= − …  

( ) ( ) ( )λ λˆ λˆ i n i Xn e e d
π

νπ
−

−
=  μX G ,  (5) 

где ( )λ
cx dμ  — известная векторная ортогональ-

ная случайная мера процесса ( )nX , ( )λ
dx dμ  — 

неизвестная векторная ортогональная случай-
ная мера процесса ( )nX , взаимно некоррелиро-

ванная с известной мерой ( )λ
cx dμ . В выраже-

нии (5) ( )λˆ ieν
−G  — матричная частотная харак-

теристика (МЧХ) оптимального минимаксного 
линейного фильтра с учетом ограничений (3), 
наложенных на неизвестные матричные спек-
тральные плотности процессов ( )nX  и ( )nY . 

Все векторные ортогональные случайные меры 
будем считать абсолютно непрерывными и ста-
ционарно связанными, а значит, у них суще-
ствуют матричные спектральные плотности. 

Процессы ( )nX  и ( ) nY  имеют матрич-

ные спектральные плотности 

( ) ( )λ λYY=S S ; 

( ) ( ) ( )( )*
λ λ λ / λ;XX X XM d d d= μ μS    (5a) 

( ) ( ) ( )( )*Yλ λ λ λ;XY dM d d= Xμ μS  

( ) ( ) 2
λ λ / λYY YM d d= μS . 

Спектральные плотности ( )λXXS  и ( )λYYS  

возможно представить в виде 

( ) ( ) ( )λ λ λ
c

XX XX
c x= +S S H ;  (6) 

( ) ( ) ( )λ λ λ
c

YY YY
c y= +S S H . 

Здесь ,XX YY
c cS S  — известные положитель-

ные матричные спектральные плотности про-
цессов ( )nX  и ( )nY , которые в общем случае 

не являются рациональными, а меры ( )λ ,
cx dμ  

( )λ
cy dμ  обладают свойством 

( ) ( ) ( ) ( )*
1 2 1 1 2 1λ λ λ λ λ λ ;

c c cx x xM d d d  = δ − μ μ H  
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( ) ( )*
1 2λ λ

c cy yM d d  = μ μ , 

( ) ( )1 1 2 1λ λ λ λ
cy d= δ −H  

где ( ) ( )λ , λ
c cx yH H  — неизвестные положи-

тельно полуопределенные диагональные мат-
ричные функции, подчиняющиеся ограниче-
ниям вида (3). Вопрос факторизации МСП 

( )λYYS  в ее представлении (6) в предположе-

нии о линейной регулярности максимального 
ранга ее известной составляющей ( )λYY

cS  ре-

шается на основе теоремы 1 (доказательство 
теоремы 1 приводится в Приложении). Опти-
мальная оценка для минимаксного фильтра да-
ется выражением [21] 

( ) ( ) ( )( ) ( )*
λ 1 λ 1 λλi XY i i

PR
e e e− − − − =   

G S F F
 

в результате применения интегральных преоб-
разований над матричной частотной характери-
стикой сглаживающего оптимального фильтра 

(λ)SH  

( ) ( ) ( )( ) 1ζ ζζλ λ λX
S

−
= =H S S  

( ) ( )( )*
1 λλXY ie− −= FS  

процесса ( )X n  по фундаментальному процессу 

( )nς  

( ) ( )π λ

π
λi nn e d

−
= =ς v  

( ) ( )π λ 1 λ

π
λi n i Ye e d− −

−
=  μF  

в виде 

( )
π

λ

π

1
( ) λ λ,

2π
i n

sn e d
+

−

= E H  

( ) λ

0

λ ( ),i n
s

n
e n

∞
−

=

=H E  

называемых сепарацией и обозначаемых 

( ) ( )λ λi
S PR

e− =   H H . 

Требуется найти линейное стационарное 
векторное управление 

( ) ( ), ( ), 1,..., ,Y
jn U n n j r∈ Η =U

( ) ( ), 1,..., ,Y
jU n H n j r∈ =

  

минимизирующее критерий качества управле-
ния 

( )
( ) ( m) inT

n
R M n n →=

U
X QX , (7) 

где Q  — неотрицательно определенная мат-

рица при ограничениях по дисперсии, нало-
женных на компоненты ( )jU n  управляющего 

процесса ( )U n : 

( )2 2 , 1, , ,j jMU n a j r≤ = …   (8) 

и условиях неупреждаемости, наложенных 
на компоненты ( )jU n по отношению к наблю-

даемому процессу ( )nY : ( ) ( ) ,Y
jU n H n∈  

1, , .j r= …  
Пусть векторные стационарные случайные 

процессы ( )0 nX , ( )0 nY  заданы точно, управ-

ляемый процесс ( )nX  и наблюдаемый ( )nY  

выражаются в виде 

( ) ( ) ( )0 ,Un n n= +X X X  

( ) ( ) ( )0 ,Un n n= +Y Y Y  (8a) 

где ( )U nX  и ( )U nY  — составляющие процес-

сов ( )nX  и ( )nY , обусловленные векторным 

стационарным управляющим процессом ( )nU  

и выражающиеся в виде 

( ) ( ) ( ) ,
n

U

v

n n v v
∞=−

= −X B U   

( ) ( ) ( ) ,
n

U

v

n n v v
∞=−

= −Y D U    (9) 

где ( ) ( ),n v n v− −B D  — матричные импульс-

ные переходные функции (МИПФ) системы 
(1), (2). 
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Подставляя ортогональное разложение 

( ) ( ) ( )ˆn n n= + X X X  в выражение для крите-

рия (7), в результате получим, что ˆR R R= +  , 

где ˆ ˆ ˆ( ) ( ) ( )R U M n n= X QX  — средний риск 

управления, ( ) ( )TR M n n=  X QX  — средний 

риск фильтрации. Поскольку R  не зависит от 
управляющего процесса ( )nU , задача опти-

мального управления сводится к минимизации 
ˆ )R(U . Корректность применимости «принципа 

разделения» в решении поставленной задачи 
оптимального управления дается в теореме 2 
(доказательство теоремы 2 приводится в При-
ложении 1). 

Пусть ( )λdν  — векторная ортогональная 

фундаментальная случайная мера процесса 
( ). nY  

Тогда процесс ( )0
ˆ nX  будет иметь спек-

тральное представление 

( ) ( ) ( )π λ λ
0 π

,ˆ ˆ λi n i
vn e e d−

−
=  νX G  

где ( )λˆ i
v e−G  — МЧХ линейного минимаксного 

фильтра, оптимального по отношению к фун-
даментальному процессу ( )ς n , а процесс ( )U n  

будет иметь спектральное представление 

( ) ( ) ( ) ( )π λ λ λ

π

ˆ λ .i n i i
vn e e e d− −

−
=  νU H G   (10) 

Оптимальный линейный регулятор для 
стохастической системы (1), (2) будем искать 
в представлении (10), где ( )λie−H  — вектор 

МЧХ управляющего линейного звена (управля-
ющего устройства) по отношению к процессу

0
ˆ ( )nX : 

( ) ( ) ( ) ( )π λ λ λ

π
.ˆ ˆ λi n i i

vn e e e d− −

−
=  Δ νX G  

Тогда процесс ( )ˆ nX  будет иметь спек-

тральное представление. 
По сути, задача свелась к нахождению 

дискретного регулятора во временной области 
в виде 

( ) 0
ˆ ˆ ˆ( ) ( )n n n=U K X ,  (11) 

где ˆ ( )nK  — матрица коэффициентов усиления 

регулятора, имеющая в спектральном пред-
ставлении вид 

( ) ( )π λ λ

π

ˆ ˆ( ) λi n i
optn e e d−

−
=  νK H . (12) 

Для сравнения отметим, что в данной си-
туации в основе конструкции стохастиче-
ского наблюдателя, который должен «выраба-
тывать» наилучшую с позиции функционала 
ˆ ˆ ˆ( ) ( ) ( )R M n n=U X QX  оценку измеряемого про-

цесса ( )nY  для стохастической системы (1), (2) 

лежал минимаксный фильтр ( )λˆ i
v e−G  через ин-

струмент факторизации матричной спектраль-
ной плотности ( )λS наблюдаемого процесса 

( )nY , но возможен также и вариант синтеза 

дискретного регулятора с использованием филь-
тра Калмана в качестве наблюдателя, представ-
ленного в частотно-непрерывной области ра-
нее в [14], если добавить вспомогательный 
функционал оптимизации ( ) ( )TR M n n= e Qe  

для минимизации ошибки восстановления (наб-
людения, фильтрации) ( ) ( )ˆ( )n n n= −e X X  к 

основному критерию оптимизации по МЧХ 
управляющего линейного звена (управляющего 

устройства) по отношению к процессу ( )0
ˆ nX  

для поиска оптимального матричного коэффи-

циента усиления ˆ ( )nΚ  в оптимальном наблю-

дателе (оптимальном фильтре Калмана — 
Бьюси). Ниже будут представлены уравнения, 
описывающие оптимальный наблюдатель филь-
тра Калмана и структуру оптимального регуля-
тора, формирующего оптимальное управление. 

2. Решение задачи оптимального 
управления 

Для поиска оптимального решения далее 
рассматривается задача минимизации функцио-
нала Лагранжа риска управления по строке 
управления ( ) ( )λj ie−H : 
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( ) ( ) ( ){ }π λ * λ

π
λ λ+i iSp e e d− −

− Δ ΔN ,  

( ) ( ) ( ) ( ) ( )( )( ) ( )

*π λ λ 2

π
λ λ λ min

j

j ji i
j je e d a− −

−
+ − →

H
H N H  (13) 

1, ,j r= … , 

где введены обозначения 

( ) ( ) ( )λ λ λi i ie e e− − −= −Δ I B H , 

( ) ( ) ( )λ * λˆ ˆλ i ie eν ν
− −=N G QG , 

λ 0j >  — j -й множитель Лагранжа, соответ-

ствующий j -му ограничению (8). 

Введем обозначение для подынтегральной 
функции функционала Лагранжа 

( )( ) ( ) ( ) ( ){ }λ * λ,λ λj i i
j Sp e e− −= +Δ Δ H N  

( ) ( ) ( )( ) ( )
π *

( ) λ λ 2

π

λ λ λ .jj i i
jj e e d a− −

−

 
+ − 

 
 H N H  (14) 

Уравнения Эйлера, соответствующие (14), 
можно записать в виде 

( )( )
( )

( )( ),λ ,λ
0, 0, 1, , .

λ

j j
j j

j
j

j r
∂ ∂

= = = …
∂∂

 H H

H
 (15) 

Из соотношений (15) можно воспользо-
ваться приемом нахождения минимума следа 
функционала Лагранжа риска управления с  ис-
пользованием операций матричного дифферен-
цирования скалярной функции от матричного 

аргумента ( )jH (см. Приложение 2). В резуль-
тате применения этих операций получаем оп-
тимальный вектор управлений 

( )
( ) ( )

( ) ( ) ( ) ( )
λ

opt λ λ opt
;

λ

j

j j

j i

i i
j

e

e e
∗

−

− −
=

+

B
H

B B
 

1, , ,j r= …  (16) 

где ( ) ( )λj ie−B  — это j-я строка матрицы 

( )λie−B . Заметим, что представление (16) 

корректно в смысле применения операции де-

ления на выражение 
( ) ( ) ( ) ( )λ λ optλ

j ji i
je e

∗
− − +B B , 

так как последнее представляет  собой скаляр-
ное выражение, всегда отличное от нуля. 

Искомый вектор множителей Лагранжа 

( )opt opt opt
1 rλ , ,λ= …λ  можно найти с помощью 

соотношений (8) после подстановки в них  вы-
ражений (16) для оптимального вектора управ-

лений 
( )

opt

j

H . В итоге оптимальные множители 

Лагранжа optλ j  можно найти из соотношений 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( )

λ

λ * λ

λ * λ
ˆ ˆ

λ

j i
i i

v vj ji i
j

e
e e

e e

−
− −

− −

 
  ×
 + 

B
G QG

B B
 

( ) ( )
( ) ( ) ( ) ( )λ

2

*
λ

λ *
.

λ

j i

j ji i j
j

e
a

e e

−

− −

 
 × =
 + 

B

B B
 

В результате решения рассмотренной нами 
задачи по поиску оптимального управления по 
неполным данным были получены необходи-
мые и достаточные условия существования сед-
ловой точки в явной частотной форме в соот-
ветствующей игровой задаче, аналогичные тем, 
которые были получены в работе Г.А. Голубева 
для задач А и Б [15] в эквивалентной задаче 
в непрерывном времени для объекта, описыва-
емого системой стохастических линейных диф-
ференциальных уравнений с постоянными па-
раметрами с квадратичным функционалом ка-

чества R̂  по искомому управлению ( )ˆ nU  с по-

мощью МЧХ управляющего линейного звена 

( )λie−H  (управляющего устройства) по отно-

шению к управляемому марковскому процессу 

второго порядка ( )0
ˆ nX . Аналитическая оценка 

для оптимального управления в стационарном 
режиме согласуется с аналогичным результа-
том, полученным Ю. Ту [28] и Н.Н. Красов-
ским [29] для оценки оптимального многомер-
ного управления в дискретной форме во вре-
менной области для стационарного случая как 
сходящийся многошаговый процесс, получен- 
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ный ими с применением принципа оптималь-
ности Беллмана — методом динамического 
программирования. В итоге получена следую-
щая теорема. 

Решение задачи оптимального управления 

Теорема  2 .  Решение задачи нахождения 
детерминированного оптимального управления 

( ) ( ) ( )T nˆ ˆ, ˆR M nν =G U X QX  

по неполным данным для отфильтрованного 
управляемого процесса из наблюдаемого ( )nY  
дается условиями минимума критерия 

( ) ( ) ( )T nˆ ˆ, ˆR M nν =G U X QX  

в форме существования минимаксного линей-
ного фильтра vĜ  с функцией выигрыша 

( ) ( )T
vR , M n( )n=  G U QX X  

при ограниченных моментах второго порядка 
управляющих воздействий ( )nU  по неполным 
данным в условиях неполной информации о не-
рациональных спектральных характеристиках 
возмущающих процессов, действующих на ли-
нейный динамический объект и присутству-
ющих в канале измерений. 

Доказательство теоремы 2 представлено 
в Приложении 1. 

Для найденного минимаксного фильтра 

xc yc( , )  H HG  решаем задачу оптимального 

управления. 
При решении указанной выше задачи опти-

мального управления необходимо учесть огра-
ничения по дисперсии (8) и условия, наложен-
ные на процессы ( )nU . Для этого применяется 

метод ортогонального разложения процесса 
[10]. Аналогичная теорема существования сед-
ловой точки сформулирована в [20; 21; 15] для 
стохастических линейных дифференциальных 
уравнений в задаче синтеза минимаксного ста-
ционарного линейного фильтра координат ли-
нейного динамического объекта в непрерыв-
ном и дискретном случаях при ограниченных 

дисперсиях действующих на него возмуще- 
ний. Необходимые формулы для вычисления 
производных следа по матричному аргументу 
приводятся ниже в предположении, которое 
представлено в Приложении 2. 

3. Синтез оптимального наблюдателя 
и субоптимального регулятора 
с помощью фильтра Калмана 

Пусть не все переменные состояния объ-
екта (1) доступны непосредственному измере-
нию, и пусть, кроме того, измерения осуществ-
ляются с помехами типа «белого шума» в усло-
виях линейной регулярности максимального 
ранга: 

( ) ( ) ( )1n n n+ = + +X LX BU  

( ) ( ) ( )1 2 01 1 , 0n n+ + + + =ς ς X X , 

( ) ( )2
1

N

k k
k

n u n
=

=   ς P ,  (17) 

где ( )1 nς , ( )2 nς  — стационарные некоррели-

рованные между собой процессы с 

( ) ( ) ( ) ( )1 2 1 20, 0, 0M n M n M n n= = =ς ς ς ς  

с нерациональными в общем случае спектраль-
ными плотностями ( )1 λS  и ( )2 λS , а наблюда-

емый процесс ( )nY  выражается в виде 

( ) ( ) ( ) ( )1 2 1 ,Tn n n n= + + +ς ςY С X  

( ) 00 =Y Y , 

( ) ( )2 2 2
1 1 1λ τM n a= = ≤ςS I I ,  

( ) ( )2 2
2 2 2λ M n a= ≤ςS I . (18) 

Предполагается, что система объект — из-
меритель (17), (18) в отсутствие ошибок изме-
рения и возмущений наблюдаема и управляема. 
Оптимальный стохастический регулятор с об-
ратной связью по состоянию, формирующий 
искомое управление, состоит из двух частей: 
устройства, реализующего оптимальный закон 
управления в виде 

( ) 0
ˆ ˆ ˆ( ) ( )n n n=U K X ,  (19) 
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где оценка 0
ˆ ( )nX  вырабатывается во втором 

устройстве восстановления (наблюдения, филь-
трации) — оптимальном наблюдателе (фильтре 
Калмана — Бьюси). Как и в детерминирован-
ном случае, наблюдатель по форме фильтра 
Калмана описывается в установившемся ре-
жиме уравнением [14] в виде 

( ) ( ) ( ) ( )ˆ ˆ ˆ1  +T
xxn n n n + = + − X LX K C Y C X  

( ) ( ) ( )ˆ+ 
n

T

k
n k k k

=−∞

 − − B Z C Y C X , (20) 

где ( ) ( )ˆ
xxn n=K K C  — искомая оптимальная  

матрица усиления регулятора, а корреляцион-

ная матрица ( )xx nK  процесса ( )nX , отнесен-

ная к 2τ , удовлетворяет уравнению в устано-
вившемся режиме 

T T
xx xx+ + +LK K L KB  

* T
xx xx+ − =BK K CC K 0 , (21) 

где ( )
π

λ

π

1
( ) λ λ

2π
i kk e d

−

=  +Z Z  — оригинал изоб-

ражения ( ) λ

0

λ i k
k

k
e

∞
−

+
=

=Z z , представляющий 

собой физически реализуемый фильтр 

( ) λλ  x=Z K C,  λ

1

2π xdλ
+∞

−∞

= K K . Конструк-

тивный способ, позволяющий определить ин-
теграл K , описан подробно в монографии [14, 

с. 171] c помощью функций ( )λiΦ  и ( )λuX : 

( )λi =Φ  

( )1 1 1 11 T T
xx xx

− − − − = + − × 
   A B C A K C A K CC A B  

( )
( ) 2* 1

λ 1

λ T

i
i

−

−
× ×


U

V C A B
; 

( ) ( )2

2

λ
λ

τu = + T -1 H
X I C A B , 

где ( )λi−U  и ( )* λiV  — матричные полиномы 

от λi , имеющие нули соответственно в верх-
ней ( Imλ 0> ) и нижней ( Im λ 0< ) полуплос-
костях, полученные через факторизованное 
представление определителя матрицы 

λω ,ω ,ie−= − =A I L

( ) ( ) ( )*det det ω λ λ .i i= − =A I L U V  

Отметим также, что в силу наблюдаемости 
системы (17) можно определить вектор весо-

вых коэффициентов xxK C , а значит, и вектор 

коэффициентов усиления оптимального регу-

лятора ˆ ( )nK , не обращаясь к системе уравне-

ний (21). Для этого необходимо составить 

уравнения для нулей λ γi −=  и λ γi +=  T  -1C A B
(если они есть) в верхней полуплоскости 

( )γT
хх

−+ + =I С I L K С  

( ) ( ) ( )γ γ / γu
+ − − − − −= −X U U   (22) 

и для нулей λ γi +=  в нижней полуплоскости 

( ) ( )
( )
( )
γ1

γ
γ γ

T
хх

u

− +
+

+ + − +

−
+ + = ×

U
I С I L K С

X U
. (23) 

Таким образом, для нахождения вектора 
усиления регулятора и фильтра решения си-
стемы (21) не требуется. В случае определения 
диагональных моментов корреляционной мат-

рицы ххK , определяющих качество фильтра-

ции, решение системы (21) упрощается и сво-
дится к решению линейной системы вида 

хх хх+ = ϒAK K A . 

В конкретных приложениях часто регуля-
тор в форме фильтра Калмана (20), в котором 
полагается 0Z = , мало проигрывает оптималь-
ному. В этом случае задача сводится к опреде-

лению только «весов» xxK C . В силу предполо-

жения наблюдаемости и управляемости си-
стемы (17), (18) можно показать, что система 
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система (17), (18) асимптотически устойчива 

за счет выбора матрицы усиления ˆ ( )nK  по 

формуле ˆ ( ) ( )xxn n=K K C  и в управляемости 

системы (17) всегда найдется единственная 
положительно определенная матрица 0ˆ ( )хх nK  

обеспечивающая асимптотическую устойчи-
вость системы (17), (18). Для этого можно 
воспользоваться прямым методом Ляпунова, 
если в качестве функции Ляпунова принять 

0( ) ( ) ( ) 0T
ххV n n n= >X K X . Доказательство этого 

утверждения очевидно и для непрерывного слу-
чая1. Если объект управления асимптотически 
устойчив, то ошибка восстановления с тече-
нием времени будет уменьшаться lim ( ) 0

n
n

→∞
=e . 

4. Пример синтеза оптимального 
управления 

Приведем пример применения предлагае-
мого метода к решению задачи оптимального 
управления координат динамического объекта — 
положения и скорости, когда движение объекта 
описывается рекуррентными уравнениями 

( ) ( ) ( ) ( ) ( )
2

1 1 2 1 21 ;
2

hX n X n hX n U n U n+ = + + +  

( ) ( ) ( ) ( )2 2 1 21 ,X n X n hU n U n+ = + +  (24) 

где h  — длительность любого n -го такта, 

( ) ( )1 2,U n U n  — стационарные процессы 

( ) ( )( )1 20, 0MU n MU n= =  с нерациональными 

в общем случае спектральными плотностями 
( )1 λS  и ( )2 λS , а наблюдаемый процесc ( )Y n 	 

выражается в виде 

( ) ( ) ( ) ( ) ( )1 2 0η 1 , ;0Y n X n n U n Y Y= + + + =

( ) ( )2 2
1 1 1λS MU n a= ≤ ; 

( ) ( )2 2
2 2 2λS MU n a= ≤ , (25) 

где ( )η n  — дискретный белый шум с диспер-

сией 2 2τ ηM= . 

 
1 Александров А.Г. Оптимальные и адаптивные системы : учебное пособие. Москва : Высшая школа, 1989. 263 с. 

ISBN 5-06-000037-0 

C учетом ограничения (25) на неизвестную 
компоненту ( )1U n  — управляющее возмуще-

ние в помехе канала измерений, найдем опти-

мальный минимаксный фильтр ˆ
vG  методом 

факторизации и наихудшую спектральную плот-

ность компоненты ( )2U n  для процесса ( )0X̂ n . 

Воспользовавшись результатом решения ана-
лога этого примера, приводимого в моногра-
фии О.М. Куркина и др. [14, пример 3.10] для 
нахождения спектральной наихудшей плотно-
сти компоненты ( )2U n , будем иметь ее анали-

тическое представление в виде 

( ) [ ]2
2 0 0

2
0

/ 2(π λ   при λ λ ;
λ  

  0                     при λ λ .

a
h

 − ≥=  <
 

Частотные характеристики от входа ( )1U n  

до выходов ( ) ( )1 2,X n X n , и ( )X n  имеют вид 

( )
2 λ

λ
1 λ

1
;

2 1

i
i

i

h eC e
e

+=
−

 

( )λ2 λ
;

1
i

i

hC e
e

=
−

 

( ) ( )
( )

λ
1λ

λ
2

i

i

i

C e
e

C e

 
 =
 
 

C . 

Cпектральные плотности фильтруемого и 
наблюдаемого процессов 

( ) ( ) ( ) ( )λ * λ
1λ λXX i ie S e=S C C ; 

( ) ( ) ( ) ( )
2

λ 2
1 1 2 .λ λ λ τiS C e S h= + +  

А их взаимная спектральная плотность 

( ) ( ) ( ) ( )λ
1 1λ λ λXY i ie S C eλ=S C . 

На втором этапе решим задачу факториза-
ции МСП ( )λS , воспользовавшись теоремой 2 
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(о факторизации МСП) из работы Г.А. Голу-
бева [20]. Решение задачи факторизации МСП 

( )λS  состоит в расчете матричных функций

( ) ( ) ( )1/ 2λ λ , ln λl l=A S A  и затем в расчете 

( )Φ λ  как матричного преобразования Гиль-

берта ( )ln λlA и формирования МЧХ фильтра 

( )ie λ−F и ( )1 ie λ− −F  по формулам: 

( ) ( ) ( )( )λ λ exp Φ λ ,i
le i− =F A  

( ) ( )( ) ( )1 λ 1exp Φ λ λi
le i− − −= −F A , 

а на третьем этапе воспользуемся формулой 
(8a) и найдем выражение для физически реа-

лизуемого минимаксного фильтра ˆ
vG . Нако-

нец на четвертом этапе определим оптималь-
ное управление (регулятор) фильтруемого 
процесса ( )nX  в виде  (16) 

( ) ( ) ( ) ( )1
λ λ * λ λ

optλi i i i
opt e e e e

−− − − − = + H B B B ; 

( ) ( )
( )

λ
1λ

λ
2

,

i

i

i

C e
e

C e

 
 =
 
 

B  

2

opt
22

λ 1
λ ctg

λ2 4 2cos
2

ba hb h
a

 
 

= − = ⋅ + × 
 
  

 

( )
24

2 2 22
1

0

2
2

2

λ
ctg τ

4 2 2 π λ1
1 ;

λ 1
ctg

λ2 4 2cos
2

ah a

a hh

 
 

⋅ + + − × ⋅ − 
 ⋅ +
 
  

 

( ) ( )λ * λˆ ˆˆ i i
v va e e− −= G QG . 

( ) ( ) ( ) 2
λ * λ λ= i i ib e e e− −= =B B B  

2
2 2

2

λ 1
ctg

λ2 4 2 cos
2

hh

 
 

= + 
 
 

. 

Матрица ковариаций ошибки восстановле-

ния (фильтрации) ( ) ( )ˆ( ) n nn = −X Xe  будет иметь 

вид 

( ) ( )TM n n= =e eeeK  

( ) ( ) ( )( )
π

* λ λ

π

λ λ.i iS G e S G e dν ν
−

= − XX   (26) 

Для приближенной оценки параметра â  в 
установившемся режиме воспользуемся свой-
ством асимптотически устойчивости объекта 
управления, то есть поскольку ошибка восста-
новления с течением времени будет умень-
шаться lim ( ) 0

n
n

→ ∞
=e , то из последнего соотно-

шения для ковариаций матрицы при выборе ве-
совой матрицы 

( ) ( ) ( ) ( )
2

λ 2
1 1 2λ λ λ τ ,iS C e S h= + +Q  

следует, что субоптимальная оценка пара-
метра â  может быть представлена в виде 
следа спектральной плотности ошибки восста-

новления Sp XXS : 

( ) ( ) ( )( )
( ) ( )

λ

2

2
2 2

1

*

λ

2

λˆ

ˆ

λ 1
ctg .

λ

λ2 4

ˆ

2cos
2

ˆ

λ

i i

XXi

p e S e

e

a S

S Sp

hS h

ν

ν

ν≈ =

= =

 
 

= ⋅ + 


=


 

G S

G G

 

Необходимые параметры оптимального ре-
гулятора найдены. Графики изменения коэффи-

циента усиления ( )xxK n  по времени для квази-

оптимального регулятора, построенного: 1 — 
методом факторизации матричной спектраль-
ной плотности, в общем случае нерациональ-
ной для наблюдаемого процесса, и измеряемого 
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в форме наблюдателя — фильтра Калмана — 
Бьюси представлены на рисунке по методу 
факторизации спектральной плотности; 2 — 

по методу фильтра Калмана при 1h = , 2τ 25,=  
2 2
1 225,  25.a a= =  Начальные значения матрицы 

( )0XK  были выбраны исходя из корреляцион-

ных оценок по положению ( )1X n  и скорости 

( )2X n , полученным в примере близким по со-

держанию к модели, рассматриваемой в нашем 
примере, который представлен в работе 
О.М. Куркина и др. [14, c.175] и имеют вид 

( )
( ) ( ) ( )
( )

0

3 3 2
0

2 2
0

0 γλ ,

0 λ γ / 6 1 6γ / 9π ,

0 γ λ / 2,

хх

xx

xx

K

K

K

=

 = + + 
=





 

где параметр γ , находится из соотношения  

1 1
tg 1

γ γ
= , ( )

( )
2

2 2
0 22

γ 115
λ

4 τ1 6γ

a+
= ⋅

+
. 

 

 
Изменение ковариации ошибки скорости 

по времени для квазиоптимального регулятора: 
1 — по методу факторизации спектральной плотности; 

2 — по методу фильтра Калмана 
И с т о ч н и к: выполнено И.Г. Сидоровым 

Time variation of the velocity error 
covariance for a quasi+optimal controller: 

1 — by the spectral density factorization method; 
2 — by the Kalman filter method 

S o u r c e: by I.G. Sidorov 

 
Из построенных графиков видно, что про-

игрыш по точности определения ковариации 
ошибки скорости спектрального регулятора по 

сравнению с регулятором — фильтром Кал-
мана — Бьюси составляет примерно 10 %, что 
обычно допустимо на практике. Из полученных 
выше соотношений видно, что построение оп-
тимального многомерного регулятора в усло-
виях неопределенности спектральных плотно-
стей как наблюдаемого, так и измеряемого мно-
гомерных дискретных марковских стационар-
ных процессов управляемого многомерного 
динамического объекта методом факторизации 
спектральной плотности может быть реализо-
вано на ЭВМ с применением вычислительной 
математики. 

5. Результаты 

1. Утверждения теорем 1, 2 дают решение 
задачи оптимальной минимаксной линейной 
фильтрации и оптимального линейного управ-
ления многомерными стационарными случай-
ными процессами в условиях неопределенно-
сти их спектральных плотностей в классе мно-
гомерных линейных фильтров Винера — Кол-
могорова R  c нерациональными спектраль-
ными плотностями возмущений, присутствую-
щими в полезном сигнале и  помехе измерений, 
для которых известны лишь моментные нера-
венства (3), которым удовлетворяют их спек-
тральные меры в форме существования седло-
вой точки игрового процесса. 

2. Выявлены необходимые и достаточные 
условия существования седловой точки у функ-
ционала дисперсии ошибки оценивания опти-
мального линейного управления многомер-
ными стационарными случайными процессами 
в условиях неопределенности их спектральных 
плотностей. 

3. Условия оптимальности линейного управ-
ления по неполным данным при критерии дис-
персии ошибки оценивания могут служить ос-
новой для разработки рекуррентных вычисли-
тельных процедур, реализующих минимаксный 
фильтр и оптимальное управление. 

4. Получен в простой конструктивной форме 
многомерный регулятор во временной области 
с помощью наблюдателя фильтра Калмана — 
Бьюси для стационарных многомерных случай-
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ных процессов для случая, когда управляемый 
сигнал и наблюдаемый содержат по одному воз-
мущению. 

5. В конструктивной форме в частотном 
представлении разработан оптимальный неупре-
ждающий регулятор 2H , формируемый на раз-
личные виды внешних возмущений, в том числе 
и окрашенных, присутствующих как в полез-
ном сигнале, так и в помехе измерений, для ко-
торых известны лишь моментные неравенства 
и области их сосредоточения. 

Заключение 

Предложенный спектральный подход поз-
волил сформировать новый метод решения 
синтеза оптимального среднеквадратичного 
минимаксного асимптотически устойчивого 
линейного регулятора по неполным данным, 
который основан на алгоритме, содержащем 
конечное число простых алгебраических опе-
раций. Предложенный метод не использует 
универсальную технику — оптимального син-
теза, связанную с решением уравнений Рик-
кати или линейных матричных неравенств. Это 
снимает трудности, вызванные вырожденно-
стью задачи, и позволяет существенно умень-
шить вычислительные затраты, что имеет осо-
бую значимость для адаптивной перенастройки 
систем обработки сигналов и управления, 
работающих в режиме реального времени. 
В перспективе также возможен и синтез частот-
ного робастного неупреждающего регулятора в 
условиях нечеткости линейной динамической 
системы, присутствующей, в частности, в мат-
рице состояния системы. 

Приложение 

Доказательство теоремы 1. Условие факто-
ризуемости матричной спектральной плотности 

( )λ 0YY >S  следует из того, что она образуется 

сложением линейно-регулярной максимального 
ранга матричной строго положительной спек-
тральной плотности ( )λ 0YY

c >S  и положитель-

ной полуопределенной матричной спектраль-

ной плотности ( )
1

λ 0
c

M

y j
j=

≥H . Свойство линей-

ной регулярности максимального ранга для 
спектральной плотности ( )λYYS вытекает в силу 

предположения, сделанного выше относительно 
положительной полуопределенности матрич-
ных спектральных плотности ( )λ

cy jH  и линей-

ной регулярности максимального ранга мат-
рицы ( )λYY

cS . При этом свойство положитель-

ной определенности для матричной спек-
тральной плотности сохраняется и, следова-
тельно, по следствию из теоремы Вейля, все 
собственные значения будут строго положи-
тельными, а значит, она положительна опреде-
лена по теореме 7.2.1 [30, теорема 7.2.1]. По 
теореме 6.1 [2] для выполнимости свойства ли-
нейной регулярности стационарного процесса 
необходимо и достаточно, чтобы выполнялось 
неравенство 

( )
π

π

ln det μ μ  d
−

> −∞ S . (П.1) 

Положительно определенную матрицу ( )λS  

с помощью унитарной матрицы можно приве-
сти к диагональному виду. Так как собственные 
значения ( )μkm , стоящие на диагонали преоб-

разованной матрицы, строго положительны, то 
будет выполняться и неравенство (П.1), в силу 
очевидного разложения для детерминанта мат-
рицы ( )λS : 

( ) ( )
1

ln det μ ln μ
m

k
k

m
=

= < ∞S , 

где m  — максимальный ранг положительно  
определенной матрицы ( )λYY

cS  для почти 

всех λ , и к матрице ( )λYYS  применим также 

механизм факторизации матричной спек-
тральной плотности по методике, изложенной 
в [15] c помощью граничного значения анали-
тической в единичном круге матричной функ-

ции { } 1,

1,
Г( ) Г ( )

j m

kj k m
z z

=

=
=  класса 2H  

( )
π λ

λ
π

1
Г( ) exp ln μ μ .

4π

i

i

e zz d
e z

−

−
−

 +=  − 
 S
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При этом показывается, что матричная 
функция Г( )z  обладает граничным свойством 

( ) ( ) 2
λ

1
λ lim Г ie

ρ→
= ρS , 

для, вообще говоря, нерациональной положи-
тельно определенной матрицы ( )λ .S  

 

Доказательство теоремы 2. Рассматри-
вая гильбертово пространство m-мерных век-
торных комплексных функций 2 ( )L z  

( )( )λ m∈z R , которые задаются в виде строк 

частотных характеристик размера m  со ска-
лярным произведением 

( ) ( ) ( ) ( )*
1 2 1 2λ , λ λ λ λ,d

+∞

−∞

< >= ⋅z z z z  

Знак (*) — сопряжения вектора * T=z z . Нужно 
решить следующую вариационную задачу: 

( ) ( ) ( ) ( )( )1

2

1λ λ λ
c

M
y ji

D
=

+∞

−∞

= + + HG G T  

( ) ( ) ( ) ( )( )12

2
λ λ λ λ λ min,

c m

N
x ii

d
= ∈

+ − →+
G

G Q T H
R

 

( ) ( ) ( )2
*λ λ , λ=< >G G G , 

где 
m

R  — множество ЧХ физически реализуе-
мых линейных фильтров (аналитических в 
нижней плоскости), ( )λQ  — некоторое задан-

ное линейное преобразование полезного сиг-
нала; ( )λ

cx iH  — неизвестные матричные спек-

тральные плотности фильтруемого процесса 
размерностью m m× ; ( )nX  — неизвестные 

матричные спектральные плотности в полез-
ной составляющей векторного наблюдения 

 размерностью ;m m×  ( )1 λT  — матричная 

спектральная плотность известных составляю-
щих полезного сигнала строго положительная 
размераm m× ; ( )2 λT  — матричная спектраль-

ная плотность известных составляющих филь-
труемого сигнала строго положительная раз-
мераm m× . 

( ) ( )1 2λ 0, λ 0> >T T . 

Функционал ( )D G  — выпуклый на 2 ( )L z  

и дифференцируемый в смысле Фреше [6; 32], 
причем 

( ) ( ) ( )( ) ( )'
1 1

2 λ λ λ
c

M
y ji

D
=

= ++ HG T G  

( ) ( )( ) ( ) ( )( )12λ λ λ λ2
c

N
x ii=

+ − +T HG Q . 

В условиях дополнительных n  ограниче-
ний, наложенных на выражения ( ) ( )( ) kν λ λλ +− PG Q  

в нижней полуплоскости 

( ) ( ) ( )λ λ λ ,  0,1,..., ,k k nν + −
= =  − P 0G Q  

в соответствии с теоремой 1.2 из [31, c. 21] 
условие оптимальности векторной функции 
фильтра ( )λvG заключается в выполнении век-

торно-матричного соотношения 

( ) ( ) ( ) ( ) ( )2 0λ λ λ λ λ ,u v − =X G Q T ξ  (П.2) 

где 

( ) ( ) ( ) ( ) ( )1 2 1 1
λ λ λ λ λ ,

c c

N M
u x i y ji i= =

= + + + X Τ T H H

( )0 λξ  — некоторая векторная аналитическая 

в верхней полуплоскости функция. Проведем 
в соответствии с теоремой 1 факторизацию 
матричной функции 

( ) ( ) ( )λ λ λu u u
+ −=X X X . 

Тогда соотношение (П.2) может быть запи-
сано так: 

( ) ( ) ( ) ( ) ( ) ( )
1

2λ λ λ λ λ  λ ,u v u
−

 
 
 

+ −= +X G T Q X U
 

где ( ) ( ) ( )0λ λ / λu
−=U ξ X  — векторная функ-

ция аналитическая в верхней полуплоскости. 
Выделив из левой и правой частей последнего 
уравнения аналитические в нижней составляю-
щие, получим 

( ) ( ) ( ) ( ) ( ) 1

2
ˆλ λ λ λ λ ,u uν

−+ −  =X G T Q X  

Откуда 

( )2(λ) λ (λ)
ˆ (λ) (λ)(λ)

cc

N
x ix i

uu
ν

  
  
     +− 
 
 +

+
= T H Q IG XX

. 
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Последнее соотношение может быть запи-
сано следующим образом с учетом свойства 
строгой положительности матрицы 

( ) ( )1 1
λ λ

c

M
y ji=

+T H : 

( ) ( ) ( ) ( ) ( )
ˆ λ λ λ ,

λ λv u
u u

+
− +

+

   = −  
   

I
G Q

X

I
X

X
 (П.2) 

где 
( ) ( )

( ) ( )
2 1

1 1
λ

(λ
λ

λ
)

λ
c

c

N
x ii

u M
y ji

=

=

+=
+
+

T H
X I

T H
, 

что и требовалось доказать. 

Доказательство теоремы 2 
Решая задачу отыскания минимаксного 

фильтра с функцией выигрыша 

( ) ( ) ( ), T
vR M n n=  G U X QX , 

приходим к искомой структуре многомерного 
оптимального фильтра Винера — Колмого-
рова. Метод его нахождения аналогичен ме-
тоду, описанному в монографии О.М. Куркина 
и др. [14]. Структура искомого многомерного 
минимаксного фильтра при неопределенностях 
в матричных спектральных плотностях возму-
щающих процессов, присутствующих как в по-
лезной составляющей векторного наблюдения, 
так и в канале измерителя, выводится покомпо-
нентно для каждой координаты векторного 
наблюдения ( )nY  аналогично методу поиска 

оптимального фильтра для скалярного случая 
наблюдения и имеет вид (П. 2), при этом 
имеет место быть факторизованное представ-
ление для функции ( )λu

X  в ее «масштабиро-

ванном» по матрице 

( ) ( )1 1
λ λ 0

c

M
y ji=

+ >T H  

виде 

( ) ( ) ( )
( ) ( )

2 1

1 1

λ λ
λ

λ λ
c

c

N
x ii

u M
y ji

=

=

+
= + =

+
 T H

X I
T H

 

( ) 2
λ ,u

+= X  (П.3) 

где I  — единичная матрица с размерностью . 

Представление (П.3а) корректно в смысле 
применения операции деления на выражение

( ) ( )1 1
λ λ

c

M
y ji=+T H , так как последнее пред-

ставляет собой положительно определенную 
матрицу, следовательно, у нее по теореме об об-
ратной матрице существует обратная матрица. 

Для найденного минимаксного фильтра ˆ
vG  

решаем задачу оптимального управления по мак-

симуму критерия ( ) ( ) ( ).ˆˆ ˆ ˆ, T
vR M n n=G U X QX

C учетом ограничений, наложенных на управ-
ление ( )nU , оптимизируем функционал 

Лагранжа (2.1) на минимум, который суще-
ствует в силу выпуклости функционала по 
управлению. Оптимальный вид управляющего 
звена по отношению к процессу ( )0

ˆ nX  дается 

в виде (16).  
Теорема 2 доказана. 

Замечание  1 . (обоснование корректности 
в применения «принципа разделения» в постро-
ении наблюдателя в форме Калмана) 

Корректность применения «принципа раз-
деления» в построении наблюдателя в форме 
фильтра Калмана (20) при предположениях, 
наложенных на матричные спектральные плот-
ности известных и неизвестных составляющих 
полезного сигнала и возмущений, присутству-
ющих в модели объект — измеритель (1)–(2) и 
обусловлена эквивалентностью модели форми-
рования этих возмущений в виде суммы двух 
векторных процессов — векторного белого 
шума и стандартного векторного белого шума, 
которые суммарно в силу факторизуемости их 
суммарной спектральной плотности, удовле-
творяющей условиям теоремы 1, также пред-
ставляет векторный эквивалентный белый шум, 
при этом фильтр Калмана настраивается на 
верхнюю гарантированную оценку спектраль-
ной плотности возмущений в модели [9], сле-
довательно, при сделанных выше предположе-
ниях, наложенных на матричные спектральные 
плотности известных и неизвестных составля-
ющих полезного сигнала и помехи, применим 
«принцип разделения» в задаче минимизации 
критерия оптимальности по управлению [1]. 
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Приложение 2 

Вспомогательные свойства матричных 
операций. Формулы для вычисления произ-
водных следа по матричному аргументу приво-
дятся ниже (в предположении, что след суще-
ствует). 

1. Дифференцирование скалярной функции 
по матричному аргументу. 

Пусть ˆ
vG , где ρ — скаляр; K  — прямо-

угольная матрица размера[ ]n m× , 
ρ∂

∂K
 — есть 

матрица с элементами 

ρ
, 1, , , 1, ,

ij

i n j m
K
∂ = … = …

∂
. 

2. Дифференцирование следа Sp  квадрат-

ной матрицы по матричному аргументу K : 

( ) ( )*

*, ,
SpSp ∂∂

= =
∂ ∂

BKKD
D B

K K
 

( ) ( )( )Sp∂ ⋅
=

∂
A K B K

K
 

( ) ( )∂ ⋅ ∂ ⋅
= +

∂ ∂
A K B B K A

K K
.  (П.4) 

Знак (∗) означает знак сопряжения матриц. 
В матричных идентификаторах ( )Α K и ( )B K  

K  — переменная, а в идентификаторах A  и 
B  — постоянная. 

В частном случае 

( )*

*
Sp∂

= +
∂
KAK

KA KA.
K

 (П.5) 

Если A  самосопряженная (эрмитова) 

* ,=A A  то 
( )*

2
Sp∂

=
∂
KAK

KA
K

. 

* .
Sp∂ = +

∂

*
* *AKBK C

A C KB CAKB
K

 (П.6) 

В приведенных выше формулах (П.4)–(П.6) 
предполагается, что размерности всех матриц 
согласованы. 
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