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Abstract. Space robotics is rapidly becoming essential as satellites and orbital debris continue
to increase, creating demand for reliable capture and servicing technologies. A central
challenge lies in minimizing the impact forces generated during contact, which can threaten
both the robot and the target. This paper addresses the problem by introducing a configuration
optimization approach that leverages the concept of integrated effective mass (IEM) to reduce
capture contact forces. The contribution of this study is twofold: it demonstrates how
IEM serves as a practical performance metric for predicting capture safety, and it validates
configuration optimization as an effective strategy for mitigating impact forces in free-floating
space robots. The methodology applied a Hunt — Crossley contact model with hysteresis
damping to simulate robot-target interactions under various manipulator configurations.
A 7-DOF free-floating robot was modeled, and IEM was computed through Jacobian-based
dynamic analysis. The coefficient of restitution was also tuned to balance rebound and capture
stability. Results reveal a strong nonlinear relationship between IEM and contact force.
Configurations with low IEM generated substantially lower forces: for example, an IEM
of 0.0413 kg produced only 442 N, while an IEM of 1.7199 kg resulted in forces exceeding
4142 N. By tuning the restitution coefficient to approximately 0.8, rebound effects were
minimized without compromising stability. The simulations confirmed that configuration
optimization can reduce capture forces by nearly an order of magnitude while avoiding
singularities. In conclusion, this work shows that planning manipulator configurations based
on IEM analysis is not merely theoretical but a practical tool for safer, more reliable
on-orbit servicing and debris removal. These findings reinforce configuration optimization as
a cornerstone for the next generation of space robotic operations.

Keywords: contact force minimization, free-floating robot, integrated effective mass, on-orbit
servicing, space robotics
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HUcTtopus cratbu

[Toctymmna B pegakuuto: 2 aBrycra 2025 T.
Jlopa6otana: 20 oktsiopst 2025 .
IMpunsata k myOmukamuu: 25 okTs6pst 2025 r.

3asiBjieHUE O KOH(I)J'IHKTC HHTEpeCcoB

ABTOPEI 3aIBIIAIOT 00 OTCYTCTBUH
KOH(IMKTa UHTEPECOB.

DuHaHCHMPOBaHHUE:

HccnenoBanue He UMENIO BHEITHEH (HHAH-
COBOM MOJJEPIKKHU.

AnHoTauus. Kocmuyeckas poO0TOTEXHHKA CTPEMUTEIBHO Pa3BUBAETCS BBHILY
BO3pPACTAIOLIEr0 YKCIa MCKYCCTBEHHBIX CIIyTHHUKOB 3€MJIM M KOCMHUYECKOTO
Mycopa, 4To TpeOyeT pa3paOOTKU HaJeXKHbIX TEXHOJOTUH IUCTAaHLIUOHHOTO
3axBaTa OOBEKTOB M UX TEXHUYECKOTo 0OCTyXuBaHUs. [T1aBHas 3a1a4a 3aKiio-
YaeTCs B CHIKEHUM yAAapHBIX HArPY30K, BOZHUKAIOIUX IIPH MEXaHUYECKOM B3a-
UMOJICHCTBIH POOOTOB ¢ OOBEKTaMH, YTO NPEICTABIAET YyTPo3y KaK CaMOMY
MaHUIYIATOPY, Tak U uenu. Mccnenopana npobiaeMa onTUMU3ALUU KOHOUTY-
panuu KOCMHYECKHX poOOoTOB. IIpeioxkeHo NCToNB30BaTh KOHIETIIIUIO HHTE-
rpupoBaHHoOil 3¢dexTuBHOM Macchl (IEM), 4T0ObI CHU3UTh KOHTAKTHBIE YCH-
nus ipu 3axBate. VccenenoBanue nokassiaet, 4To IEM — 310 mpakTtnyeckunii
nokasarenb 3G(PEKTUBHOCTH, KOTOPBI IOMOraeT IpOrHO3UpoBaTh Oe3omac-
HOCTh 3axBaTa. Tarxke MOKa3aHO, YTO ONTHMHU3AIMS KOH(OUTYPALUH SBISIETCS
3G (eKTUBHBIM CIIOCOOOM yMEHBILIEHUs CUIIBL yjapa B CBOOOJHO JETAIOIIUX
KOCMHUYECKUX poborax. J[is MopenupoBaHus B3aUMOIeiicTBUS poOoTa ¢ 00beK-
TaMH P Pa3HbIX KOH(PUTYpalUsIX MaHUITYJISTOpa UCIIONB30BaIach KOHTAKTHAS
Mozenb Xanta — Kpoccnu ¢ rucrepesucHbsiM aeMipupoBannemM. CMOAEIHPO-
BaH cBOOOJHO MIaBaromuil poOoT ¢ 7-cTyneHuaroil nepenadeit, a IEM paccuu-
TaH C MOMOIIBIO JMHAMUYECKOTO aHalM3a Ha OCHOBe MaTpHubl Skoou. Koad-
¢unmeHT nemMndupoBaHUs HACTPOUIM TaKUM 00pa3oM, YTOObI cOallaHCUPOBaTh
OTCKOK M CTaOMIIBHOCTB 3aXBara. Pe3ynbraThl MOKa3hIBalOT CHIIBHYIO HEJTMHEH-
HYy!0 Koppessiuuio mexxay IEM u cunoii konTtakra. Kongurypamuu ¢ Huzkum [EM
BBI3BIBANI 3HAUNTEIHFHO MEHbIINE ycunus: Hanpumep, npu IEM B 0,0413 xr
3adukcuposano Bcero 442 H, B To Bpems kak npu IEM B 1,7199 kr ycunust npe-
Beimanu 4142 H. Ontumusanus napamerpa AeMinpupyomero Ko3puineHra
[0 3Ha4eHus nopszaka 0,8 mo3Bosuia CyluecTBEHHO MUHUMU3UPOBATH IIPOsIBIIE-
HUs 2 deKTa puKoIeTa, COXpaHUB IIPH ITOM TpeOyeMbli ypOBEHb THHAMHYE-
CKOM yCTOMUMBOCTH CHUCTEMBbI. MoJenupoBaHue MOATBEPANIO, YTO ONTHMHU3A-
st KoHQUTYpanuu crmocoOHa YMEHBIIUTE CHJIBI 3aXBaTa MOYTH Ha MOPSIIOK Be-
JUYMHBI, OAHOBPEMEHHO n30eras CUHryasipHocreil. Takum o6pa3oM, MOKa3aHo,
YTO IUTAHMPOBaHWE KOHMUTYpaLWid MaHWIYJSITOPOB Ha ocHoBe aHanm3a [EM
SBJISETCS HE TOIBKO TEOPETUIECKUM HHCTPYMEHTOM, HO U IPAKTUUECKUM CPEea-
CTBOM JUIsl IOBBIIIEHHST OE30ITACHOCTH U HAJIEKHOCTHU OTEpaIiii o 00CIyXKu-
BaHHUIO Ha OpPOMTE M YIAJCHUIO KOCMUYECKOTO Mycopa. DTH BBIBOIBI IOATBEP-
JKJIaI0T BaKHOCTh ONTHMU3ALUU KOH(UIYpalK KaK OCHOBBI JJIsl CIEAYIOLIETO
MOKOJICHHSI KOCMHUYECKUX POOOTHU3MPOBAHHBIX OIEPALIUH.

KirodeBble cj10Ba: MUHMMHU3ALUS KOHTAKTHOH CUJIBI, CBOOOAHO JICTAIOIIUI
poboT, uHTerpupoBanHas 3p¢eKkTuBHas Macca, 0OCIyKUBaHHE Ha opoOuTe,
KOCMHYECKasi pOOOTOTEXHHKA

Bxuag aBTOpOB:

Aoode H.A.— pa3paboTKa KOHIEIIIHH HCCIIeI0BAHIS, METOONOTHH, (JOPMaTbHEIH aHANN3, HAIHCAHHE IEPBOI0 BAPHAHTA CTa-
TbH; Pazymuuiii FO.H. — Hay4dHOE PyKOBOACTBO, IPOBEPKa, MOATOTOBKA CTaThbU K MyOnukanuu; bemenu A.A. — HayuHOe
PYKOBOJICTBO, IPOBEPKA, MOATOTOBKA CTATHH K ITyOnuKauum; Jecegpy b. — mpoBeeHue HcciaeJ0BaHuUs, METOIONOTHS, (op-
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Introduction

The Earth’s orbit is becoming dangerously
congested. With thousands of active satellites now
sharing space with retired spacecraft and millions
of debris fragments, the risk of collisions is
increasing at an alarming pace [1; 2]. To maintain
orbital operations sustainable, robotic capture and
servicing technologies have emerged as vital tools
for debris removal, satellite life extension, and in-
orbit repair [3;4]. Free-floating robotic manipu-
lators, in particular, offer unique capabilities for
these missions. However, a serious challenge
remains: when a robot arm makes contact with
a satellite or debris, the resulting forces can damage
sensitive components or destabilize the servicing
spacecraft itself [5; 6]. Therefore, reducing the
capture contact forces is essential for safe and
reliable operation.

Various approaches have been explored to
address this issue. Simple spring-damper models
provided an early approximation of contact but
failed to capture nonlinear energy dissipation. Ad-
vanced formulations such as Hunt — Crossley [7]
and Lankarani — Nikravesh [8] incorporated hyste-
resis damping and offered more realistic force—
deformation predictions. Alternative models, in-
cluding Lee — Wang [9], Flores et al. [10], Gonthier
etal. [11], and Hu— Guo [12], further extended the
modeling landscape. In parallel, control methods
have evolved: sliding mode control [5], impedance
and admittance control [13; 14], adaptive control
[15], and prescribed performance control [16] were
all developed to regulate manipulator behavior.
Hybrid force/motion strategies [17] and trajectory
optimization approaches [18; 19] further sophisti-
cation, whereas reinforcement learning [20; 21;
22] provided data-driven adaptability under un-
certainty.

Despite this progress, limitations persist. Many
studies assume rigid targets [23; 24] and single-
point contacts [14], ignoring flexible appendages
and multi-contact realities in orbit. Others em-
phasize trajectory planning [25; 26] but underplay
the influence of manipulator configuration. Studies
on effective mass [27; 28] confirmed that a robot’s
apparent inertia directly affects impact severity,

and singularity analyses [29; 30] highlighted the
risks of unstable postures. However, few efforts
have integrated these insights into a configuration
optimization framework.

The contribution of this study is the develop-
ment of a configuration optimization framework
that uses integrated effective mass (IEM) as a
guiding metric to minimize the capture contact
forces. By combining nonlinear Hunt — Crossley
modeling, Jacobian-based IEM analysis, and eva-
luation of manipulator configurations, this study
demonstrates that contact forces can be reduced by
nearly an order of magnitude while avoiding sin-
gularities. This contribution shifts the configuration
from a background parameter to a central design
tool for safer on-orbit servicing and debris removal.

1. Literature Review

The problem of safe capture in space robotics
has driven extensivere-searchh across modeling,
control, and optimization. Early studies often relied
on simple spring-damper systems [31], which
offered basic insights but failed to capture the
nonlinearities inherent in contact. To improve the
realism, Hunt and Crossley [7] and Lankarani and
Nikravesh [8] introduced nonlinear damping models
that incorporated hysteresis and better reflected
energy dissipation. Comparative studies by Flores
etal. [32], Gonthier et al. [11], and Hu — Guo [12]
confirmed the advantages of these models, with
Hunt — Crossley proving especially effective.

Control methods were another major line ofre-
searchh. Sliding mode control [34] became popular
because of its robustness against uncertainties,
whereas impedance [35] and admittance control [36]
enforced compliance at the manipulator — target
interface. Adaptive schemes [37] and prescribed
performance control [38] offered resilience against
modeling errors, and hybrid force/motion frame-
works [39] sought to unify trajectory tracking with
force regulation. More recent approaches integrated
learning with reinforcement learning methods [40],
allowing robots to adapt to unstructured environ-
ments.

Optimization-based strategies have comple-
mented these advances. Trajectory optimization
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[41; 42] produced smoother motions that reduced
peak impact loads. Particle swarm optimization
[43; 44] and deep learning methods [45] expanded
the toolkit for path planning under uncertainty.
Simultaneously, configuration optimization [46; 47]
emerged as a promising method, emphasizing that
the manipulator posture itself is a determinant of
the contact force. This idea is closely linked to the
concept of effective mass [46], which quantifies
the apparent inertia of a manipulator in the direction
of contact. Research on singularity analysis
[48; 49] further highlighted how poor configu-
rations can destabilize capture operations.

Despite this breadth ofre-searchh, significant
gaps remain. Many models assume rigid targets
[37;46] and simplified contact conditions [50]
whereas real-world missions involve flexible
structures and multi-contact dynamics. Learning-
based controllers [51-53] have demonstrated
adaptability but typically prioritize motion plann-
ing over posture optimization. Consequently, the
explicit use of the integrated effective mass as
a central metric for configuration optimization
remains underexplored. This study addresses this
gap by presenting a unified framework that com-
bines nonlinear Hunt — Crossley modeling,
Jacobian-based IEM analysis, and systematic
configuration optimization to reduce capture
forces in space robotics.

2. Methodology

Understanding the behavior of contact forces
during robotic interactions in space is essential for
the safe and effective performance of manipulators
in missions such as satellite servicing and debris
removal. This study employed a physics-based
modeling and simulation approach to estimate,
minimize, and regulate these forces under micro-
gravity conditions. The 7-DOF KUKA LBR R800
manipulator [54] (Figure 1), with its 800 mm
maximum reach, was adopted as the reference
system, as this reach defined the manipulator’s
operational workspace and influenced the capture
dynamics. The methodology focuses on determin-
ing the integrated effective mass (IEM) and related
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dynamic parameters, providing a foundation for
configuration optimization and impact force re-
duction during on-orbit capture operations.

R

Figure 1. The 7-DOF KUKA LBR iiwa R800 manipulator

S ource: by KUKA Roboter GmbH.

LBR iiwa — product specification sheet, version v5.
Technical datasheet. Augsburg, Germany, 2015.
Available from: https://www.kuka.com/en-de/products/
robot-systems/industrial-robots/Ibr-iiwa
(accessed: 12.05.2024)

2.1. Contact Force Modeling

In orbital environments where gravity is neg-
ligible, the interaction of a robotic manipulator
with a target object, such as a tumbling satellite,
results in complex contact dynamics. These inter-
actions are governed by parameters such as the
relative velocity, stiffness of the contact interface,
damping, and, crucially, the apparent or effective
mass along the direction of contact.

Traditional linear models are often insufficient
for realistically modeling these forces. Instead, non-
linear formulations, such as the Hunt — Crossley
model, are preferred because they incorporate hys-
teresis damping, a mechanism that better captures
energy dissipation during impact. This allowed for
a more accurate estimation of both the peak forces
and deformation during contact.

Mathematically, the Hunt — Crossley model
represents the contact force F' as [32; 56-58]

Fmax = Kf(me)’

where &= k*(*Y,

1:%{7&(0”1@#
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and

1 o/ (atl)
o)

For single-point and no-friction assumptions,
the classical model of the contact force, which
incorporates a spring and damper in parallel
connecting the contact points, is [58]:

F =K +238,

where K is the stiffness parameter, §, & represent
the deformation and deformation velocity; a is the

nonlinear power exponent, which is considered to
be 1.5 in most cases, and A is called the hysteresis
damping factor with several classical expressions
shown in Table 1.

This model, along with the variants proposed
by Lee and Wang [9], Gonthier et al. [11], and
Flores et al. [10], allows impact events to be
simulated with greater accuracy. However, among
all the compared formulations, the Hunt —
Crossley model offers the most reliable balance
between computational simplicity and physical
realism, particularly in returning to a zero-force
state post-deformation (i.e., capturing elastic
recovery accurately) [58].

Table 1
Classical Expressions of Hysteresis Damping Factor
Model Hysteresis Damping Factor Model Hysteresis Damping Factor
Herbert — McWhannell A= Sl-c) -K Hunt — Cross| X—M K
erbe cWhanne ((2Cr _1)2 +3) 8(—) u ossley = > 8(_1)
3(1-c? 3(1- K
Lankarain — Nikravesh A= ( ! )i Lee —Wang A= (—c,)_
4 0 4 50
8(l-¢,) K 1-¢? K
Flores et al. [10] A= (-¢) K Gonthier etal. [11] A=
SCT 6(_) c, 5(_)
3(1-c2)eXe) 3(1-¢,) K
Zhiying — Qishao A= ( r ) K Hu — Guo A= QW
4 6(_) 2Cr 6

Source:byP. Flores and H.M. Lankarani [10]

The maximum deformation occurs when the
final velocity is zero, thus for maximum defor-
mation between the manipulator and the target,
the maximum force of contact can be determined
by 6 N:

8o = {w(m(‘) +Kln
A

K U o+l
)+ K

K ] ol
2+ K '

K[M[mu .

2.2. Hysteresis Damping Factor Comparison

A critical aspect of realistic force modeling is
the selection of the damping factor, A, which dictates
how energy is dissipated. As seen in comparative
simulations, while models like Lankarani —
Nikravesh [8] and Lee — Wang [9] exhibit good
dissipation, the Hunt — Crossley [7] model
minimizes estimation error for maximum contact
force and better reflects post-impact behavior.

To choose the best model to determine the
hysteresis damping factor, which is a critical
parameter for showcasing the maximum contact
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force created between the tumbling target and the
robotic manipulator, the relationship between the
deformation and contact force was modeled as
shown in Figure 1. The figure shows the curve of
the contact force with respect to deformation,
where

M, =1kg, K =10° N/m"%,§7) =02 m/s,

and ¢, =0.5, and the different models of the
hysteresis damping factor are adopted.

Contact Force vs Deformation
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Figure 2 was plotted using the equations from
[10] and simulated in MATLAB to observe the
performance of each model. Based on these
simulations, among the various numerical models
analyzed, the Hunt — Crossley model demonstrated
the most promising performance in estimating the
maximum contact force with minimal error
between the tumbling target and the robotic
manipulator. Additionally, its force-displacement
loop exhibited a tendency to return to zero more
effectively than the other models.

Contact Force vs Deformation

_ | = Force-Deformation Curve | — — — — — — — . \Fm"J’( (numerig)
800 [ #  F (theory) 1
O K
s00 b= — 7Fm {numeric) 4
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Figure 2. Curve of contact force with respect to deformation
for different models of hysteresis damping factor:
a— Herbert — McWhannell Model; b — Lankarain — Nikravesh Model; ¢ — Flores et al. Model;
d— Zhiying — Qishao Model; e — Hunt — Crossley Model; f— Lee — Wang Model;
g — Gonthier et al. Model; #— Hu — Guo Model
Source:byP.Flores and H. M. Lankarani [10]
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Figure 2 (Ending). Curve of contact force with respect to deformation
for different models of hysteresis damping factor:
a— Herbert — McWhannell Model; b — Lankarain — Nikravesh Model; ¢ — Flores et al. Model;
d— Zhiying — Qishao Model; e — Hunt — Crossley Model; f— Lee — Wang Model;
g — Gonthier et al. Model; #— Hu — Guo Model
Source:byP.Flores and H. M. Lankarani [10]

2.3. Coefficient of Restitution (CR)

Another key parameter is the coefficient of
restitution, which is defined as the ratio of the
post-impact to pre-impact relative velocities. It ef-
fectively measures how “bouncy” a collision is and
thus determines the extent of rebound. A higher
CR (e.g., 0.9) implies more energy retention
(greater rebound), whereas a lower CR (e.g., 0.7)
reduces the rebound but increases the energy

dissipation. In space applications, a balanced CR
of approximately 0.8 is optimal, as it minimizes
rebound without causing excessive deformation or
prolonging the contact duration, which could
destabilize the robot or the captured object [58; 59].

2.4. Integrated Effective Mass (IEM)

The concept of Integrated Effective Mass
(IEM) quantifies the inertia of the manipulator in
the direction of contact. It is derived from the
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dynamic parameters of the manipulator using the
Jacobian matrix J, which maps the joint velocities
to the end-effector velocities. The IEM is derived
from the effective mass of the system. The effective
mass is the apparent inertia of a robotic mani-
pulator (or object) in a particular direction of
motion or force, and it quantifies the resistance
offered by the end effector of a robot when a force
is applied in a given direction. Mathematically, this
1s represented as

M, = (nT (Jnata" )_1 nj_l,

where: J = Jacobian matrix (linear velocity part);
M = inertia matrix in joint space; » = unit vector
along the contact direction;

The integrated effective mass is a cumulative
or averaged measure of the effective mass across a
range of configurations, or along a manipulator
path. It captures the overall dynamic behavior of
the robot during a capture or contact maneuver
involving multiple joints and motion segments.

The total mass of the system can be expressed
using the integrated effective mass of a continuous
object (robotic manipulator) as follows:

1

M, = ,
_ m, +m
ul [—I’th]t lrtp><+‘3tEJun

1€

mm,

where u, — the unit norm direction vector; r, —

the vector from mass center of target to contact

e o i o

point; m,,m_ — effective mass of the robotic
manipulator and mass of mass of the target res-
pectively.

The effective mass of the robotic manipulator
depicts the total mass as a continuous object and is

determined as follows [60; 61]:

where u is a unit direction vector, m, is called the
. N -1 .

effective mass, and H, = (Jb wH Y mv) with

Jy v the Jacobian matrix corresponding to the

linear velocity.

2.5. Jacobian Modeling and DH Parameters

Before determining the effective mass of the
end effector, the Jacobian matrix for the robotic
manipulator must be determined. For the 7-DOF
free-floating space robot (modeled after the KUKA
system), the Jacobian is derived using Denavit—
Hartenberg parameters. This mathematical frame-
work allows the mapping of joint-space motion to
the robot’s operational space [62]. A symbolic,
compact form of the Jacobian matrix was used
to compute the dynamic behavior and ultimately
evaluate the effective mass across different con-
figurations [63]. The D-H parameters for the KUKA
robot shown in Figure 3 are listed in Table 2.

Tumbling target

|
I
|
|
|
1
|
I
I
|
I
|
I
|

Figure 3. The 2D orientation of 7-DOF free-floating space robot capturing tumbling target
Source:byL. Zhang [54]

350



Anne U.A., Pasymubivi FO.H., betesm A.A., feregy 5. Bectrnk PYOH

. Cepusi: iHxxeHepHble nccnepoBanus. 2025. T. 26. Ne 4. C. 343-358

Table 2

D-H Parameter of seven DOF KUKA robot

The Jacobian matrix below has been compacted
by symbolizing only entries with more than two

Link an(m) % (1) d{m) o() mathematical operations.
1 0 0 0.6 0, . : )
> o %0 o 0, Trigonometric shorthand was used as follows:
3 0 -90 0 0;
4 1 0 0 8. s 456 = sin(theta 4+theta S+theta 6).
5 1 0 0.2 05
6 0 90 0.2 06 J
7 0 90 0 0, Full Jacobean Matrix J(6) :[ g } ;
Source: byJ. Chimento [62] JW
Jiu Ji —cl2#(0.6% c3+cdx s3+cdxc5*53—53 % 54%55) Jia Jis 0 0
Jy=|Jy Jy s12%(0.6c%c3+cdxs3+c4*c5%x53-53%54%55) sy Jss 0 0f;
0 0 c3%c4—-0.6%s3+c3*cd*c5—c3*s54*55 —s3%(s4+545) —s3%s545 0 0
0 0 s12 —s3*%cl2 —s3*cl2 —s3*cl2 J 47
Jy={0 0 —cl2 —s3%s12 —s3%s512 —s3%512 Jsq ;
1 1 0 c3 c3 c3 53 %5456
[Ji Ji —c12%(0.6%c3 + cd#s3+ cdrc5#s3 — s3xsd#s5) Jiu Jis 0 ]
Joy Iy s12%(0.6%c3 + c4#53 + c4#c5xs3 — s3#xs4#s5) I Jys 0 0
J(0)= 0 0 c3#c4 —0.6%53 + c3xcd*c5— c3xsd#s5 —s3%(s4 + s45) —s3%*s45 0 0
0 0 s12 —s3#cl2 —s3*cl2 —s3*cl2  Jy
0 0 —cl2 —s3#sl2 —s3#*sl2  —s3#sl2 Js;
|1 1 0 c3 c3 c3 $3%5456 |

The effective mass of the end-effector is
derived from the Jacobian matrix of the system
using the dynamic parameters of the space robot

listed in Table 3. The corresponding simulation
results using MATLAB for the effective mass are
presented in Table 4.

Table 4
Effective Mass of the End Effector

Table 3
Dynamic Parameter of the Robot
Part m;,kg l,kg m’
Link 1 5 diag([0.01, 0.02, 0.02])
Link 2 5 diag([0.02, 0.01, 0.02])
Link 3 10 diag([0.84, 0.01, 0.84])
Link 4 10 diag([0.01, 0.84, 0.84])
Link 5 5 diag([0.02, 0.02, 0.01])
Link 6 5 diag([0.02, 0.02, 0.01])
Link 7 8 diag([0.03, 0.03, 0.01])
Base 1,000 diag([500, 500, 500])
Target 200 diag([100, 100, 100])

Source:bylL. Skrinjar, J. Slavi'c, and M. Bolte zar [55]

N, Configuration Effective Mass, kg
1 |30, -55, 60, -70, 35, 20, -40 1.7377
2 |-20,85,-110, 30, -45, 60, 150 0.0413
3 190, -75,40,-130, 70, 15, -20 1.6088
4 |-60, 120, -35, 55, 100, 80, 25 0.7090
5 |10, -140, 95, -15, 60, -10, 130 0.1348
6 |-85,40,-70,20,-11,120, 55 0.2359
7 1135, -50, 75, -90, 15, 100, -35 0.0841
8 |-30, 110,-100, 70, 40, —20, 60 0.1355
9 |70,-100, 55, -45, 140, -60, 5 0.2162
10|-150, 25, -20, 115, -95, 45, -70 0.4346

Source: byS. Doliwa [63]
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2.6. Singularity Analysis

Singularity analysis plays a critical role in en-
suring that a free-flying space robot never reaches
a state of uncontrollability, where motion along one
or more Cartesian directions becomes impossible
or demands unrealistically large joint velocities.
A singularity occurs when the manipulator’s
Jacobian matrix J(0) loses rank, thereby reducing
its ability to map joint velocities into end-effector
velocities [64].

For a redundant 7-DOF manipulator, such as
the KUKA LBR considered in this study, sin-
gularities may appear in specific configurations
where the rank of J drops below six. This condition
typically arises due to certain joint alignments,
which lead to the loss of motion capability in one
or more directions and, consequently, the risk of
control instability [65; 66].

In this study, singularity tests were performed
across ten representative configurations, as shown
in Table 4, using a MATLAB simulation. The
results of the evaluation on singularity are pre-
sented in Table 5 below. In every case, the Jacobian
maintained full rank (Rank (J) = 6), indicating that
none of the chosen poses were singular.

Table 5
Singularity of 7-DOF Space Robots
Configuration Rank Singularity
1 Rank(J) =6 Not Singular
2 Rank(J) =6 Not Singular
3 Rank(J) =6 Not Singular
4 Rank(J) =6 Not Singular
5 Rank(J) =6 Not Singular
6 Rank(J) =6 Not Singular
7 Rank(J) =6 Not Singular
8 Rank(J) =6 Not Singular
9 Rank(J) =6 Not Singular
10 Rank(J) =6 Not Singular

Source: byA. Mueller [66]

However, points along a trajectory may ap-
proach near-singular conditions, underscoring the
importance of careful motion planning. Entering
a singular configuration during microgravity ope-
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rations can significantly amplify manipulator —
base coupling effects, driving joint torques beyond
their limits and potentially destabilizing the space-
craft attitude [68].

Once the singularity of the workspace has been
identified, IEM of the space robot manipulator
at a given configuration can be easily determined
using the equation M;,. Therefore, singularity
analysis should not be treated as a routine
mathematical exercise but as a vital safety measure
for ensuring robust, stable, and precise capture
maneuvers in free-flying space robotics.

3. Results and Discussion

3. 1. Numerical Simulation
of a 7-DOF Free-Floating Space Robot

A 7-DOF free-floating space robot with @ = 0.6 m,
b=02m, ¢c=02m, d=1.0m, e=1.0m,
f=02m, g=02m, #=02m and k=0.6 m.
T =[-0.25,0.15,0.1]m and o, =[1,-0.5,2]deg /s

are both expressed in the target coordinate frame
[54]. The unit vector according to the calculation
is expressed as follows:

u, =[0.431,-0.267, 0.862].

The dynamics parameters of the space robot and
target are listed in Table 1.

Table 6 was derived from the M equation
above and computed using MATLAB. It sum-
marizes the simulated integrated effective mass
(Mie) for each configuration. It also lists the
simulated maximum contact force during on-orbit
servicing between the space robot manipulator and
the target, which was obtained using the Hunt —
Crossley model with a hysteresis damping factor.

From Table 6, we can see that the maximum
force has different values for different integrated
effective masses, which are the results obtained by
randomly varying the configuration ten times. The
reduced maximum contact force created between
the robotic manipulator and the tumbling target
was observed in configuration 2.

Figure 4 was plotted using MATLAB from the
data in Table 6 and reveals that as the integrated
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effective mass increases, the contact force during
space robot captures increases nonlinearly, parti-
cularly beyond a certain threshold. This indicates
a higher momentum transfer and impact severity.

Minimizing IEM is essential for reducing capture
forces and ensuring safer and more stable robotic
interactions during satellite servicing and debris
capture missions.

Table 6
Integrated Effective Mass for Different Configuration
No Configuration Integrated Effective Mass, kg Maximum Force, N
1 30, -55, 60, -70, 35, 20, -40 1.7199 4.1421e + 03N
2 -20, 85, -110, 30, -45, 60, 150 0.0413 4.4207e + 02N
3 90, -75, 40, -130, 70, 15, -20 1.5935 3.9567e + 03N
4 -60, 120, -35, 55, 100, 80, 25 0.7060 2.4278e + 03N
5 10, -140, 95, -15, 60, -10, 130 0.1347 8.9855e + 02 N
6 -85, 40, -70, 20, -11, 120, 55 0.2355 1.2564e + 03 N
7 120, -40, 60, -70, 35, 60, -20 0.0841 6.7733e + 02N
8 -30, 110, -100, 70, 40, -20, 60 0.1354 9.0135e + 02N
9 70, -100, 55, -45, 140, -60, 5 0.2159 1.1925e + 03 N
10 | -150, 25, -20, 115, -95, 45, -70 0.4334 1.8116e + 03N

Source:byL. Zhang [54]
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Figure 4. Effect of Integrated Effective Mass
to Reduce Contact Force
Source: by P.Flores and H.M. Lankarani [10]
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As demonstrated in the above figure (Figure 5),
the contact models of Lee — Wang, Lankarani —
Nikravesh, Herbert — McWhannell, and Hunt —
Crossley exhibit reduced dissipation energy owing
to their diminished hysteresis damping factor.
However, from the figure, we can see that the Lee-
Wang, Lankarani — Nikravesh, and Herbert —
McWhannel models have higher deformation than
the Hunt — Crossley model. For the above
reasons, the Hunt — Crossley contact force model
was selected to model the contact forces between
the robotic manipulator and the tumbling target.

When the coefficient of restitution was reduced,
the maximum force and maximum deformation
were reduced; however, this resulted in an increase
in the contact duration, which resulted in energy
dissipation, as shown in Figure 6. Therefore, it is
necessary to use a coefficient of restitution of
approximately 0.8. Figure 7 shows the simulation
performed in MATLAB to compare the theoretical
data with the numerical data to verify the results in
depicting the error propagation. Consequently, we
can observe from the figure that the error between
the maximum theoretical and numeric forces was
significantly reduced, as shown in Figure 7.

Contact Force vs Deformation

Fi numeric
= Force-DeformationCurve | = L = = = = o oo L m?ﬁ'](e(l:'y) ic)

* Fmax (theory)
O Ko

500 F |-——— Fmax (numeric)

600 7

Contact Force F (N)
w ey
o o
o o

N
(=]
S

o
S}

o

0 1 2 3 4 5 6 4
Deformation & (m) <107

Figure 7. Reduced Error
Source: by P.Flores and H.M. Lankarani [10]

Conclusion

This study demonstrated how the configuration
of a free-floating 7-DOF space robot strongly in-
fluences the capture dynamics during satellite ser-
vicing and debris removal. By analyzing the
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integrated effective mass (IEM) across different
joint configurations, it was observed that the con-
tact forces increased nonlinearly with the IEM.
Capture forces were dramatically reduced by nearly
an order of magnitude in low-IEM configurations
compared to higher IEM poses. For instance, an
IEM of 0.0413 kg produced only 442 N, whereas
an IEM of 1.7199 kg generated more than 4142 N.
The Hunt — Crossley model was effective in re-
presenting the contact dynamics, and a restitution
coefficient of approximately 0.8 provided a good
balance between reducing the rebound and main-
taining the capture reliability. These results confirm
that configuration optimization guided by IEM
analysis is a powerful strategy for ensuring safe,
more stable, and reliable space robot operations.
However, this study assumes rigid targets and ideal
conditions, overlooking flexible structures, multi-
contact, and sensor noise. Future efforts should
integrate trajectory planning, flexible modeling,
and adaptive learning-based control to address
uncertainties, paving the way for more robust,
efficient, and sustainable space robotics missions.
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