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3asiBjieHHe 0 KOHGUINKTEe HHTEPECOB

ABTOpBI 3asBIISIOT 00 OTCYTCTBUH
KOH(JIMKTa HHTEPECOB.

AHnHoTanus. PazpaboTaH HaleXHBII METOA ONpENENICHNs a9POAHHA-
MHUYECKHX KOA(Q(UIHEHTOB M CHCTEMaTHYECKUX OIIMOOK B U3MEpH-
TEJILHOM CHCTEME CaMoJIeTa, B KOTOPOM HCIIONIB3YIOTCS TPEUMYIIECTBa
aHaM3a B YaCTOTHOU 00acTH. 3a/1ada ompeeNieHus IrapaMeTpoB Gop-
MYJIHpYETCsl B paMKax METOZla MakCHMyMa INpaBaornonobus. Moaenn
oObekTa 1 HaOJIOIeHNs 3aJaI0TCsl BO BPEMEHHOI obsacTh, a QyHK-
IIMOHAJI ONPEAEIsIeTCS B YACTOTHOM 00JIACTH, YTO MTO3BOJISIET pas3zie-
JUTh JUHAMUYECKHE XapaKTEPUCTUKU CaMOJIeTa Ha Pa3HbIX 4acTo-
Tax, 3(1)(1)6KTI/IBHO YMEHbIIas BIUAHUC IIyMa U IMOTCHUHUAJIbHBIX HEJIU-
HEeWHOCTeH, MPUCYIINX JAaHHBIM BO BPEMEHHOI oOiacTu. DTOT mepe-
XOJI M3 BPEMEHHOU 00JIaCTH B YaCTOTHYIO TAaKoKe 00NeryaeT onpeaene-
HHUE 33/IepPKEK B U3MEPUTEIILHOW CHUCTEME, KOTOPbIE YacTO CIIOXKHO
TOYHO OLIGHUTH BO BpeMEHHOH obnacTy. J{si MUHMMHU3aIUK LeJIeBOH
(hyHKIINHM B 9YaCTOTHON OOJIACTH MPUMEHSIETCS MOAU(DUIINPOBAHHBIH
metox HproTOHAa, 9TO MO3BOJISIET MOYYUTh ONTUMAJIbHBIE OLIEHKH OOKO-
BBIX a9pOJMHAMHYECKHUX KOI((HUIMEHTOB W 3amasipiBaHuil. D dek-
TUBHOCTH JJaHHOTO II0/IX0Ja MOATBEPKAAETCS MPUMEPaMHU HICHTH-
(uKanMy mapamMeTpoB MOJENH JBMKEHHS JIETATeNBHOTO amlapara,
JEMOHCTPUPYS €r0 CHOCOOHOCTh TOYHO OXapaKTepH30BaTh OOKOBYIO
JUHAMHKY camoseTa. JTOT METOA MOXET cTaTh 3((EeKTUBHBIM WH-
CTPYMEHTOM JUIS ONTUMM3ALMH MTPOCKTUPOBAHMS M aHAJIN3a CHCTEM
ynpasieHust nonetoM. OH JaeT BO3MOXHOCTb C BBICOKOH TOUYHOCTBIO
MOJIEITUPOBATh IIOBEACHUE JEeTaTEeIbHOIO aIlapara.

KaroueBble ciioBa: ujaeHTH(UKAIMS TapaMETPOB, CIIEKTPaIbHO-BPe-
MEHHOH JITOPUTM, YaCTOTHAs 00J1acTh, a9poJHAMHYECKue Kodahu-
LHEHTHI, HOIPEITHOCTH GOPTOBBIX U3MEPEHHI
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Introduction

Algorithms for the parameter identification
of dynamic systems are traditionally divided into
frequency- and time-domain methods, and each
group of methods has its own advantages and dis-
advantages [1;2]. Therefore, time-domain algo-
rithms provide a simpler account of the nonline-
arities and nonstationarities of an object, whereas
frequency-domain algorithms allow for the selection
of the most effective band of operating frequencies
for a given task. Time and spectral domain para-
meter identification methods form an effective
instrument for aircraft flight tests [3]. An example
of spectral parameter identification was presented
in [4]. In previous studies [5—8], the use of inputs
in the frequency domain to augment the quality of
identification estimates was discussed. Other fields
where time- and frequency-domain identification
play an important role are on-board measurement
systematic error identification [9—11], aircraft thrust
and drag force estimation [12; 13], satellite orbit
parameter determination [14; 15], and analyses
and improvement of piloting processes [16—19].

In recent years, there has been a trend towards
the development of mixed time-frequency methods
that aim to combine the advantages of both ap-
proaches.

As an example, one can cite the spectral-
temporal identification method [20], in which the
calculation of residuals between the experimentally
measured and model-predicted signal values is per-
formed in the time domain, whereas the minimized
function is formulated in the frequency domain,
specifically in the complex variable domain of the
Laplace transform. The main limitation of this
method is the requirement of linearity in the object
and observation models. The proposed algorithm
is free from this constraint and is based on a well-
known method for identifying nonlinear nonstatio-
nary dynamic systems using the maximum like-
lihood approach [21]. Furthermore, a significant
advantage of the proposed algorithm is its use of
concepts familiar to engineering practice, such as
frequency domains and spectral densities.

1. Time-Frequency Identification

The identification algorithm is obtained in
which the models of the object and observations
are formulated in the time domain, whereas the
minimized functional is defined in the frequency
domain. It is assumed that the new algorithm,
while retaining the main properties of the original
time-domain method, will acquire new beneficial
qualities, primarily because of its ability to select
bands of operating frequencies.

The nonlinear and nonstationary model of the
object and observations are defined as follows:

V)= f(»(1).a,t), (1)
z(t;) = h(y(t, a, ;)+v()). ()

where, y(¢), z(t) is the state vector and observat-
ion vector with dimensions n and r respectively;
a is the vector of the parameters that shall be
identified with dimension p; v(#)is the vector
random process of the white noise type of
dimension 7, having a normal distribution and a
correlation matrix R(7;).

The control signal u(¢), is considered to be a

known function of time and is accounted for by the
time dependence on the right-hand side of (1).
Observation equation (2) is defined for discrete
time instants ¢, ,i =1, 2, ..., N, which corresponds
to digital registration and processing.

Traditionally, the minimized functional in the
time domain is formulated as follows:

N

J(a):(1/N)Z(z(ti)—2(ti,a)jT><

i=1

1) 2(0) - 2{000) | G

where N is the number of observations; Z(;,a) is

the prediction of the observation vector, which is
determined by the numerical integration of
equations (1), (2) at v(z,)=0 for given initial
conditions and at a fixed value of the parameter
vector a .
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N
Considering that the operation (1/N)> ()

i1
corresponds to the estimate of the mean and is
denoted by &(#,a) the residual between the

observation and prediction:
e(t,a)=z(t;)-2(t;, a) “4)
the functional (3) may be written in the form:

J@)=M|e" (t,a)R™(1)e(t,a) |, (5)

where M [.] is the estimate of the mean for N

number of observations.

It is necessary to introduce several notations
immediately before proceeding to the formulation
of the functional in the frequency domain.

For a scalar signal x(¢), presented by N

number of measurements of x(z,),i=L2,...N

conducted at regular intervals Af =7, —¢, with

the registration frequency freg =1/At, let us

denote F (x(t)) the result of the discrete Fourier

transform [10], calculated for discrete values of
frequencies f(x), k=1,2,..,N/2+1 within the

frequency band 0 ... 0.5 f .

Let us denote Fj (x(¢)), the component of
F(x(t)), corresponding to the frequency f,.
In the case of a vector signal

T

x(t) = [xl (t)x2 (t), vy X, (t)] 5

the discrete transformation is applied separately to
each component, and F, (x(t)) represents a vector

of the same dimension.

Fo(x(8) = F (5,.(0)) F (%, (1)) s s B (5,(0)) ] -

For the scalar signal x(¢) described above, at
each discrete frequency value f, the estimate of
the spectral density of the power flux S, (x(2)) is
denoted as [10]:

20

S, (x(0)) =M [ F (x(0)) F (x(1)) |- (6)

Methods for numerically determining the
estimate of mean in for (6) for N number of
measured values of x(,) are presented, for instance,
in [22].

It is now possible to proceed to the for-
mulation of the functional and derivation of the
algorithm.

The following assumption is made: the object
model and observation model are defined by the
equations (1) and (2). The functional in the
frequency domain can be defined as follows:

Jf(a)=M{ZL:Fk*(s(t,a))Gka(s(t,a))}, (7)

k=1
where ¢(t,a) is the vector of residual with
dimension 7 between observation and prediction,

calculated by formula (4); G, is the diagonal

matrix of real dimensional weight coefficients
with dimension »Xr.
Substituting into (7)

Gy :diag[gkl 8r2 5 -es gkr]a

equation (6, 8) can be obtained in the form:

L r R
Jf(a):kZiZ;gk/Sk(Sj(t,a)). (8)
Zi=
From (8), considering (6), it follows that
functional (7) with the specified choice of the
weight matrix G, is real-valued, although it

contains complex components F (&(z,a)).

A recurrent algorithm for finding an estimate
of the vector of parameters a minimizing the
functional (7) is obtained as a modification of
Newton’s method [21]:

. 1 (4)
Qi1 = 9y _(D(ak )) ‘;&k ) )
dJ (a,) . . . :
where, ﬂ is a vector with the dimension p

da,

of the first derivatives of the functional with
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respect to the vector of parameters; D(d,)is a

matrix with dimension p X p, approximately equal
to the matrix of the second derivatives of the
functional with respect to the vector of parameters.

We will examine the matrix D(4,) in more

detail during the derivation of the algorithm. It is
important to note that the distinction between the
recurrent algorithm (9) and classical Newton
method lies in the way it is computed. To imple-
ment (9), it is necessary to determine the first- and
second-order derivatives of the functional (7) with
respect to the vector parameters that should be
identified. In the differentiation process, we utilize
the linearity property of the expectation operators,
differentiation, and Fourier transforms, along with
the following formula:

d *
M:QR {dx ax (@) & (a )} (10)
da da

where G is a valid diagonal matrix; x(a) is a
complex vector that is a function of a valid vector
argument a.

The equation (10) is obtained by diffe-
rentiating the left side, where the elements of the
vector x(a)and matrix G can be written
explicitly. The derivative of the quadratic form is
x (a)Gx(a).

It is assumed that x(a) is a complex vector of
dimension », which is a function of the valid
vector argument a of dimension p;

G is a diagonal real-dimensional matrix of
the weight coefficients of the dimension nXxn,
G=diag(g, &, - &y)-

Let us demonstrate, that the derivative of
quadratic form by vector a

=2 Re[dx* (@)

a  (pxm)

d(x"(a) G x(a))
da

G(nxn) x(a)(nxl) i| .

Writing out the elements of the vectors
explicitly,

X' (a) G x(a)= g, x,(a) x,(a) +

+g, x;(a) x,(a)+..+g, x:(a)xn(a)'

In order to proceed, it is necessary to
determine the derivative of the summand of the
form included in the resulting expression,

g% (a) x,(a):

CIC (c;) %) _ g’_(dxi @ @)+ 3 (@) 2D j:
a da () a  (px)
_ [dx/(a) dx; (a)
_gi[ da o) xi(a)(lxl) [ x,(a )] j

~2gRe {d" @ (a )}

(px1)

Let us find the desired derivative using the
following result:

d(x*(a;aG x(a)) :d[igl X:((l) X[(ll):| —
=2Re|l g—— ](a) x(a)+g, dxdfl )xz(a)+ -+g, d(a)x (a ):|
[ g 0 .. 0][x(a
0 || x(a)

—2Re dx;(a) dx,(a) mdx:(a) 0 g .
da da da
0 0 .. g||x/(a)

=2Re| ——

G(nxn) x(a)<nx1):|-

Thus, the equation (10) is proven.
It is necessary now to find the first derivative
of functional (7):

dJ, (a) {im { (dsc(lt a)) G.E (e (t’“))H:
a

:—ZM{ZL: { (dzgquma,a»}}<u>

k=1

Note that in the second equation (11),
expression (4) is used for the residual €(¢,a).

In the special case, for G, = E the derivative
(11) takes the form:
(t,a)j}, (12)

aJ,(a) _ L di(t,a)
5%

&, )J { [dz(”)jﬂ(s(m},
da

21

dz(t,a)
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there is an estimate of the cross-spectral density of
signals dZ(t,a)/da and ¢g(t,a)is calculated

from N values of these signals recorded at discrete

time points ¢, 1 =1,2,...,N .

More generally, after substituting
G, = diag[g,, g;15----&,.] into (11), equation
(13) will be obtained:

> S.iLig,
i=1
L A . .
aJ ,(a) — _JRe z ;Sk(lzal)gki . (13)
da k=1
ng(ipai)gki
= ]
where, § (ij,i) is the estimate of the cross-

spectral density of the signal corresponding to the
i-th row of the j-th column of the matrix
dz(t,a)/ da (i.e., the signal of the derivative of

the i-th element of the vector of observation
prediction Z(¢,a) with respect to the j-th element

of the vector of parameters @) and the i-th element
of the vector of the residual €(¢,a).

As can be observed, and in this case, finding
the first derivative is reduced to calculating the
cross-spectral densities.

Then, it is necessary to approximate the
second by derivation differentiating (11) using the
vector of parameters a :

d'J,(@)_d {d] (a)}

da’ da| da
L
=—2Re{M{ s F (‘””ﬂ F (e, a))}
k=1
+9Re M{ZL:F,( dz(t a) dz(t,a)
=l da
. M{iFk =t 6 | 2200 |||l (14)
k=1 da

22

In equation (14), the term containing the pre-
diction of the second derivatives with respect to the
parameter vector has been omitted. This reduces
the computational burden and eliminates errors
associated with calculating the second derivatives.
The main idea is that near the extremum, the
omitted term is small because it is proportional to
the residual &(¢,a), and far from the extremum,

its influence on the convergence of the algorithm
1s not decisive.
When G, =E, from equation (14),

following equation (15) will be obtained:

d*J (@) Lo (dE"(ta) di(t,a)
Lm0 ). o

k=1 a

where, under the sign of the sum, there is an
estimate of the cross-spectral density of the signals
dz(t,a)/ da.

By substituting G, = diag [g,, > &»> > &1
into (14), equation (16) will be obtained as follows:
iS‘k(il,iZ)gk,

Z&(il,n)gm > S, iLip)g,
i=1

dJ(a) . ZZS L (12,i1)g,, Zs (12,i2)g,; - ’Z.SA'k(iZ,ip)gh ' (16)

Zsm'p,il)gk. Zsk(ip,iz)gh Y 8,ap.ip)g,
i=1 i=1 i=1

The term S . (ij ,in) represents an estimate of

the cross-spectral density between the derivative
of the i-th element of the prediction vector with
respect to the j-th element of the parameter vector,
and the derivative of the i-th element of the
prediction vector with respect to the n-th element
of the parameter vector.

Thus, the final algorithm is as follows: the
model of the object and observations is defined by
equations (1) and (2), and the parameter estimates
are computed using the recurrent formula (9),
in which the first derivative of the functional is
determined based on the form of the matrix G,

using formulas (12) or (13), whereas the approximate
matrix of the second derivatives D(a,)is given

by formulas (15) or (16). Prior parameter estimates
must be provided to initiate the algorithm. The
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computations based on formula (9) are concluded
when the magnitude of the vector a,,, —a,

becomes less than a certain small value, for
example, 1 to 2% of the magnitude of the vector
d, . The derivative of the forecast with respect

to the parameters dZ(f,a)/da is determined

numerically by sequentially assigning small
increments to each of the elements of the vector a.

The numerical estimation of the spectral and
cross-spectral densities of the power flow is per-
formed using one of the known methods. A number
of practically effective algorithms are provided,
for example, in [22]. In particular, this work used
the Fast Fourier Transform, the Goodman-Otnes-
Enokson spectral window, and frequency averaging,
although other options are also possible.

The choice of operating frequency bands is
based on the conditions of a specific problem
by setting the coefficients of the matrix G, or by

excluding individual frequency components from
the summation over k=1,2,....L. The latter
method must be used when using simpler formulae
correspondto G, = E.

2. Identification of Lateral Aerodynamic
Coefficients of an Aircraft Using
Time-Frequency Ildentification Algorithm

This study considers the functionality of the
proposed algorithm by means of examples of
identifying the parameters of an aircraft motion
model.

Example 1. Let us consider the lateral motion
equations of an aircraft, which we will extract from
the complete system of spatial motion equations:

d . . .
?B =a_cosf—(asinf -, )cosa + (a,sinf + o, )sina;
. ) )

do, J —-J St
=" oo +g—m +K o +(P. —P )z )/ J;
dt Jy x 7z qJ y ( nBz ( npas .I(,B) JB) y

y

do, J,—J, Sl
X — W Q)Z+q7mx,
dt J, p
dy .
E:(ox—tgv (0, cosy—w_siny), (17)

where
a,=qS(-c,+c,)/ m— gsinv,

a,=qSc, / m— gcosvcosy;
a, =qSc, / m— gcosvsiny.

The aerodynamic force and moment coefficients
are generally defined using the following mathe-
matical expressions:

_ B dns .
CZ _czB+CZ 811’

— B ox @y 3 g .
m,=mB+m’ o +m o, +m; o, +m)"d,;

N Ox @y 8 1
m,=mB+m o, +m o, +m’d +m'"s,. (18)

The normal, lateral, and longitudinal overloads
were calculated using the following formulae:

n,=a,/ g+ cosvcosy;
n_=a_/ g+cosvsiny;

n.=a_/g+sinv. (19)

This notation corresponds mainly to the
generally accepted notation in flight dynamics.
When performing lateral motion identification, the
longitudinal motion parameters (angles of attack

o, pitch angle J and pitch rate @) are replaced
with the measured values, and the parameter a

is calculated from (19) using the measured values
of the normal overload n,. The changes in flight

speed V' and parameter a, were considered
similarly.

In order to obtain the initial data for identifi-
cation, a straight and level flight was simulated.
Relative to this straight and level flight, a series of
aileron inputs to the left and right, lasting 1-2.5 s
was performed. The duration of the identification
section was 32 s, with a registration frequency of
8 Hz. For identification, the values of the angular
velocities ® , o, and lateral load factorn_,

as well as the measurements of the input signal -
aileron deflections 83 , were used. The rudder was

not deflected during the identification section,
ie. 8, =0 was assumed. The amplitude of the
aileron deflections was chosen so that the
maximum deviations of the signals were = 8 deg/s
for @+ 1.7 deg/s for ®,+0.08 units of overload

23
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for n.. The measurement noises were modeled as

discrete Gaussian random sequences of the white
noise type with standard deviations of 0.08 deg/s
for o, 0.02 deg/s for ®,,0.02 units of overload

for n_,0.02 deg/s for 6, .

The entire volume of the simulated data was
used for identification, that is, a section with a
duration of 32 s. The coefficients of the acrodynamic
forces and moments (18) in various combinations
were selected as the parameters to be identified.

At the initial stage, the same input data were
processed using the proposed algorithm and the
traditional Maximum Likelihood Estimation (MLE)
algorithm, with identical object and observation
models and for the same set of parameters to be
identified. In the frequency functional, summation
was performed over the entire frequency band.
In this case, the estimates obtained by both algo-
rithms were nearly identical, with estimation errors
not exceeding 2-3%. The results indicate that
when models (1) and (2) correspond to the object

and measurement system with respect to the
parameters to be identified, respectively, and the
disturbance represents the aforementioned broad-
band noise that is uncorrelated with the useful
signal, the use of the frequency functional does
not provide advantages over the time method, and
both algorithms are equivalent. Therefore, further
research should focus on cases of disturbances that
are correlated with the object’s signals.

At the initial stage, it was also established that
components with frequencies above 0.8 Hz do not
have a significant impact on the parameter
estimates, as they fall outside the object’s pass
band and correspond to noise. Therefore, in
subsequent implementations of the algorithm with
the frequency functional, these components were
excluded from the summation process.

In the main stage, the identification of the roll
channel parameters m”, m™* was considered as the
first example, with the signal of angular velocity
o containing additive sinusoidal noise. The

results are presented in Table 1.

Table 1
Relative errors of lateral aerodynamic moment coefficients identification
E band Relative errors of the estimates Noise parameters
requency ap of parameters, % P Standard
for the calculation iterion Cr. %
f functional, Hz <] ox ; criterion Cr, %
0 ’ m, m, Amplitude, Degree Frequency, Hz
0...0.8 9.6 7.1 3.0 0,5 16.3
0...0.33 3.2 1.7 3.0 0.5 0.42
0...0.24 0.1 0.12 3.0 0.5 0.001
0...0.8 6.1 14.0 3.0 0.2 17.7
0.24...0.8 1.4 9.7 3.0 0.2 3.9
0.33...0.8 0.25 4.9 3.0 0.2 0.67
0...0.8 8.7 15.1 4.0 0.1 24.2
0.33...0.8 1.4 3.8 4.0 0.1 0.61
0.42...0.8 1.39 0.2 4.0 0.1 0.32

Source: made by O.N. Korsun and M.H. Om

The relative errors in the parameter estimation
are presented in Columns 2 and 3 of the Table 1.
The table indicates that the presence of noise leads
to an increase in the estimation errors of the para-
meters when calculating the functional across the
entire frequency band of the object (0—0.8 Hz).
The errors decrease significantly when calculating
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the functional within a band that does not contain
noise.

To select frequency bands effectively, a criterion
that allows for the comparison of different options
is required. In this study, the following normalized
criterion was used, with the values presented in the
last column of the Table:
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i(ﬁk(sl(t,a)) +8,(&,(t,a)) +...+ S, (¢, (t,))) - 100% -
Cr=41

i(ﬁk E,ta) + 8,5, (t,a) + ...+ S, (2.(t,0)))

(20)

In formula (20), the numerator contains esti-
mates of the spectral densities of the residuals for
each component » of the measurement vector,
whereas the denominator includes estimates of the
spectral densities of the components of the pre-
diction vector. The summation in (20) is performed
over the frequency components belonging to the
frequency band used in the functional calculation.
Criterion (20) is proportional to the ratio of the
powers of the residual and the output signal within
the frequency band utilized for identification.

Table 1 shows that, as the accuracy of the
estimates increases, the value of the criterion
decreases. In the identification of the roll channel
parameters, it was assumed that the other para-
meters of lateral motion (18) were known exactly.
Now, let us assume that they are known with errors,
and assess the possibility of isolated identification
of the roll channel parameters.

We introduced 30% errors in the parameters

B

my, ¢’ and identified the roll channel.

m,my, m,
The results presented in Table 2 show that the
transition to the relatively high-frequency band

significantly reduced the estimation errors.

3. Identification of the Errors
of the Measurement System
from the Flight Experiment Data

Example 2. For the conditions in Example 1,
consider another task. Suppose it is necessary to
identify the errors of the measurement system from
the flight experiment data, namely, the delays
ATw,, ATo, relative to the start time of the infor-

mation frame for the angular velocity signals ®
and O, . During the generation of the initial data,

these delays were assumed to be equal to 1/2 of the
sampling interval, that is, ATo =ATo, =1/16s.
The errors in specifying the aircraft model para-
meters were considered as noise. The results are
presented in Table 3.

Table 2
Relative errors of lateral aerodynamic moment coefficients identification
Relative errors of the estimates
Frequency band for the of parameters, % Standard
. . Type of error o
calculation of functional, Hz o o criterion Cr, %
mx mx
0...0.8 7.5 16.7 Errors 30% for parameters 4.65
0.38...0.8 3.4 4.0 m® m® m® m® P 0.24
0.42...0.8 3.3 2.7 x2 Wx 2 Ty 2 Ty 2 Tz 0.025
Source: made by O.N. Korsunand M.H. Om
Table 3
Relative errors of identification estimates
Relative errors of the estimates
0,
Frequ_ency band for the of parameters, % Type of noise _Sta_mdard
calculation of functional, Hz criterion Cr, %
ATo, ATo,
0...0.8 0.5 1.5 Without noise 0.012
0...0.8 2.5 50.2 o i 1.05
0.33..0.8 4.2 0.5 Errors 30% for m, 0.036
0...0.8 9.2 106.1 N N 0.88
0.33...0.8 8.6 23 Errors 30% for m!, m.”, m” 0.054
0.51...0.8 4.8 9.7 0.035

Source: made by O.N. Korsunand M.H. Om
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As we can see, in this case, the transition to
the relatively high-frequency band also significantly
reduces the influence of noise, and the comparison
of options is facilitated by criterion (20). The
advantages of the algorithm include the ability to
select the operational frequency band, which sub-
stantially diminishes the impact of noise related to
the useful signal, typically caused by inaccuracies
or incompleteness of the model, neglect of coupled
system models, and other problems mentioned
in [23].

Conclusion

This study proposes an algorithm for the
identification of dynamic systems, in which the
nonlinear models of the object and observations
are defined in the time domain, while the mini-
mized functional is defined in the frequency do-
main. The algorithm offers a significant advantage
by allowing for the selection of the operational
frequency band. This capability greatly minimizes
the interference from noise that can affect useful
signals, which often arises from various factors
such as model inaccuracies, incomplete data, and
the neglect of coupled system interactions. By effec-
tively targeting specific frequency ranges, the algo-
rithm enhances signal clarity and reliability, making
it a valuable tool in complex modeling scenarios.
In contrast, traditional algorithms often lead to
significant biases in parameter estimates due to
such types of errors and noises. The effectiveness
of the algorithm has been validated through examples
of identifying the parameters of a flight vehicle
motion model.
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