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Abstract. The article explores the potential of applying machine learning (ML) for
adaptive trajectory control of unmanned aerial vehicles (UAVs) under uncertainty.
The concepts of ML algorithms and the classification of UAVs by purpose, size, and
weight are examined. To analyze control methods, theoretical approaches such as
ensemble learning, neural networks, and probabilistic models are applied, enabling
real-time adaptation of flight trajectories. Additionally, mathematical models are
presented and illustrated with formulas describing the dynamics of interaction
between the control system, external disturbances, and control inputs. Parameters
such as system adaptability, trajectory correction accuracy, and stability under
challenging conditions are studied to assess the accuracy and efficiency of the
proposed algorithms. The study also investigates the impact of computational power
limitations on the real-time performance of algorithms. The integration of data from
various sensors is considered crucial for improving the accuracy and reliability of the
control system. Special attention is given to the practical application of ML for
environmental change prediction and flight trajectory optimization. Examples of real-
world ML algorithm implementations include successful developments by Russian
and foreign companies, demonstrating high levels of autonomy and adaptive control.
The results show that ML significantly enhances UAV autonomy and safety, ensuring
reliable trajectory corrections even under uncertain conditions. Further research could
focus on developing collective control for UAV groups and improving real-time ML
integration. This would expand UAV functionality, improve efficiency, and reduce
resource consumption.
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3asiBjieHHe 0 KOH(UINKTEe HHTEPECOB

ABTOpBI 3a5BJISIIOT 00 OTCYTCTBUH
KOH(ITUKTa HHTEPECOB.

AHHoTanus. VccnenoBaHsl BO3MOXHOCTH NIPUMEHEHUST MAIIMHHOTO
o6yuenust (MO) 1 aJanTHBHOTO YIPABICHHS TPASKTOPUSIMU OecCITH-
JIOTHBIX JieTaTenbHbIX anmaparoB (BIIJIA) B ycinoBusix HeonpeaeneH-
Hoctu. V3ydens! konuenmu ainroputMoB MO u knaccngukanust BITTIA
10 Ha3HAYEHUIO, pa3Mepy U Becy. [lid aHaIM3a METOOB YIPaBICHUS
MIPUMEHSUINCH TEOPETUYECKUE TIOIXO/bI, TAKUE Kak aHcambiieBoe o0y-
YeHUe, HEHPOHHBIE CETH W BEPOATHOCTHBIE MOIEIH, MO3BOJISIOIINC
a/lanTUPOBaTh TPACKTOPHH TI0JIETA B PEaTbHOM BpeMeHH. B nomnosHe-
HHE K 3TOMY TPeCTaBICHb MaTEMaTHUECKHE MOAEIH, KOTOPBIE MPO-
WUTIOCTPUPOBAHbI (POPMYIIaMH, OIHCHIBAIOIINMI AUHAMHKY B3aHUMO-
JEHCTBHS CHCTEMBI YIIPABIICHHUS C BHEIIHUMH BO3MYILCHUSIMH U yTIPaB-
JISIOIMME BO3IEHCTBUAMH. J171s1 OLIEHKH TOYHOCTH U 3P (HEKTUBHOCTH
HPEIJIOKESHHBIX AITOPUTMOB H3Y4YEeHbl NapaMeTpshl, BKJIIOUAIOLINE
aJanTUBHOCTh CHUCTEMBI, TOYHOCTh KOPPEKTHPOBKH MapIIPYTOB H
YCTOMYMBOCTb B CJIOKHBIX yCIOBUSX. TakxkKe HCCIEN0BAaHO BIUSHUE
OTpaHUYEHUH BBIYMCIUTEIBHBIX MOLTHOCTEH HAa paboTy aIrOPUTMOB
B peaJIbHOM BpeMeHHU. PaccMOTpeHa poib HHTErpaluy JaHHbIX C pa3-
JWYHBIX JATYMKOB ISl TOBBINICHUS] TOYHOCTH M HAIEKHOCTU CH-
cTeMsl ynpasieHus. Ocoboe BHUMaHNE YAEIEHO MTPaKTHIECKOMY MPH-
MeHeHuro MO 171 IpOrHO3UPOBaHMS H3MEHEHHH OKPYKAFOIIEH CpeIbl
1 ONTHMH3ALUH IOJETHBIX TpaekTopuil. IIpumepsl HCHONB30BaHUS
anroputMoB MO B peabHBIX IPOEKTaX BKIIIOYAIOT YCIICIIHBIE pa3pa-
OOTKM POCCHHCKHX M 3apyOC)KHBIX KOMIIAaHHH, JE€MOHCTPHUPYIOLIHE
BBICOKYIO aBTOHOMHOCTb M aJIallTUBHOCTH YIIpaBlieHHUA. Pe3ynasTaTsl
UCCIIeIOBaHUS IEMOHCTPUPYIOT, YTO ucrnonb3oBanue MO mo3Bonser
CYILIECTBEHHO ITOBBICHTH aBTOHOMHOCTb U Oe3omacHoctb BITJIA, obec-
neurBasi HaIe)KHYI0 KOPPEKTHUPOBKY MapLIPYTOB Jake B YCIOBMSIX
HEOIIpeIeNIeHHOCTH. [lanpHelme uceneioBaHusi MOTyT ObITh Halpas-
JICHBI Ha pa3paboTKy KOJJIEKTUBHOTO ynpapieHus rpymnmamMu BITJIA
n ynyumenne uarerpatun MO B peanbHOM BpeMEHH. DTO MO3BOJIUT
pacumputs pyHKIHOHATEHOCTE BITJIA, moBBICHTS HX 3(h(heKTHBHOCTH,
a TaK)Ke CHU3UTh PECypCco3aTpaThl.

KiawueBble cjIoBa: OECIMIOTHEIC J€TaTelIbHBIE armaparbl, APOHBI,
TPACKTOPHUHU I10JIE€TA, AJITOPUTMbI MAILIUHHOT'O 06yquI/I$I
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Introduction

Unmanned aerial vehicles (UAVs) are an
integral part of many areas, including military,
agriculture, environmental monitoring (EM), and
logistics. Effective UAV flight control under EM
uncertainty is one of the key challenges facing
researchers and engineers. The main challenge is
the need for real-time trajectory adaptation, which
requires a high degree of autonomy.

Machine learning (ML) provides new opportu-
nities for solving adaptive control problems. ML
algorithms are able to analyze large amounts of
data and extract patterns from them, which allows
predicting changes in EM conditions and adjusting
the flight trajectory.

The purpose of this paper is to explore the
theoretical foundations of ML application for
adaptive UAV control under EM uncertainty. The
main principles of ML are considered, and existing
theoretical approaches and models are analyzed.

1. Methods

The study used both empirical and theoretical
methods of data analysis and processing. The work
is based on modeling, which allows describing
the trajectory of objects based on mathematical
relationships and ML algorithms. The work used
an experimental method, including simulation
calculations and testing the proposed algorithms
on simulated data.

Among the theoretical research methods,
analysis and synthesis were used, aimed at syste-
matizing existing UAV trajectory control models,
as well as abstraction and analogy, which allow
identifying general patterns and adapting known
methods to new conditions. In addition, a classi-
fication was used to structure approaches to ML in
this area.

For a quantitative assessment of the effective-
ness of the developed methods, statistical methods
and quantitative analysis were used, allowing to
identify patterns and evaluate the accuracy of model
predictions. This approach ensures the reliability
and objectivity of the conclusions, which makes the
research results applicable in the adaptive UAV
control.

2. Results
2.1. ML Algorithm Concepts

Machine learning (ML) is a field of artificial
intelligence (Al) that focuses on developing algo-
rithms and models that can learn and make
decisions based on data. Researchers estimate that
the global ML market will exceed $150 billion in
2023.

ML is based on the principles of statistics,
probability theory, and optimization, which allows
you to create systems that can improve their per-
formance with experience. The main difference
between ML and traditional programming is the
ability to independently identify patterns and adapt
to new data without the need for explicit pro-
gramming. ML is based on several key concepts:

Supervised learning (SL) on labeled data con-
taining input and corresponding output values
(Figure 1).

External
environment

desired

Teacher response

actual
response

Training system

error l
<

Figure 1. Supervised learning scheme
Source: made by A.S. Ermilov, O.A. Saltykova

The external environment provides input data,
such as information about the current flight con-
ditions and surrounding environment. The infor-
mation is passed to the teacher, who generates the
desired response of the SL system, for example, the
optimal trajectory of the UAV [1]. The system takes
the input data and tries to reproduce the desired
response. The actual UAV response is then com-
pared with the desired one, and the difference
between them (error) is used to adjust the ML
algorithms. In the context of UAV operation, this
concept uses data about the current flight condi-
tions and surrounding environment to generate and
adjust the optimal flight trajectory.

Unsupervised learning (UL) is performed on
unlabeled data, where the model must independently
identify hidden structures (Figure 2).
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stimulus

response

Figure 2. Unsupervised learning scheme
Source: made byA.S. Ermilov, O.A. Saltykova

The external environment provides stimuli
that enter the UL system. It analyzes these stimuli,
identifying structures and patterns in the data
without predetermined responses [2]. Based on this,
the system generates a response that affects the
external environment, creating a new stimulus.
UL allows the UAV to function effectively in com-
plex and dynamic conditions without the need to
predetermine all possible scenarios.

Reinforcement learning (RL) is the agent inter-
acts with the OS, receiving rewards or penalties for
its actions (Figure 3).

reward

action
state

Figure 3. Reinforcement learning scheme
Source: made by A.S. Ermilov, O.A. Saltykova

Reward is a numerical value that reflects the
success or failure of an agent’s actions in a given
situation. In the RL process, an agent representing
a UAV control system selects an action (ar) based
on the current state of the environment (sv).

It changes the state of the environment, which
is recorded [3]. After that, the agent receives rein-
forcement, which is understood as a feedback signal.
It can be positive (reward) or negative (penalty)
and depends on how effectively the action is per-
formed.

The implementation of ML algorithm concepts
ensures a high degree of adaptation and accuracy
in UAV control [4]. This allows analyzing and
processing data in real time, optimizing flight
trajectories and making autonomous decisions in
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complex and changing conditions. To understand
the specifics of ML application, it is necessary
to study the classification of UAVs by their
capabilities, design features and technological
characteristics.

2.2. UAVs and Their Classification

Unmanned aerial vehicles (UAVs), or drones,
are aircraft systems that operate without the direct
participation of a pilot on board. These vehicles
are controlled remotely by an operator or auto
nomously using onboard computers and sensors.
The global UAV market was valued at US$ 37.46
billion in 2023 and is expected to grow to US$
148.19 billion by 2032, with a compound annual
growth rate of 16.5% from 2024 to 2032. Figure 4
presents the distribution of UAV applications
across various industries in 2023 based on current
market data.

m Defense and security Logistics and transport
Media and W Energy and infrastructure
entertainment Healthcare

@ Construction
and mining

Agriculture

® Other

Figure 4. Distribution of UAVs
by industries worldwide in 2023, %
Source:made byA.S. Ermilov, O.A. Saltykova

UAUVs are classified by purpose into three main
categories: military, civil and scientific. Military
drones are used for reconnaissance, surveillance,
target designation and combat operations. Civil
drones are used for commercial and private pur-
poses, such as aerial photography, delivery of
goods and monitoring of agricultural lands.
Scientific and research drones are designed to
monitor the environment, study atmospheric pheno-
mena and collect data [5].

UAVs are classified by design into three main
categories. Multi-rotors (multicopters) are equipped
with several rotors, providing high maneuver-
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ability and flight stability, which makes them ideal
for aerial photography and video filming [6].
Airplanes have fixed wings, allowing them to fly
efficiently over long distances at high speed, and
are used for long-term surveillance and monitoring

missions. Hybrid devices combine elements of
multicopters and aircraft, providing high maneu-
verability and the ability to fly long distances.
Based on size and weight, UAVs can be classified
into several categories (Table 1).

Table 1
Classification of UAVs by size and weight
UAV type Weight Main areas of application
Micro UAV Up to 250 g Research in limited spaces, observation
Very small UAVs 2509 -2kg Aerial photography, light commercial use
Small UAVs 2-25kg Agricultural monitoring, infrastructure inspections, commercial applications
Medium sized UAVs 25-150 kg m:gtsz?crxlznd commercial purposes, long-term surveillance and data collection
Large UAVs More than 150 kg Large-scale military operations, high-load commercial missions

Source: made by A.S. Ermilov, O.A. Saltykova

The operation of the UAV includes three main
phases:

= Navigation is the process of collecting and
analyzing information about the environment, which
is necessary for constructing routes and avoiding
obstacles [7].

= Control includes solving flight problems
and ensuring the execution of planned routes.

» Tracking is the assessment of the current
location of the UAV and adjusting the route as
necessary.

The classification of UAVs demonstrates that
these aviation systems can be effectively used in

various industries due to their ability to perform a
wide range of tasks. Adaptive control of the UAV
trajectory, using ML methods, plays an important
role in their ability to function effectively at all
phases of operation.

2.3. Adaptive Control of the UAV Trajectory

To ensure autonomous flight in conditions of
uncertainty of the environment, it is necessary for
the system to be able to respond to changes and
adjust the trajectory in real time. Control of UAVs
in conditions of uncertainty is associated with
many factors (Table 2).

Table 2

Factors associated with UAV control under uncertainty

Factor

Description

Impact on UAV control

Changing weather conditions
pressure

Wind speed and direction, temperature, humidity,

May affect flight stability, require
trajectory correction

Presence of obstacles .
trees, birds

Static and dynamic obstacles such as buildings,

Constant monitoring is required to
avoid collisions

OS Dynamics

Changes in landscape, moving objects, other UAVs

Requires flexibility in route planning
and adaptation

Communication instability

Communication with the operator is disrupted,
interference in data transmission channels

May lead to loss of control and
management

Limited computing resources
computers

Insufficient data processing capabilities of onboard

Limits the complexity of algorithms
and their speed of operation

Low energy reserves

Short flight times, need to conserve energy

Requires route optimization and energy
management

Data uncertainty

Inaccuracies and errors in data received from sensors

Can lead to errors in decision making
and management

Route complexity o
unfamiliar areas

Includes the need to navigate routes in complex and

Requires high precision and reliability
in planning and execution

Source: made by A.S. Ermilov, O.A. Saltykova [8; 9]

11



Ermilov A.S., Saltykova O.A. RUDN Journal of Engineering Research. 2025;26(1):7-16

Effective UAV control requires a system that
can analyze sensor data and predict potential
changes. Sensors collect information about wind
speed, temperature, pressure, and the presence
of obstacles, and machine learning algorithms
process this data to adjust the trajectory. The use of
such technologies allows us to identify complex
dependencies and predict changes more accurately.

2.4. Theoretical Approaches to the Application
of ML for UAV Control

The main tasks solved by ML in the UAV
control system are:

» Pattern recognition: using ML algorithms to
analyze visual data, which helps the UAV to iden-
tify objects and obstacles in the environment [10].

» Route optimization: using ML to find the
most efficient and safe flight paths, which mini-
mizes time and energy costs.

* Threat prediction and prevention: using
ML models to predict potential risks and develop
strategies to prevent them, ensuring flight safety.

* Improving interaction with operators:
implementing ML to improve the quality of commu-

nication and coordination between UAVs and their
operators, which contributes to more effective
control and monitoring [11].

The implementation of ML requires compre-
hensive strategies. Various theoretical approaches
to the application of ML, such as different learning
options, neural networks, ensemble learning and
probabilistic models, play a significant role in the
development and improvement of UAV control
technologies (Table 3).

The application of ML theoretical approaches
to UAV control provides many benefits, such as
improving the adaptability, accuracy, and efficiency
of these systems. The use of methods including
reinforcement learning, neural networks, ensemble
learning, and probabilistic models allows for the
creation of more autonomous and robust systems
that can cope with uncertainty and complex con-
ditions [14]. These approaches not only improve
the functionality and safety of UAVs, but also open
up new prospects for their application in various
fields, from military operations to civil and
commercial tasks.

Table 3

Theoretical approaches to the use of ML for UAV control

Approach Application

Advantages Disadvantages

Neural networks capable
of nonlinear data processing

Object recognition,
image processing

High accuracy,
big data capability

The need for large amounts
of data for training

Ensemble learning Improving classification

Increased stability High computational costs

(multiple models) accuracy
PrObabmSt'(.: models Forecasting and risk Accounting for uncertainty, Difficulty in building
for accounting assessment,

for uncertainty in data data processing

improved interpretability and setting up models

Source: made by A.S. Ermilov, O.A. Saltykova from [12; 13]

3. Results and discussions

3. 1. Application of ML for Forecasting
and Optimization of Mathematical Models
of UAV Trajectory Control

One of the main models used to describe the
UAV flight dynamics is the system of differential
equations (1):

x=f(,uwi), (D)

where x is the state vector, including the coordi-
nates, speeds and orientation of the UAV; u is the
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vector of control actions; w is the vector of dis-
turbances, such as wind and turbulence; # is time.

The function f describes the dynamic behavior
of the system. Using a system of differential
equations to describe the UAV flight dynamics
allows us to accurately model and predict their
behavior under various conditions, taking into
account the coordinates, speeds, orientation, control
actions and external disturbances, such as wind
and turbulence [15].

ML methods, such as neural networks, are
used to approximate the function f, allowing us to
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model complex dependencies in the data [16]. For
example, recurrent neural networks (RNN) can
model the temporal dynamics of the system using
formula (2):

h: = on(Whx:+ Unhi-1 + br);
yi=oy(Wyhitby), (2)

where h; is hidden state of the network at a given
time ¢, x; — input data at time #; Wi, W, — weight
matrices; bn, by — response; 6i, 6y — activation
functions such as sigmoid or ReLU. Sigmoid and
ReLU (Rectified Linear Unit) are activation
functions used in neural networks to introduce
nonlinearity into the model. They allow the net-
work to learn and model complex nonlinear
dependencies in the data. For UAVs, this means
that ML methods model complex dependencies
between the data and the temporal dynamics of the
system [17].

Long Short-Term Memory (LSTM) net-
works, owing to built-in mechanisms for forgetting
and remembering information, are able to retain
important data for long periods and ignore irrelevant
ones. This allows them to effectively predict future
system behavior based on past data, which is
necessary for adjusting the UAV flight path in
changing conditions [18]. The networks process
sequential data, such as weather conditions, and
help the system adapt to changes in real time.

The use of ML in UAV trajectory control sig-
nificantly increases their autonomy and efficiency.
The use of differential equation systems, recurrent
neural networks and networks with long short-
term memory allows not only to improve control
accuracy, but also to significantly reduce the risks
associated with the uncertainty of the OS [19].
This opens up new opportunities for the creation
of highly efficient and safe unmanned systems
capable of performing complex tasks.

3.2. Practice in the Application of ML
for Forecasting and Optimizing UAV Trajectories

Examples of successful application of ML in
UAV control can be found among both Russian
and foreign companies. The Russian company
Kronstadt specializes in the development and pro-

duction of high-tech solutions in the field of UAVs,
shipbuilding, robotics and simulators. It offers
complex control systems for military and civil avi-
ation, maritime transport and other areas. Kronstadt
actively participates in innovative projects,
introducing advanced technologies and ensuring
high reliability and efficiency of its products. The
share of innovative developments in the manu-
factured products is 90%.

The American company Northrop Grumman
uses advanced Al and ML solutions to create
complex systems that support the execution of
important tasks in the field of national security.
These technologies improve the quality of decision-
making, providing faster and more accurate data
processing at the tactical level [20]. Northrop
Grumman is implementing Al algorithms for
vertical takeoff and landing, which allows them to
be used in expeditionary conditions with minimal
logistics and maintenance requirements. These
systems can be quickly deployed and operated by
a small team, which increases their tactical flexi-
bility and effectiveness in combat conditions.

The American company General Atomics
Aeronautical Systems, Inc. (GA-ASI) is one of the
leading American manufacturers of military UAVs.
Well-known models produced by this company
are the MQ-9 Reaper, Gray Eagle and Predator C
Avenger. These drones are widely used to perform
reconnaissance tasks, as well as to carry out combat
missions. ML is used to analyze large amounts of
data in real time, which improves target recognition
and decision making [21]. Adaptive control
provides a high degree of autonomy for drones,
allowing them to independently adjust their
actions depending on changing conditions on the
battlefield. Despite the fact that legal regulation of
the use of UAVs is becoming more stringent in
various countries, this direction remains promising.
Strengthening requirements for flight safety and
data protection stimulates the development of
more advanced UAV control technologies, including
the use of ML. Regulatory changes are aimed at
ensuring the safe integration of UAVs into national
airspace, which opens up new opportunities for
developers and users of these technologies.
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Conclusion

The use of ML for adaptive control of UAVs
in uncertain conditions represents a significant
step forward in ensuring the accuracy and safety of
flights. The use of advanced ML algorithms allows
for the efficient processing and analysis of data in
real time, which facilitates timely correction of
trajectories. This is especially important for complex
missions in various fields, such as military affairs,
civil and scientific research. The introduction of
ML technologies opens up new opportunities for
increasing the autonomy and efficiency of UAVs.
Despite the tightening of legal regulation, innovative
developments in the field of ML continue to
evolve, offering improved algorithms and models
for data processing and decision-making. Prospects
for the development of ML in UAVs include the
creation of more complex systems for collective
control, which allows for the coordination of
actions of several UAVs in a single network. This
facilitates the implementation of complex tasks,
such as joint survey of territories and synchronized
response to emergency situations, significantly
expanding the functionality of UAVs and increasing
their operational flexibility.

References

1. Obukhov AD, Nazarova AO. A control method based
on computer vision and machine learning technologies for
adaptive systems. Mechatronics, Automation, Control. 2023;
24(1):14-23. (In Russ.) https://doi.org/10.17587/mau.24.
14-23 EDN: YZTOPE

2. Davletov AR. Modern machine learning methods
and OCR technology for document processing automation.
Bulletin of Science. 2023;10(67):677-697. (In Russ.)
https://doi.org/10.24412/2712-8849-2023-1067-676-698
EDN: 0ZQMOC

3. Andrievsky BR, Popov AM, Mikhailov VA, Popov FA.
Application of artificial intelligence methods for UAV
flight control. Aerospace Engineering and Technology.
2023;1(2):72—-107. (In Russ.) EDN: CLGVYM

4. Alam MM, Moh S. Joint Trajectory Control, Frequency
Allocation, and Routing for UAV Swarm Networks:
A Multi-Agent Deep Reinforcement Learning Approach.
IEEE Transactions on Mobile Computing. 2024;23(12).
https://doi.org/10.1109/TMC.2024.3403890

5.Davletov AR. The main difficulties in integrating
machine learning into commercial operation. /nnovation
& Investment. 2023;(10):335-339. (In Russ.) EDN: UBCPOX

14

6. Xiao Y. Machine learning-based design of a linear
self-resistant attitude control system for UAV string level.
Applied Mathematics and Nonlinear Sciences. 2024;9(1):
1-24. https://doi.org/10.2478/amns.2023.2.01320 EDN:
MTBMZX

7. Perrusquia A, Guo W, Fraser B, Wei Z. Uncovering
drone intentions using control physics informed machine
learning. Communications Engineering. 2024;3(1):1-26.
https://doi.org/10.21203/rs.3.rs-3127372/v1

8. Kazakov LN, Kubyshkin EP, Paley DE. Construction
of an adaptive motion control system optimal information
exchange scheme for a group of unmanned aerial vehicle.
Modeling and Analysis of Information Systems. 2023;
30(1):16-26. (In Russ.) https://doi.org/10.18255/1818-1015-
2023-1-16-26 EDN: TOCUAE

9. Tomakova RA, Pilist SA, Brezhneva AN, Gorba-
chev IN, Zaikin YO. Method and algorithm of autonomous
flight trajectory planning of an unmanned aerial vehicle
when monitoring the fire situation in order to detect the
source of ignition early. Proceedings of the Southwest State
University. Series: Control, Computer Engineering, Infor-
mation Science. Medical Instruments Engineering. 2023;
13(1):93-110. (In Russ.) https://doi.org/10.21869/2223-
1536-2023-13-1-93-110 EDN: COTWER

10. Sembiring J, Sasongko RA, Bastian EI, Raditya BA,
Limansubroto RE. A Deep Learning Approach for Trajectory
Control of Tilt-Rotor UAV. Aerospace. 2024;11(1):96. https://
doi.org/10.3390/aerospace11010096 EDN: CDJAEF

11. Tang J, Xie N, Li K, Liang Ya, Chen X. Trajectory
Tracking Control for Fixed-Wing UAV Based on DDPG.
Journal of Aerospace Engineering. 2024;37(3):04024012.
https://doi.org/10.1061/JAEEEZ.ASENG-528 EDN: JHDCBC

12. Kulida EL, Lebedev VG. Problems in the application
of machine learning methods in aviation. Management of
the Development of Large-Scale Systems (MLSD 2023).
Proceedings of the XVI International Conference, Moscow,
September 26-28,2023. Moscow: V.A. Trapeznikov Institute
of Management Problems of the Russian Academy of
Sciences, 2023;1315-1321. (In Russ.) https://doi.org/
10.25728/mlsd.2023.1315 EDN: RHPWHH

13. Malygin DS. Microservice architecture in cloud
systems: risks and application opportunities in 2024-2030.
Modeling, optimization and information technology. 2024;
12(2):29. (In Russ.) https://doi.org/10.26102/2310-6018/
2024.45.2.029 EDN: JGOZIT

14. Han X, Zhao X, Xu X, Mei C, Xing W, Wang X.
Trajectory tracking control for underactuated autonomous
vehicles via adaptive dynamic programming. Journal of
the Franklin Institute. 2024;361(1):474—488. https://doi.
org/10.1016/j.jfranklin.2023.12.003 EDN: HEEQAV

15. Fagundes-Junior LA, de Carvalho KB, Ferreira RS,
Branddo AS. Machine Learning for Unmanned Aerial
Vehicles Navigation: An Overview. SN Computer Science.
2024;5(2):1-26. https://doi.org/10.1007/342979-023-02592-5
EDN: MXAHWC


https://doi.org/10.17587/mau.24.14-23
https://doi.org/10.25728/mlsd.2023.1315
https://doi.org/10.26102/2310-6018/2024.45.2.029
ttps://doi.org/10.1016/j.jfranklin.2023.12.003

Epmunos A.C., CanrsikoBa O.A. BectHuk PYOH. Cepusa: NHxeHepHble nccneposanms. 2025. T. 26. Ne 1. C. 7-16

16. Lezhankin BV, Erokhin VV, Malisov NP. Control
of the flight path of an unmanned aerial vehicle with
different configurations of navigation information sources.
Crede Experto: Transport, Society, Education, Language.
2024;(1):113-127. (In Russ.) https://doi.org/10.51955/2312-
1327 2024 1 113 EDN: NSRDTA

17. Haque E, Hasan K, Ahmed I, Alam MS, Islam T.
Towards an Interpretable Al Framework for Advanced
Classification of Unmanned Aerial Vehicles (UAVs). 2024
IEEE 2Ist Consumer Communications & Networking
Conference (CCNC). IEEE, 2024. p. 644—645. https://doi.
org/10.1109/CCNC51664.2024.10454862

18. Castro GGR, Berger GS, Cantieri A, Teixeira MAS,
Lima J, Pereira Al, Pinto MF. Adaptive path planning for
fusing rapidly exploring random trees and deep reinforce-
ment learning in an agriculture dynamic environment
UAVSs. Agriculture. 2023;13(2):354. https://doi.org/10.3390/
agriculture13020354 EDN: KEROLZ

19. Artemov A. Programming languages in data engi-
neering: overview, trends and practical application.
Innovation Science. 2023;10-2:9—13. EDN: LLGVKL

20. Artyomov AA. Datacontract in analytical systems:
basic principles, practical benefits and implementation
methods. Bulletin of Science. 2023;12(69):800-812. (In Russ.)
EDN: HUTTTS

21. Sahani SK, Sah AK, Jha A, Sahani K. Analytical
Frameworks: Differential Equations in Aerospace Engi-
neering. ALSYSTECH Journal of Education Technology.
2024;2(1):13-30. https://doi.org/10.58578/alsystech.v2il.
2267 EDN: NWEDOP

Cnucok nutepartypbl

1. O6yxos A./l., Hasaposa A.O. Meton ynpasiieHHs
Ha OCHOBE TEXHOJIOTMI KOMITBIOTEPHOTO 3pPEHUSI M Ma-
LIMHHOTO 00y4YeHus 1S aIalTUBHBIX cucteM // Mexarpo-
HUKa, aproMaTm3anus, ymnpasienue. 2023. T.24. No 1.
C. 14-23. https://doi.org/10.17587/mau.24.14-23 EDN:
YZTOPE

2. lasnemos A.P. CoBpeMeHHBIE METOIBI MAITTHHOTO
o0yuenus u texnonorus OCR s aBTomMaru3sarmu oopa-
00Tku nokymMeHToB // Becthuk Hayku. 2023. Ne 10 (67).
C. 677-697. https://doi.org/10.24412/2712-8849-2023-1067-
676-698 EDN: 0ZQMOC

3. Anopuescxuii b.P., Ilonogé A.M., Muxatinos B.A.,
Ilonog @.A. IlpumeHeHne METOOB HCKYCCTBEHHOTO HH-
TEJUIEKTa VISl YIPaBJICHUS II0JIETOM OCCIMIIOTHBIX JIeTa-
TEJIBHBIX aImaparoB // ASpoKocMHUYecKasi TEXHUKA U TeX-
svoyoruu. 2023. T. 1. Ne 2. C. 72-107. EDN: CLGVYM

4. Alam M.M., Moh S. Joint Trajectory Control, Fre-
quency Allocation, and Routing for UAV Swarm Networks:
A Multi-Agent Deep Reinforcement Learning Approach //
IEEE Transactions on Mobile Computing. 2024. Vol. 23.
No. 12. https://doi.org/10.1109/TMC.2024.3403890

5. Hasnemos A.P. I'naBHble TPyAHOCTH IIPU UHTErpa-
I[N MAIIMHHOTO OOYy4YeHMsI B KOMMEPUYECKYIO AKCILTyaTa-
uuro // ManoBanuu u uasecturuu. 2023. Ne 10. C. 335
339. EDN: UBCPOX

6. Xiao Y. Machine learning-based design of a linear
self-resistant attitude control system for UAV string
level // Applied Mathematics and Nonlinear Sciences. 2024.
Vol. 9. Issue 1. P. 1-24. https://doi.org/10.2478/amns.2023.
2.01320 EDN: MTBMZX

7. Perrusquia A., Guo W, Fraser B., Wei Z. Uncover-
ing drone intentions using control physics informed
machine learning / Communications Engineering. 2024.
Vol. 3. Issue 1. P. 1-26. https://doi.org/10.21203/rs.3.rs-
3127372/v1

8. Kaszaxos JI.H., Kyoviuxun E.I1., Ianei /1.3. To-
CTPOCHHE ONMTUMATIBHOM CXeMbl HH()OPMAIMOHHOTO 00-
MEHa CHCTEMBl aJAlTHBHOTO YIPABICHUS ABMKCHHUEM
TpyIB OECIIIOTHBIX JIeTaTesIbHBIX anmaparoB // Mone-
JUpOBaHME M aHanu3 MH(pOpMaUMOHHBIX cucteM. 2023.
T. 30. Ne 1. C. 16-26. https://doi.org/10.18255/1818-1015-
2023-1-16-26 EDN: TOCUAE

9. Tomaxosa P.A., Qunucm C.A., bpescnesa A.H., ['op-
baues U.H., 3auxun A.O. MeTon v alTOpUTM aBTOHOMHOTO
TUIAaHUPOBAHUS TPACKTOPUH MOJIeTa OSCIUIOTHOTO JIeTa-
TEJIFHOTO armnapara npyu MOHUTOPHHIE MOXapHOH obcTa-
HOBKH B LIEJISIX PaHHEro 0OHAPY>KeHUs] UCTOYHHKA BO3TO-
panmsa // W3Bectus HOro-3amagHoro rocymapcTBEHHOTO
yauBepcurera. Cepusi: VYnpapieHWE, BBIUUCIHTEIIbHAS
TexHHKa, UH(popMaTrka. MeanImHCKoe IPUOOPOCTPOSHHUE.
2023. T. 13. Ne 1. C. 93-110. https://doi.org/10.21869/2223-
1536-2023-13-1-93-110 EDN: COTWER

10. Sembiring J., Sasongko R.A., Bastian E.I., Radi-
tya B.A., Limansubroto R.E. A Deep Learning Approach
for Trajectory Control of Tilt-Rotor UAV // Aerospace.
2024. Vol. 11. No 1. P. 96. https://doi.org/10.3390/aerospace
11010096 EDN: CDJAEF

11. Tang J.,, Xie N., Li K., Liang Ya., Chen X. Trajectory
Tracking Control for Fixed-Wing UAV Based on DDPG //
Journal of Aerospace Engineering. 2024. Vol. 37. Issue 3.
Article no. 04024012. https://doi.org/10.1061/JAEEEZ.
ASENG-528 EDN: JHDCBC

12. Kyauoa E.JI., Jlebeoes B.I Tlpobnemsl nipu npu-
MEHEHHH METOJOB MAIIMHHOIO OOy4eHHS B aBHAUUH //
VrpapneHue pa3BUTHEM KpyIHOMAcHITaOHBIX CHCTEM
(MLSD’2023) : tpyast XVI MexayHapoaHoi koHpe-
pennuu, Mocksa, 2628 centsops 2023 roma. Mocksa :
WuctutyT npobiem ynpasienus uMm. B.A. Tpane3nukopa
PAH, 2023. C. 1315-1321. https://doi.org/10.25728/mlsd.
2023.1315 EDN: RHPWHH

13. Manvieun Ji.C. MuKpocepBUCHAS apXUTEKTypa B
00JIaYHBIX CHCTEMaX: PUCKU U BO3MOXXHOCTH PUMEHECHHUS
B 20242030 rr. // MonenupoBaHue, ONTHMHU3AIUS U HH-
thopmarmonnsie TexHomoruu. 2024. T. 12. Ne 2. C. 29. https:/
doi.org/10.26102/2310-6018/2024.45.2.029 EDN: JGOZIT

15


https://doi.org/10.25728/mlsd.2023.1315
https://doi.org/10.1109/CCNC51664.2024.10454862
https://doi.org/10.3390/agriculture13020354
https://doi.org/10.58578/alsystech.v2i1.2267

Ermilov A.S., Saltykova O.A. RUDN Journal of Engineering Research. 2025;26(1):7-16

14. Han X., Zhao X., Xu X., Mei C., Xing W., Wang X.
Trajectory tracking control for underactuated autonomous
vehicles via adaptive dynamic programming // Journal of
the Franklin Institute. 2024. Vol. 361. No 1. P. 474-488.
https://doi.org/10.1016/j jfranklin.2023.12.003 EDN: HEEQAV

15. Fagundes-Junior L.A., de Carvalho K.B., Fer-
reira R.S., Branddo A.S. Machine Learning for Unmanned
Aerial Vehicles Navigation: An Overview / SN Computer
Science. 2024. Vol. 5. No. 2. P. 1-26. https://doi.org/10.1007/
$42979-023-02592-5 EDN: MXAHWC

16. Jleswcankun B.B., Epoxun B.B., Mamucos H.I1. Yiipas-
JIeHHe TpaeKTOopHeil mojera 6eCIMIOTHOIO JIeTaTeIbHOTO
anmapara IMpy pa3iuuyHON KOH(UIypalMd HCTOYHUKOB
HaBuraruonHoi mHpopmarmu // Crede Experto: TpaHc-
mopT, obmiecTBo, obpasoBanue, s3bIk. 2024. Ne 1. C. 113—
127. https://doi.org/10.51955/2312-1327 2024 1 113 EDN:
NSRDTA

17. Haque E., Hasan K., Ahmed I., Alam M.S., Islam T.
Towards an Interpretable Al Framework for Advanced
Classification of Unmanned Aerial Vehicles (UAVs) //
2024 1EEE 21st Consumer Communications & Networking

About the authors

Conference (CCNC). IEEE, 2024. P. 644-645. https://doi.org/
10.1109/CCNC51664.2024.10454862

18. Castro G.G.R., Berger G.S., Teixeira M.A.S., Cant-
ieri A., Lima J., Pereira A.l., Pinto M.F. Adaptive path
planning for fusing rapidly exploring random trees and
deep reinforcement learning in an agriculture dynamic
environment UAVs // Agriculture. 2023. Vol. 13. No. 2.
P. 354. https://doi.org/10.3390/agriculture13020354 EDN:
KEROLZ

19. Artemov A. Programming languages in data engi-
neering: overview, trends and practical application //
Innovation Science. 2023;10-2:9—13. EDN: LLGVKL

20. Apmemos A.A. Data contract B aHaTUTHUECKHX
CHCTeMax: OCHOBHBIC NPUHLMIIBI, NPaKTHYECKas I10JIb3a
u MeTozibl peanu3anny // BectHuk Hayku. 2023. Ne 12 (69).
C. 800-812. EDN: HUTTTS

21.Sahani S.K., Sah A.K., Jha A., Sahani K. Analy-
tical Frameworks: Differential Equations in Aerospace
Engineering // ALSYSTECH Journal of Education Tech-
nology. 2024. Vol. 2. No. 1. P. 13-30. https://doi.org/
10.58578/alsystech.v2i1.2267 EDN: NWEDOP

Alexander S. Ermilov, Postgraduate student of the Department of Mechanics and Control Processes, Academy of
Engineering, RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation; eLIBRARY SPIN-code:
8696-5057, ORCID: 0009-0007-4549-172X; e-mail: eemilov-sasha@yandex.ru

Olga A. Saltykova, PhD in Physical and Mathematical Sciences, Associate Professor of the Department of Mechanics
and Control Processes, Academy of Engineering, RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russian
Federation; eLIBRARI SPIN-code: 3969-6707; ORCID: 0000-0002-3880-6662; e-mail: saltykova-oa@rudn.ru

CaeneHusi 00 aBTopax

Epmunoe Anexcandp Cepzeesuu, actimpant xadeapsl MEXaHUKH M INPOLIECCOB YIpaBIICHUS, MHXECHEpHAs aKaJeMus,
Poccuiickuii yauBepcuteT npysx0bl HaponoB, Poccuiickas ®enepanust, 117198, r. Mocksa, yin. Mukinyxo-Makias, 1. 6;
eLIBRARY SPIN-kox: 8696-5057, ORCID: 0009-0007-4549-172X; e-mail: eemilov-sasha@yandex.ru

Canmuikoea Onvea Anexcanopogna, KauauaaT GU3MKO-MaTEMaTHUECKUX HAYK, JIOLEHT Kadeapbl MEXaHUKH U TIPOLIECCOB
yIOpaBJIeHUs, HHXXCHEpHAs akajgeMmus, Poccuiickuii yHHBEepCHTET ApYykObl HaponoB, Poccuiickas Penepanus, 117198,
r. Mocksa, yin. Muknyxo-Maxknast, 1. 6; eLIBRARY SPIN-kox: 3969-6707, ORCID: 0000-0002-3880-6662; e-mail:
saltykova-oa@rudn.ru


https://doi.org/10.58578/alsystech.v2i1.2267
https://doi.org/10.1109/CCNC51664.2024.10454862



