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critically examines the common structural failures in satellites, categorizing them by affected
components such as primary frames, joints, thermal shielding, and deployable mechanisms.
The study employs a comprehensive analysis of historical and recent failures, integrating
insights from case studies, experimental research, and advancements in materials science and
structural health monitoring. The findings highlight key failure mechanisms, including
material fatigue, vibrational stresses, and thermal degradation, and assess innovative solutions
such as smart materials and in-orbit repair techniques. By synthesizing current research and
industry practices, this review provides a systematic understanding of failure trends and
proposes future directions for improving satellite structural resilience. The insights presented
in this study aim to support the development of more robust satellite architectures, ultimately
contributing to safer and more reliable space missions.
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3asiBjieHUE O KOH(I)J'II/IKTC HHTEpeCcoB

ABTODBI 3a5BIISIIOT 00 OTCYTCTBUH
KOH(JIMKTa UHTEPECOB.

AHHoTanus. CyTHUKOBBIE KOHCTPYKIHH ITOJIBEPTaOTCS IKCTPEMaIbHBIM yCII0-
BUSIM Ha TPOTSHKEHHH BCETO CPOKA HMX OKCIUIyaTal[Md, BKIIOYas BBICOKHE
HArpy3KHd IPH 3aITyCKe, TEIUIOBbIC IUKIBI U YAaphl KOCMHYIECKOTO0 MycOpa, YTo
JIeTaeT UX YSI3BUMBIMH K CTPYKTYPHBIM OTKa3zaM. [loHHMaHue pHYXH, MOCIe-
CTBHUI U CTpATEerHil CHIDKCHHUS PUCKA TAKMX OTKAa30B UMEET PelIaroliee 3HAUYCHUE
JUISL TOBBIIICHU S HAAC)KHOCTHU CIIYTHUKOB U YCIICIIHOCTHU muccuii. B JaHHOM 06-
30pe KPUTHYECKU PAaCCMATPHBAIOTCS PACHPOCTPAHEHHBIC CTPYKTYPHBIE OTKAa3bI
CIyTHUKOB, KJIaCCH(HIUPYEMBbIE IO MOPAXKCHHBIM KOMITOHCHTaM, TAKUM KaK 0C-
HOBHBIC KapKachl, COCAMHEHHUS, TEIUIOBAsl 3all[MTa M pPa3BEepTHIBAEMBIC Mexa-
HU3MBL B mccrenoBaHuy MpoBOANTCS BCECTOPOHHHUIT aHANIN3 HCTOPHUYCCKUX H
COBPEMCHHBIX OTKAa30B C HHTErPaLHeil JaHHBIX U3 TEMAaTHYCCKUX UCCIICAOBAHUIA,
SKCHEPUMEHTAIILHBIX MCCIIEOBAHUM, a TAKXKe JOCTHKEHUI B 001acTH Marepua-
JIOBE/ICHHUSI © MOHHUTOPUHra CTPYKTYPHOH LENOCTHOCTH. Il0oNMydeHHbIe pe3yb-
TaThl BBISBIIIOT OCHOBHBIC MEXaHH3MbI OTKA30B, BKIIOUYAs yCTaJOCTh MaTepHa-
JIOB, BUOPAIIMOHHBIC HATPY3KH U TEILIOBYIO IETPAIALMIO, 8 TAKXKE JA0T OLCHKY
MHHOBALMOHHBIM PEIICHHUSM, TAKAUM KaK YMHBIC MAaTEPUAIIbl H TEXHOIOTHH Pe-
MOHTa Ha opOute. O6001Iasi COBPEeMEHHBIC MCCIIE0BAHUS U MPAKTHKH OTPACIH,
aBTOPbI CUCTCMATU3ZUPYIOT TCHACHIMU OTKA30B U IMpeAjiararoT NEpCreKTUBHBIC
HanpaBJICHUS [Jis TIOBBIIICHUSA yCTOI‘/’I'{I/IBOCTI/I CITYTHHUKOBBIX KOHCprKuHﬁ.
Pe3ysbTaThl HCCICOBAHNUS HAMIPABIICHBI HA pa3BUTHE OoJiee HAJACKHBIX CITYTHU-
KOBBIX apXUTEKTYP, YTO B KOHEYHOM HTOIE€ CIIOCOOCTBYET MOBBIICHUIO Oe301ac-
HOCTH U 3((HEKTUBHOCTA KOCMHYECKHX MUCCHIA.

KarwueBble ciioBa: CTPYKTYPHBIC OTKa3bl, MCXaHN3MbI OTKa3a, MaTCPHUaJIOBCAC-
HHUEC, MOHUTOPHUHI' COCTOSAHUSA, CTPATCTUN CHMXKCHUA PUCKOB
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Introduction

range of mechanical, thermal, and environmental
stresses both during launch and in orbit [2].

The need for durable and reliable satellite
structures has grown significantly with the rise of
commercial space initiatives, Earth observation
missions, and space exploration programs [1].
Satellites must be engineered to withstand a wide
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Despite advancements, structural failures continue
to be a major risk, often resulting in reduced
functionality or mission loss. This study provides
a comprehensive overview of common failure
modes in satellite structures and examines their
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causes, effects, and mitigation strategies. This
review synthesizes the findings from both industry
and academia, focusing on failure mechanisms and
design approaches that enhance the robustness of
satellite structures.

1. Overview of Satellite Structural
Components

Satellite structures include primary and sec-
ondary elements, each tailored for specific roles
and designed to withstand unique stresses [3; 4].
The key structural components include the follow-
ing:

Primary Frame (PF): This part provides the
fundamental rigidity and load-bearing structure for
the satellite [3].

Secondary Structures (SS): These support
critical subsystems such as thermal control, pro-
pulsion, and payload interfaces.

Deployable Mechanisms (DM): This includes
solar panels, antennas, and other extendable ele-
ments that activate post-launch.

Thermal Shielding and Insulation (TSI):
Layers designed to manage extreme temperature
changes.

Each of these components has distinct design
requirements and associated failure risks owing to
the environmental and operational factors. Figure 1
shows the satellite structural components with
personal wireless communications [5].
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Figure 1. Diagram of satellite structural components
Source: made byR. Perez [5]

2. Common Causes of Structural
Failures in Satellites

2. 1. Vibrational and Acoustic Loads
During Launch

The launch phase subjects satellites to high
levels of vibration and acoustic energy [6—8].
These forces often lead to structural fatigue and
even catastrophic failure in sensitive areas such as
joints and fasteners [9; 10]. Research has shown
that vibrational frequencies experienced during
launch can amplify stresses in weak points of the
satellite structure, leading to fractures and deta-
chment. Figure 2 demonstrates the vibration and
acoustic testing of the JUPITER 3 satellite [11].

Figure 2. The vibration and acoustic
testing on the JUPITER 3 satellite
S ource: by Hughes. Available from:
https://www.hughes.com/resources/insights/inside-hughes/
theres-whole-lot-shakin-going-jupiter-3-undergoes-vibration-and
(accessed: 18.03.2025)

2.2. Thermal Stresses Due
to Orbital Environment

Satellites are exposed to extreme thermal
cycling between the sunlit and shaded sides of the
Earth, causing materials to expand and contract
repeatedly [11; 12]. Thermal cycling can degrade
composite materials, lead to adhesive breakdown,
and create microcracks in metals and polymers [13],
particularly in Low Earth Orbit (LEO) [14; 15].
A schematic of the thermal exchange between
a space-craft and the space environment is pro-
vided below [16], (Figure 3).
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Figure 3. Thermal exchange between spacecraft
(solar array) and space environment
Source:byd.LiS.Yan, R. Cai[16]

2.3. Radiation-Induced Degradation

Radiation from solar and cosmic sources causes
material degradation, leading to embrittlement
and reduced structural integrity over time [17; 18].
Studies on polymer degradation and metal em-
brittlement indicate that radiation exposure signifi-
cantly shortens the lifespan of structural materials
used in satellite construction [19; 20].

2.4. Micrometeoroid and Orbital Debris Impacts

Micrometeoroids and space debris represent
constant hazards in orbit, especially in LEO [21;
22]. Even small impacts can lead to pitting and
localized structural damage, compromising shield-
ing and initiating fatigue. Figure 4 shows the front
and rear sides of the impact feature on a solar array
[23]. In this figure, the diameter of the opening on
both sides is approximately 5 mm, whereas the
central hole has a diameter of 0.5 mm.

2.5. Manufacturing and Assembly Anomalies

Manufacturing inconsistencies and assembly
errors contribute to structural vulnerabilities.
Defects in welding, material inconsistency, and
improper alignment can manifest as significant
structural issues during the operational lifetime of
satellites [24; 25].

3. Types of Structural Failures
in Satellite Components

3. 1. Frame and Panel Failures

The frame and panels form the primary load-
bearing structure of a satellite. Failure modes
include:
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Figure 4. Front and rear sides of impact
feature on HST solar array
Source: byG. Drolshagen [23]

# Buckling and Cracking: Occurring under high
mechanical loads, especially during launch [26; 27].

¢ Corrosion: In LEO, exposure to atomic oxy-
gen causes the surface degradation of metal and
polymer-based components [28—-30].

3.2. Joint and Fastener Failures

Joints and fasteners play a crucial role in main-
taining structural integrity [31]. Common failures
include the following:

® Thermal expansion discrepancies: Caused
by different expansion rates in dissimilar materials,
which can weaken the joints over time.

¢ Cold welding: In a vacuum environment,
metals can bond unintentionally, leading to potential
joint failures.

3.3. Deployable Mechanism Failures

Deployable structures such as solar arrays and
antennas face unique challenges:

* Stuck deployments: Due to binding from debris
or thermal distortions.

¢ Spring and hinge fatigue: Resulting from
thermal cycling leading to impaired deployment
capabilities.
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3.4. Thermal Shielding and Insulation Failures

Thermal management systems are crucial for
satellite operation. Failure modes include:

® [nsulation degradation: Particularly for
multi-layer insulation exposed to prolonged radiation
[32; 33].

¢ Micro-Cracking: In thermal layers due to
extreme expansion and contraction.

4. Case Studies of Structural Failures
in Satellite Missions

4.1. ISS Solar Array Deployment Anomaly

The 2007 tear in the ISS solar array was attri-
buted to fatigue in the deployment mechanism
[34]. This case highlighted the importance of
material durability in deployable structures and led
to the integration of stronger and more resilient
materials in later designs.

4.2. Envisat Gyroscope Mount Failure

The Envisat mission experienced a gyroscope
mount failure, largely due to an under-designed
mounting bracket. This case demonstrated the need
for robust mounting mechanisms for sensitive
instrumentation.

4.3. Orbcomm- 1 Series Vibration Damage

The Orbcomm-1 satellites suffered structural
damage owing to insufficient vibrational damping
during launch. Since then, enhancements in damp-
ing mechanisms have been implemented to mitigate
similar risks.

5. Mitigation Strategies and Emerging
Technologies

5. 1. Advanced Materials and Coatings

In this particular application, research into
advanced composites and coatings aims to increase
resistance to radiation and thermal cycling:

¢ Carbon Fiber Composites (CFC): This type
of composite is used for primary structures owing
to its strength-to-weight ratio [35].

# Radiation-Resistant Polymers (RRP): They
are used to prevent embrittlement and maintain
material integrity over extended missions [36—38].

5.2. Enhanced Testing and Simulation Techniques

It is imperative that vibrational and thermal
testing be conducted under realistic conditions:

® Accelerated Thermal Cycling Tests (ATCT):
It simulates orbital conditions to predict long-term
material performance [39].

® Finite Element Analysis (FEA): It helps
anticipate the points of failure under various load
scenarios [40—44].

5.3. Real-Time Structural Health Monitoring

Incorporating sensors and diagnostic tools
allows for real-time monitoring:

¢ Embedded strain gauges: These are generally
used to detect stress points and initiate predictive
maintenance.

& Sensor-Based predictive maintenance. Data-
driven models use health monitoring to proactively
schedule maintenance or adjustments [45; 46].

5.4. Reinforcement of Joints And Fasteners

Material selection and thermal compatibility
improvements enhance joint performance:

& Thermally compatible alloys: 1t prevents
cold welding and differential expansion in joints.

¢ mproved fastener designs: These were de-
veloped to resist both vibrational and thermal cycling
stresses.

6. Future Directions in Satellite
Structural Design

Emerging research in adaptive structures and
self-healing materials shows promise for reducing
the impact of micrometeorite damage and thermal
stress. Additionally, Al-driven simulations and
autonomous health-monitoring systems are expected
to play a pivotal role in satellite design, enabling
smarter and more resilient structures for long-term
missions.

Conclusion

This study critically examined the common
structural failures in satellite systems, focusing
on their causes, effects, and mitigation strategies.

131



Reza Kashyzadeh K., Kupreev S.A., Samusenko O.E. RUDN Journal of Engineering Research. 2025;26(2):127-134

The research employed a comprehensive review of
historical and recent satellite failures, integrating
case studies, experimental findings, and advance-
ments in materials science and structural health
monitoring.

Through this analysis, we systematically in-
vestigated the key structural failure modes, includ-
ing vibrational stresses during launch, thermal
cycling effects in orbit, radiation-induced degra-
dation, and micrometeoroid impacts. The study
further evaluated failure-prone components, such as
primary frames, joints, thermal shielding, and de-
ployable mechanisms.

The findings highlight several advancements
that can enhance satellite resilience. Notably, the
adoption of carbon fiber composites, radiation-re-
sistant polymers, and thermally compatible alloys
has shown promise in mitigating structural degra-
dation. Additionally, enhanced testing techniques,
real-time structural health monitoring, and improved
fastener designs have contributed to reducing failure
risks.

By synthesizing current knowledge and emerg-
ing technologies, this study provides valuable in-
sights for the development of more robust satellite
structures. The proposed advancements aim to
enhance the reliability and longevity of space
missions and ensure improved performance under
extreme environmental conditions.
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