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HcTopust cratbu AnHortauus. [IpencraBieH MOAU(UIIMPOBAHHBIA AITOPUTM PELICHUS 3a7a4u
COMKEeHU KOCMHUUYECKHUX allapaToB Ha OKOJIOKPYroBoi opoure. Paccmorpen
pacdeT napaMeTpoB MaHEBPA, BHIIOIHAEMOT0 Ha HECKOJIBKHUX BUTKAaX C UCTIOJb-
30BaHMEM JIBUI'aTeIbHOW yCTaHOBKU Majioi Taru. [Ipeamnonaraercs, 4To akTHB-
HBIH KOCMHUYECKHH anmapar BBITIOJIHSAET MaHEBPHI B Mpeeax 3aJaHHoi o0ma-
CTH BOKPYT LI€JIEBOr0 KOCMUYECKOT0 arrapara, Ipyu 3TOM BO3MYIIAIOIIUMHU 3¢]-
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3asiBienue 0 KOH(UIMKTE HHTEPECOB (eKTaMi HElEHTPAIBHOCTH TPABUTAIMOHHOIO MOJIs 3eMIIM M aTMOC(EPHOTOo
ABTOpBI 3asIBISIOT 06 OTCYTCTBUH COTIPOTHBIIEHHUS TIPEHEOPETaroT. [l pelnenus 3a1a49n COMMmKEHNs UCTIONb30-
KOH(THKTA HHTEPECOB. BaHBI XOPOIIIO 3aPEKOMEHI0BABIIHE Ce0s1 TPUOIIKEHHBIE MATEMATHIECKUE MO-

JeTH BIDKSHUS] KOCMHYECKOTo ammapara. MeToIoIorusl onpenesieHns napa-
METPOB MaHEBPOB CTPYKTYPHPOBaHa Ha TPH KITIOYEBBIX ATAIa: Ha IEPBOM U Tpe-
TBEM HTaIax MapameTphl IMITYJIbCHOM IIepeadn i epeaadn MaJIoOH TATH orpe-
JIEIISFOTCSI C MCTIOJIb30BAHUEM aHAJIMTHYECKUX MeTo0B. Ha BTOpoM »Tame ma-
HEBPBI PaCHPEeNIIOTCS MY JOCTYITHBIMH TIOBOPOTAMH, YTOOBI 00ECTIeUnTh
yCIenHoe cOMMmKeHre 3a CueT MUHUMU3AIMK BHIOPAHHON YIIPaBIIsIoLIe nepe-
MeHHOM. [IpemnaraemMplii MOIX0A OTJIMYAETCS CBOCH BhIYHCIUTENbHOU 3D dek-
TUBHOCTBIO M HaJIe)KHOCTBIO, YTO JIEJAET €ro MPUTOJHBIM JUIst OOPTOBOM pea-
JU3alUH B ABTOHOMHBIX HABUT'ALIMOHHBIX CHCTEMaX KOCMHUYECKUX amNapaToB.
B kauecTBe npumepa B CTaThe aHAJIM3UPYETCS 3aBUCUMOCTb CYMMAapHO# Xapak-
TEPUCTHYECKOH CKOPOCTH, HEOOXOIUMOHN Ul CONMVDKEHUS, OT BEIMUIHNHBI TATH
JBHUTATEIs ¥ IPHUBOIUTCS CPAaBHUTEIbHAS OLIEHKA CYMMapHOH XapaKTepHCTHYe-
CKOM CKOPOCTHU KaK IJid CHUCHAapUEB UMITYJIbCHOI'O MAaHEBPHUPOBAaHUsI, TaK U JJId
MaHEBPUPOBAHUS C MAJION TATOM.
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Introduction

The rendezvous of spacecraft (SC) in near-
circular orbits is a highly intricate and technically
demanding problem in astronautics. Its complexity
arises from the interplay of nonlinear orbital dyna-
mics, gravitational perturbations, and control con-
straints, all of which must be carefully managed to
achieve mission success. The precise execution of
spacecraft rendezvous is fundamental to a wide
range of space operations, including satellite ser-
vicing, space station resupply, and autonomous
docking maneuvers.

The choice of methodology for spacecraft ren-
dezvous is strongly influenced by mission-specific
objectives, which can vary significantly depending
on operational requirements. These objectives
dictate the selection of optimal control strategies,
trajectory planning techniques, and guidance algo-
rithms, all of which must balance fuel efficiency,
time constraints, and navigational accuracy.

As advancements in space technology continue
to push the boundaries of autonomous operations,
the development of robust and efficient rendezvous
strategies remains a critical area of research in
astronautics. For instance, the trajectory optimi-
zation strategies used for SC rendezvous in near-
circular orbits differ fundamentally from those
applied in atmospheric observation missions.
These disparities arise from variations in space-
craft modeling and the corresponding control system
architecture.

In the realm of commercial and operational
spaceflight, SC rendezvous problems exhibit notable
similarities. While fundamental rendezvous algo-
rithms have been developed and successfully
implemented, continuous refinement is necessary
to enhance their precision and efficiency. Typically,
rendezvous operations involve two spacecraft:
an active vehicle executing maneuvering proce-
dures and a passive target following a free-flight
trajectory. This paper aims to propose a modified
algorithm for optimizing spacecraft rendezvous in
near-circular orbits, ensuring maximum efficiency
and accuracy while adhering to operational con-
straints.

The problem of spacecraft rendezvous in near-
circular orbits using low-thrust propulsion is of

critical importance in contemporary spaceflight.
It plays a fundamental role in various applications,
including coordinated spacecraft formations,
satellite constellation deployment, active debris
removal, and on-orbit servicing missions. Since
the mid-20th century, electric propulsion systems
have been extensively employed due to their high
specific impulse, which significantly reduces pro-
pellant consumption rate for orbital maneuvers.
However, the inherently low thrust of these systems
results in prolonged maneuver durations, which
must be meticulously accounted for in mission
planning and control strategies.

Optimal low-thrust maneuvering has been ex-
tensively investigated in previous studies [1-12].
Of particular relevance are the contributions in
[3—7], which address trajectory optimization under
stringent constraints. Due to the mathematical com-
plexity of low-thrust trajectory planning, numerical
approaches based on Pontryagin’s Maximum
Principle and the continuation method have been
traditionally employed. More recently, interior point
methods [8] have gained prominence, demonstrat-
ing efficacy in solving largescale maneuvering
problems.

Over the past two decades, spacecraft rendez-
vous has remained an active field of research [3-5;
9; 10]. Initial studies predominantly focused on
high-thrust rendezvous strategies in near-circular
orbits [11; 12], successfully addressing short-
duration rendezvous (within three orbital revolut-
ions) and classical mid-term rendezvous scenarios
in coplanar circular orbits. Given the evolving
landscape of space operations, continued advance-
ments in rendezvous algorithms are essential to
support emerging mission architectures and
operational requirements.

Currently, the problem of multi-impulse space-
craft maneuvers remains one of the central chal-
lenges in astrodynamics, requiring the development
of increasingly efficient and reliable computational
methods. Due to the inherent complexity of this
problem, contemporary approaches typically adopt
a multi-stage resolution framework that combines
analytical and numerical techniques.

The primary difficulty in formulating and
solving these problems arises from the need to
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model space trajectories under multiple dynamic
and operational constraints. To address these
challenges, various algorithms have been proposed
to decompose the solution into structured steps, as
demonstrated in studies [13-21].

Analytical methods, as presented in [13-17],
are widely used to solve orbital maneuvering and
orbital plane rotation problems independently.
Although this approach may lead to an increase
in the total characteristic velocity required for
maneuvers, it is advantageous due to its simplicity
and operational reliability.

Additionally, numerical methods have been
employed to determine optimal solutions in highly
complex multi-impulse scenarios, taking into
account specific constraints, as detailed in [18;
19]. The authors of [20; 21] developed efficient
algo-rithms for maneuver parameter calculations,
which are widely used due to their accuracy and
applicability.

An alternative based on solving Lambert’s
problem was presented in [21]. In this approach,
the parameters corresponding to a two-impulse
trajectory are initially determined, followed by
an analysis of the behavior of the hodograph of
the base vector associated with the solution. If ne-
cessary, additional velocity impulses are introduced
to refine the trajectory and ensure an optimized
solution.

Finally, the studies [4; 22] propose hybrid
numerical-analytical methods for solving multi-
impulse rendezvous problems, aiming to effectively
address contemporary practical challenges. These
approaches integrate the principles established in
previous studies [13-21], providing a more com-
prehensive solution adapted to the demands of
modern astrodynamics.

This paper presents a modified algorithm with
enhanced capabilities for addressing the rendezvous
problem of two SC in near-circular orbits under
low-thrust propulsion. The proposed modification
of this algorithm aims to overcome the limitations
of existing methods, which often fail to obtain
viable solutions in low-thrust regimes, as demon-
strated in study [9]. With the implemented improve-
ments, it becomes possible to successfully execute
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maneuvers even under minimal thrust conditions,
thereby expanding the algorithm’s applicability.

In this study, the SC rendezvous problem is
analyzed both from the perspective of impulsive
maneuvers and considering the continuous opera-
tion of low-thrust propulsion systems. In contrast
to previous studies [3—6; 9], which employed diffe-
rent strategies for solving the rendezvous problem
in coplanar orbits, the proposed algorithm offers
a more comprehensive approach, being applicable
both in ground-based control centers and onboard
satellites, thus enabling greater operational auto-
nomy.

Various specialized mathematical models are
used to describe the relative motion of spacecraft
in near-circular orbits. One of the most widely
employed is the Hill-Clohessy-Wiltshire (HCW)
model [23; 24], which assumes that the separation
between SC is small compared to the orbital
radius. However, in this study, we adopt an alter-
native linearized formulation derived in [25], which
provides greater accuracy and applicability for
maneuver planning in low-thrust regimes.

With the increasing number of SC and the
growing demand for real-time problem-solving,
there is a significant shift toward onboard com-
putation of maneuver parameters. This necessitates
the development of computationally efficient and
highly reliable algorithms. The proposed method
meets these requirements, ensuring computational
robustness and enhancing the feasibility of auto-
nomous execution of orbital maneuvers.

1. Mathematical Formulation
of the Rendezvous Problem

The maneuver planning for a spacecraft trans-
ferring between two closely spaced near-circular
orbits is analyzed within the framework of unper-
turbed Keplerian motion. The problem is approached
using an approximate impulsive model, where the
trajectory is discretized into N velocity impulses
applied over a predefined time horizon. By em-
ploying a linearized approximation, the conditions
governing the transition from an initial orbit to
a target coplanar orbit can be expressed as follows
[26; 27]:
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AV, sina, +2AV, cosa, +...+

+AV, ysinay +2AV,y cosay =Ae,; (1)

—AV,;cosa, +2AV, sina, +...—

—AV,ycosay +2AV,ysinay =Ae,;  (2)

AV, +AV,, + AV +...+
+...+AV,y =Aal2; 3)

20V, (1-cosoy )+ AV, (30, +4sino, ) +...+
+2AV,y (1-cosay )+

+AV,y (“3ay +4sinay ) = At 4)

where Aa:(af—ao)/ro, At = n, (tf —to),

AV, =AV* [ Vy, AV, =AV, 1V,

Here, ar and ao represent semi-major axes of
the orbits. The initial and final time is given by #
and t. The reference circular orbit, characterized
by a radius ro such that ro = a; imposes the
constraints Vo and no, which respectively represent
the orbital velocity and angular velocity of the
spacecraft’s motion. The maneuvering strategy
consists of N discrete velocity impulses, each
applied at an angle ¢; -measured from the line
connecting the spacecraft to the target point in the
direction of motion. The i-th velocity correction is

decomposed into its transverse AV; and radial

AV”.* components, each playing a critical role in
shaping the transfer trajectory.

The maneuver optimization problem is defined
as minimizing the total characteristic velocity AV
associated with the executed maneuvers:

AV =minY " AV, =min} " \JAVZ + AV
under restrictions (1)—(6).
2. Algorithm for Solving
the Rendezvous Problem

The rendezvous problem is solved based on
the resolution of the orbital transfer problem. To
achieve this, an algorithm presented in papers
[9; 27] is employed, where the authors assume that

the correction of the eccentricity vector and the
impulse application angles can be performed by
applying velocity impulses at optimal points along
the trajectory. The determination of these points is
formalized by the following expressions:
Ae,
8% = Ae.’

X

o, =0,, 0,=0,+T,
where ok is the angle defining the optimal direction
for correcting deviations in the eccentricity vector.
The optimization conditions result in three
distinct categories of solutions, as presented in
[4; 27]. The optimal impulse magnitudes can be
obtained from the analysis of the first three equa-
tions of system (1)—(4), following the approach
described below:

AV, =(Aa+Ae)/ 4 5)
AV,, =(Aa—Ae)/ 4. (6)

Once the optimal impulse magnitudes are
determined, they will be used as initial approxi-
mations to solve the rendezvous problem. Sub-
sequently, the velocity impulses AVn and AVz are
distributed over the N available orbital revolutions
designated for maneuver execution [9; 27]:

AVlt:AVm"—AVltz""--"'AVItN; 7
AV, =AVyy + AV +. A AV (8)

The next goal is to determine the distribution
of velocity impulses over the turns in a manner that
satisfies equation (4). We will adopt a significant
simplification, assuming that the wvariation of
velocity impulses over the turns occurs linearly to
make the analysis more tractable, that is, allowing
the approximation to reduce the complexity of the
meeting problem:

AVlzi =AVlt1 +(i_1)(AVltN _AVltl)/(N_l); (9)
AV, =AY, +(i_1)(AVZtN _AVZtl)/(N_l)- (10)

Therefore, substituting the values of the velocity
impulses determined using expressions (9) and (10)
into equations (7) and (8), we will obtain the follow-
ing equations:
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2AV;

AV === AV 3y
2AV.

AVyy = 2= AV, (12)
N

Consequently, substituting the obtained

values AV, ,,AV, , into equations (9) and (10),

we obtain:
AV =[2(i=1)AV; + N(N+1-2i)AV;, [/ N(N-1);  (13)
AV =[2(i=1)AV, + N (N +1-2i)AV,, [/ N(N=1).  (14)

Thus, we found the values of all velocity
impulses expressed only through AVin and AV2a.
Substituting them into equation (3), we obtain a

linear equation with two unknowns AV, ., AV, .

The coefficients of the velocity impulses are
known, since their angles of application are
known:

oy =0, +21(N, - N); (15)
Oy =0, + T+ 21(N; = N). (16)

By iterating the value of the variable AV},
within the specified interval, we determine the
corresponding value of the variable AV,,, for each

case based on equation (3).

Next, the values of all velocity impulses are
calculated based on equations (13) and (14). The
sum of the magnitudes of these impulses defines
the total characteristic velocity for each obtained
solution. The solution corresponding to the lowest
total characteristic velocity is considered the optimal
rendezvous trajectory. If the total characteristic
velocity of the selected solution matches that of the
transfer problem, it can be inferred that the tra-
jectory with the minimum achievable characteristic
velocity has been determined.

In the next step, the duration of each identified
maneuver is estimated using the following formula:

Ap, =L Ap, (17)
w

where ®, is the represents the centripetal accelera-

tion of the reference circular orbit, ® is the
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acceleration generated by the propulsion system,
m denotes the mass of the active SC, T is the thrust
of its engine.

If A@; <200 (the duration of the largest velocity

impulse), the solution can be considered approxi-
mately equivalent to an impulsive-based approach,
and the problem is considered resolved. However,
when the maneuver duration becomes significant,
the solution shifts to one that involves low thrust.

3. Solving the Problem With “Low Thrust”

The velocity impulses applied for each turn re-
sult, in a certain way, in the change in eccentricity
and semi-major axis, so to take these changes into
account we will use the following expressions:

Ae,=2AV,; —2AVy,:; (18)
Aa, =2AV,, +2AV)y,. (19)

Therefore, we calculate the necessary duration
of low-impulse maneuvers that will result in the
same change in these elements [25]:

o, Aa . o, Ae
Ag, = + 2arcsin ;
4on o, Aa
8wn cos
8wn
Aa . o, Ae
Ap, =———2arcsin S . (20)
4o o, Aa
8wncos| ———
8wn

Thus, the duration of each maneuver is
determined iteratively, turn by turn, ensuring the
successful resolution of the low-thrust problem. If
the arcsine argument exceeds unity, no feasible
solution exists under the given thrust constraints
and spacecraft mass for the specified number of
orbital turns.

The computed low-thrust solution exhibits a
similar evolution of the semi-major axis and ec-
centricity vector compared to the corresponding
impulsive transfer. Equation (4) is satisfied with
high accuracy, as the midpoints of the extended-
duration maneuvers coincide with the instants at



baparos A.A., Ommsuo A.[1. BectHuk PYOH. Cepusi: HxeHepHble nccnenosarus. 2025. T. 26. Ne 2. C. 113-126

which velocity impulses are applied in the impulsive
case. This alignment ensures a comparable modifi-
cation of the orbit’s major axis and guarantees
arrival at the designated rendezvous point within
the required timeframe.

However, the rendezvous problem has been
solved using linearized equations of motion, which
neglect perturbative effects such as the non-
centrality of the gravitational field, atmospheric
drag, and other external influences. Consequently,
the accuracy in satisfying the terminal conditions
defined in system (1)—(6) remains insufficient. To
enhance precision, an iterative correction scheme
may be necessary [18; 19].

Furthermore, the previously proposed algo-
rithm proved inadequate for rendezvous maneu-
vers involving spacecraft equipped with low-thrust
engines of very small thrust magnitude [9]. As the
thrust level decreases, the duration of certain critical
maneuvers extends beyond the required correction
time for the eccentricity vector. To mitigate this
issue, the duration of these maneuvers is con-
strained to the upper bound at which the eccentri-
city correction remains maximized (180° change),
while increasing the number of intermediate
maneuvers. If these adjustments do not sufficiently
impact the arrival time at the rendezvous point, an
additional velocity impulse can be introduced at
a specific orbital position. To compensate for the
residual trajectory deviation at the rendezvous point
in the absence of impulsive corrections, we sub-
tract the effect of pre-defined discrete impulses
(typically 4, 5, or 6, depending on their influence
on the final arrival time). This approach ensures
amore precise alignment with the target conditions
while maintaining the feasibility of the low-thrust
transfer strategy.

4. Algorithm for Solving the Meeting
Problem When Fixing Velocity Impulses

The formulated rendezvous problem uses an
algorithm that consists of the following stages:

1. For long-term maneuvers, we calculate how
fixed (N impulses) maneuvers on the outer turns
change the eccentricity and major semi-axis;

2. Then we solve the transfer problem for the
remaining misses in eccentricity and major semi-
axis;

3. We calculate the change in arrival time due
to the influence of N impulses;

4. Then we distribute two new calculated
velocity impulses between the remaining turns to
correct the time miss remaining after the fixed
impulses;

5. We determine the change in eccentricity
and major semi-axis on each turn;

6. We take into account the duration of maneu-
vers;

7. If the new internal impulses are also greater
than the permissible value, then the procedure is
repeated, new fixed velocity impulses appear;

8. We calculate the total costs.

5. Examples of Solving the Coplanar
Rendezvous Problem When Recording
Velocity Impulses

Let us analyze the motion of a SC relative to
a reference point O, which follows a near-circular
orbit of radius 6871 km around the Earth, under the
assumption of an unperturbed gravitational field.
The Earth’s gravitational parameter is taken as
3.9860044-1014 m*/s®. The objective is to resolve
the problem of a flight, where the spacecraft
performs N velocity impulses within a fixed time
interval to transition from an initial orbit to a target
location in phase space. The initial conditions are:
ro=(10, 100, -5) km and vr= (0, 0, 0) m/s with the
goal of reaching the origin of the reference frame,
i.e., rr= (0, 0, 0) km and vr= (0, 0, 0) m/s in the
tenth turn N=10. The spacecraft has an initial mass
of 1000 kg, and its propulsion system operates
with a specific impulse of 220 s, corresponding
to an effective exhaust velocity of 2157.463 m/s.
The thrust magnitude varies within the range 0.19
to 0.362 N.

Table 1 presents the parameters of the coplanar
transition maneuvers, where the first velocity
impulse is braking, and the second is accelerating.
This occurs because the orbits intersect.

When addressing the rendezvous problem, the
velocity impulses were not only distributed across
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the turns, as shown in Figure 1, but also optimized
with respect to a single parameter, ensuring com-
pliance with the time constraint.

Solution to the problem with low thrust:

In certain instances, the previous solution algo-
rithm is unavailable because the argument of the
arcsine falls outside the range (—1; 1). Additionally,
as thrust increases, the maneuver duration dec-

—o— AV) (m/s)
0.6 1 —m— AV, (m/s)
—— |AV] (m/s)

Velocity impulses (m/s)

2 2 6 8 10
Turns
Figure 1. Distribution of the two-impulse

optimal maneuvers by turns
Source: made by A.A. Baranov, A.P. Olivio

reases, and the total velocity costs for the low-
thrust solution with thrust entrainment align with
those of the impulse-based solution. Table 2 shows
the correction of eccentricity and semi-major axis
using velocity impulses for each turn.

After correcting the orbital elements, Table 3
shows the calculated results for the problem with
low thrust (7= 0.362N) for N = 10.

Table 1

Results of the calculation the parameters
of coplanar transition maneuvers

AVim/s | |AV|m/s | |AV|m/s | o o’ o’

e

-2.785 1.7 4.485 6.4 186.4 | 366.4

S ource: made by A.A. Baranov, A.P. Olivio

Table 2

Results of the correction of eccentricity
and semi-major axis by turns

N Ae, (10‘4) Aa,, (10—4)
1 -0.5492 0.5485
2 -0.6888 0.3633
3 -0.8285 0.1781
4 -0.9682 -0.00711
5 -1.108 -0.1923
6 -1.248 -0.3775
7 -1.387 -0.5627
8 -1.527 -0.7479
9 -1.667 -0.9331
10 -1.806 -1.118

Source: made by A.A. Baranov, A.P. Olivio

Table 3
Results of calculation of the problem with low thrust “7=0.362 &’ for N=10

N AV, m/s AV, m/s |AV|m/s Ao’ A@,,” |Ag|

1 -0.002 0.211 0.213 -0.342 36.991 37.333
2 -0.064 0.202 0.266 -11.166 35.44 46.606
3 -0.126 0.193 0.319 -22.044 33.944 55.988
4 -0.188 0.186 0.374 -33.029 32.554 65.583
5 -0.252 0.179 0.431 -44.173 31.324 75.497
6 -0.317 0.173 0.49 -55.54 30.317 85.857
7 -0.383 0.169 0.552 -67.2 29.602 96.802
8 -0.452 0.167 0.619 -79.237 29.265 108.502
9 -0.523 0.168 0.691 -91.758 29.412 121.17
10 -0.598 0.172 0.77 -104.902 30.181 135.083
> -2.903 1.818 4.721 -509.392 319.029 828.421
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It can be stated that with such a thrust the
problem is solved optimally and the introduction
of fixed impulses is not required.

Further, in order to move to an algorithm with
fixed maneuvers, it is necessary to solve the
problem with such a low thrust that impulses appear
greater than the permissible value. However, we are
interested in solutions with a thrust of 0.24, 0.22,
0.21, 0.2 and 0.19 N, and thrusts less than 0.19 N
are not interesting.

Figure 2 presents the results of calculating the
problem with low thrusts for 7= 0.24, 0.22, 0.21,
0.2,0.19 N.

It can be seen that there is no solution, since
the first maneuver is larger than permissible.

We can observe the evolution of the velocity
impulses and durations of the maneuvers at the
different thrust levels. With the increase in thrust,
the velocity impulses and durations of the
maneuvers in the last turns will not exist (this is
visualized in the Figures of levels 2 to 5). In these
same figures we can observe the reduction of the
values of N, in reality there was no reduction, but
rather the non-existence of the values of the
velocity impulses and duration of the maneuvers in
the last turns.

Next, we take one of the solutions presented
in Figure 2 and transform it into a solution with
fixed impulses. We fix the impulses on the last
turn. The duration of the first impulse on the turn
is —180 degrees, and the duration of the second
impulse is 72 degrees. It is necessary to calculate
and present in the table the influence of these
impulses on the difference in the orbital elements
(OE), compare the values of the orbital elements
before and after the maneuvers are performed.
After that, the standard algorithm for the first
9 turns presented in [9] can be applied.

Table 4 presents the orbital elements (eccent-
ricity, semi-major axis, and flight time) before and
after applying these fixed impulses. It is important
to note that, to calculate the parameters for co-
planar transfer maneuvers, new orbital elements
must be calculated from the initial orbital elements.
Here and everywhere, deviations (Aa and A¢) will
be presented in dimensionless variables. Afterward,

we need to multiply by 7o and Ao to convert them
back to original units. These updated values will
be defined in Table 5, and so on.

Table 4
Difference of orbital elements
Orbital Difference
elements (OE) OE, OE, of OE
Ae,(1074) -1.806 | -1.655 | -0.151
Aay,(107*) | -1.118 | -09823 | -0.1357
A, (107) 12 ~151 | -0.1049

Note: OE,; = Orbital elements before impulse fixation
and OE, = Orbital elements after impulse fixation.

S ource: made by A.A. Baranov, A.P. Olivio

Table 5

Results of calculation of parameters
of coplanar transfer maneuvers

AVym/s

AV, m/s

|AV|m/s

-2.283

1.572

3.855

Source: made by A.A. Baranov, A.P. Olivio

Subsequently, the changes in eccentricity and
the semi-major axis for each turn are determined to
satisfy the spacecraft's flight time condition, with the
results presented in Table 6.

Table 6

Results of the correction of eccentricity
and semi-major axis by turns

N Ae, (10*4) Ay, (10*4)
1 -0.499 0.4983
2 -0.6554 0.3219
3 -0.8119 0.1454
4 -0.9683 -0.0311
5 -1.125 -0.2074
6 -1.281 -0.3838
7 -1.438 -0.5603
8 -1.594 -0.7368
9 -1.75 -0.9132
10 -1.655 -0.9821

Source: made by A.A. Baranov, A.P. Olivio

Figure 3 shows the parameters of the optimal
solution to the meeting problem for N = 10.

121



Baranov A.A., Olivio A.P. RUDN Journal of Engineering Research. 2025;26(2):113-126

Velocity impulses (m/s) Velocity impulses (m/s) Velocity impulses (m/s)

Velocity impulses (m/s)

10O o Avy, (mys) P
-
—m- AVy; (m/s) e 200
_-A _
0751 —4- |av| (mys) — =
- -4 3
_— E 100
0.50 e =4 i
—T £
—— = o
0.25 A = SR 2
ettt SEEter e A S et 3
3
H]
0.00 2 -100
-0.25 4 -200
2 4 6
Turn
-0.50 4
-0.75 4
2 4 6 8 10
Turn
—— AVy; (m/s) _A
087 me avy (ms) T 200
- [av] (m/s) et
0.6 l 4 £
- e
r,/«"' E 100
0.4 — = - %
T g
‘.—_-r__’_" g ] 5 o
0.2 1 P - P === —— -—— 5
g
a
0.0 A -100
-0.2 1
1 2 3 4 5
-0.4 1 Tum
—0.6 4
1 2 3 4 5 6 7 8 9
Turn
1.0 300
—o— AVy; (m/s) A
7
0.8 1 —m- AV (m/s) (,/ 200
- [av] (m/s) P c
—~
0.6 — g
=
_.—¥ 3 100
e 2
0.4 = e 5
i O I
02 #===mn .- - o i p-m=== - $
3
E]
0.0 1 8 -100
—-0.2 4 =200
1 2 3 4 5
—0.4 Turn
~0.6 -
1 2 3 4 5 6 7 8 9
Turn
—o— AVy; (m/s) /.0
1001 L Ay (ms) va 300
%
- 1av] (mys) . _
0.75 4 a1 ,/( ‘; 200
H
3
0.50 - 2 100
]
E
0.25 4 g °
£
0.00 - & -100
=200
-0.25 4
: 2 3 a 5
-0.50 4 Tum
-0.75 4

122

-

©

Turn

Figure 2. Results of calculation of the problem with low thrust for =10
S ource: made by A.A. Baranov, A.P. Olivio



baparos A.A., Ommsuo A.[1. BectHuk PYOH. Cepusi: HxeHepHble nccnenosarus. 2025. T. 26. Ne 2. C. 113-126

Source:made by A.A. Baranov, A.P. Olivio
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Figure 2. Results of calculation of the problem with low thrust for N= 10 (continuation)
S ource: made by A.A. Baranov, A.P. Olivio
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Figure 3. Distribution of the two-impulse optimal maneuvers
by turns for the rendezvous problem
S ource: made by A.A. Baranov, A.P. Olivio
Table 7
Results of calculation of the problem with low thrust “7=0.22 A’ for N=10
N AVym/s AV, m/s |AV|m/S AQ;; AQ, |Ag
1 -0.004 0.194 0.198 -1.1383 55.898 57.031
2 -0.067 0.19 0.257 -19.414 54.786 74.2
3 -0.132 0.187 0.319 -37.966 53.945 91.911
4 -0.198 0.186 0.384 -57.068 53.654 110.722
5 -0.267 0.188 0.455 -77.076 54.269 131.345
6 -0.341 0.195 0.536 -98.493 56.293 154.786
7 -0.423 0.21 0.633 -122.144 60.551 182.695
8 -0.519 0.238 0.757 -149.693 68.707 218.4
9 -0.645 0.297 0.942 -186.245 85.866 272111
10 -0.623 0.249 0.872 -180 72 252
) -3.219 2.134 5.353 -929.232 615.97 1545.202
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As shown in Figure 2, no solution was found
for the tenth turn, as the maneuver durations
exceeded the permissible limit. However, after
applying the new algorithm, the results presented
in Table 7 show that a solution for the tenth turn is
now available. This indicates that the algorithm
was successful.

Conclusion

The paper proposes a modified algorithm for
calculating the parameters of a multi-turn rendez-
vous. The main advantage of the proposed algo-
rithm is its simplicity and reliability, which allows
it to be used not only in ground control centers, but
also on board a spacecraft. At the same time, this
modification of the algorithm for calculating the
parameters of a multi-turn rendezvous allows us
to obtain a solution to the problem at low thrust.
The examples given in the article confirm the oper-
ability of this modified algorithm and the high
quality of the resulting solution. Furthermore, the
algorithm’s ability to adapt to varying mission
conditions, such as changes in thrust or trajectory,
demonstrates its versatility and potential for broa-
der applications in future space missions. This en-
hancement could significantly contribute to improv-
ing mission efficiency and accuracy, particularly
for long-duration spaceflights requiring precise
maneuvering.
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