Проседание протезов тел позвонков при опухолях позвоночника: систематический обзор литературы

Обложка

Цитировать

Полный текст

Аннотация

Актуальность. Протезирование тел позвонков является одним из ключевых методов хирургического лечения опухолевых поражений позвоночника. Одним из наиболее распространенных его осложнений является проседание протеза тела позвонка.

Цель обзора — сравнить частоту проседания различных типов протезов тел позвонков при хирургическом лечении опухолевых поражений грудного и поясничного отделов позвоночника для определения оптимальных методов реконструкции позвоночного столба у пациентов с опухолями позвоночника.

Материал и методы. Проведен систематический обзор литературы в соответствии с рекомендациями PRISMA. Поиск осуществлялся в базах данных PubMed, Google Scholar и eLIBRARY. Были включены исследования, посвященные протезированию тел позвонков при опухолевых поражениях у пациентов 18 лет и старше, с четким определением проседания и анализом факторов риска. Анализировались различные типы имплантатов: раздвижные, сетчатые, серийные и индивидуальные 3D-протезы.

Результаты. В анализ включено 13 исследований (12 ретроспективных, 1 проспективное) с участием 661 пациента. Наибольшая частота проседания зафиксирована для титановых сетчатых протезов — от 63,8 до 71,4%. Раздвижные имплантаты продемонстрировали более благоприятные результаты с частотой проседания от 5,3 до 35,3%. Результаты применения 3D-имплантатов оказались наиболее противоречивыми, варьируя от 0 до 100% в различных исследованиях. Период наблюдения составлял от 7,4 до 101 мес.

Заключение. Раздвижные имплантаты демонстрируют наиболее благоприятные результаты в отношении частоты проседания при протезировании тел позвонков у пациентов с опухолями позвоночника. Высокая частота проседания титановых сетчатых протезов может быть обусловлена несоответствием модуля упругости имплантата и костной ткани. 3D-протезы требуют дальнейшего изучения для оптимизации их дизайна и клинического применения. Необходим индивидуальный подход к выбору типа протеза с учетом факторов риска.

Об авторах

Никита Сергеевич Заборовский

ФГБУ «Национальный медицинский исследовательский центр травматологии и ортопедии им. Р.Р. Вредена» Минздрава России; ФГБОУ ВО «Санкт-Петербургский государственный университет»

Автор, ответственный за переписку.
Email: n.zaborovskii@yandex.ru
ORCID iD: 0000-0003-4562-8160
SPIN-код: 3766-5993

канд. мед. наук

Россия, г. Санкт-Петербург; г. Санкт-Петербург

Шеридан Ларсеновна Шайлиева

ФГБУ «Национальный медицинский исследовательский центр травматологии и ортопедии им. Р.Р. Вредена» Минздрава России

Email: sheri21072001@gmail.com
ORCID iD: 0009-0005-2113-3077
SPIN-код: 8199-7620
Россия, г. Санкт-Петербург

Сергей Владимирович Масевнин

ФГБУ «Национальный медицинский исследовательский центр травматологии и ортопедии им. Р.Р. Вредена» Минздрава России

Email: drmasevnin@gmail.com
ORCID iD: 0000-0002-9853-7089
SPIN-код: 5505-2641

канд. мед. наук

Россия, г. Санкт-Петербург

Олег Анатольевич Смекалёнков

ФГБУ «Национальный медицинский исследовательский центр травматологии и ортопедии им. Р.Р. Вредена» Минздрава России

Email: drsmekalenkov@mail.ru
ORCID iD: 0000-0002-4867-0332
SPIN-код: 7902-6380

канд. мед. наук

Россия, г. Санкт-Петербург

Владислав Сергеевич Мураховский

ФГБУ «Национальный медицинский исследовательский центр травматологии и ортопедии им. Р.Р. Вредена» Минздрава России

Email: drmurakhovsky@gmail.com
ORCID iD: 0000-0002-9985-5636
SPIN-код: 3819-8485
Россия, г. Санкт-Петербург

Дмитрий Александрович Пташников

ФГБУЗ «Санкт-Петербургская клиническая больница Российской академии наук»

Email: drptashnikov@yandex.ru
ORCID iD: 0000-0001-5765-3158
SPIN-код: 7678-6542

д-р мед. наук, профессор

Россия, г. Санкт-Петербург

Список литературы

  1. Усиков ВД, Пташников ДА, Магомедов ШШ (2010) Корпор- и спондилэктомия в системе хирургического лечения опухолей позвоночника. Травматология и Ортопедия России 140–142
  2. Пташников ДА, Усиков В Д., Магомедов ШШ, et al (2008) Тактика хирургического лечения больных с опухолями позвоночника в сочетании с лучевой и лекарственной терапией. Травматология и Ортопедия России 106–107
  3. Заборовский НС, Масевнин СВ, Мураховский ВС, et al (2025) Факторы риска нестабильности имплантатов после спондилэктомии у пациентов с опухолями позвоночника. Гений ортопедии 31:183–193. https://doi.org/10.18019/1028-4427-2025-31-2-183-193
  4. Berjano P, Cecchinato R, Pun A, Boriani S (2020) Revision surgery for tumors of the thoracic and lumbar spine: causes, prevention, and treatment strategy. Eur Spine J 29:66–77. https://doi.org/10.1007/s00586-019-06276-8
  5. Zaborovskii N, Schlauch A, Ptashnikov D, et al (2022) Hardware Failure in Spinal Tumor Surgery: A Hallmark of Longer Survival? Neurospine 19:84–95. https://doi.org/10.14245/ns.2143180.590
  6. Kasapovic A, Bornemann R, Pflugmacher R, Rommelspacher Y (2021) Implants for Vertebral Body Replacement - Which Systems are Available and Have Become Established. Z Orthop Unfall 159:83–90. https://doi.org/10.1055/a-1017-3968
  7. Viswanathan A, Abd-El-Barr MM, Doppenberg E, et al (2012) Initial experience with the use of an expandable titanium cage as a vertebral body replacement in patients with tumors of the spinal column: a report of 95 patients. Eur Spine J 21:84–92. https://doi.org/10.1007/s00586-011-1882-7
  8. Yoshioka K, Murakami H, Demura S, et al (2017) Risk factors of instrumentation failure after multilevel total en bloc spondylectomy. Spine Surg Relat Res 1:31–39. https://doi.org/10.22603/ssrr.1.2016-0005
  9. Girolami M, Boriani S, Bandiera S, et al (2018) Biomimetic 3D-printed custom-made prosthesis for anterior column reconstruction in the thoracolumbar spine: a tailored option following en bloc resection for spinal tumors. Eur Spine J 27:3073–3083. https://doi.org/10.1007/s00586-018-5708-8
  10. Li Z, Wei F, Liu Z, et al (2020) Risk Factors for Instrumentation Failure After Total En Bloc Spondylectomy of Thoracic and Lumbar Spine Tumors Using Titanium Mesh Cage for Anterior Reconstruction. World Neurosurgery 135:e106–e115. https://doi.org/10.1016/j.wneu.2019.11.057
  11. Tang X, Yang Y, Zang J, et al (2021) Preliminary Results of a 3D-Printed Modular Vertebral Prosthesis for Anterior Column Reconstruction after Multilevel Thoracolumbar Total En Bloc Spondylectomy. Orthopaedic Surgery 13:949–957. https://doi.org/10.1111/os.12975
  12. Shen FH, Gasbarrini A, Lui DF, et al (2022) Integrated Custom Composite Polyetheretherketone/Carbon fiber (PEEK/CF) Vertebral Body Replacement (VBR) in the Treatment of Bone Tumors of the Spine: A Preliminary Report From a Multicenter Study. Spine 47:252. https://doi.org/10.1097/BRS.0000000000004177
  13. Zhou H, Liu S, Li Z, et al (2022) 3D-printed vertebral body for anterior spinal reconstruction in patients with thoracolumbar spinal tumors. Journal of Neurosurgery: Spine 37:274–282. https://doi.org/10.3171/2022.1.SPINE21900
  14. Cao Y, Yang N, Wang S, et al (2023) The application of 3D-printed auto-stable artificial vertebral body in en bloc resection and reconstruction of thoracolumbar metastases. J Orthop Surg Res 18:638. https://doi.org/10.1186/s13018-023-04135-3
  15. Chen Z, Lü G, Wang X, et al (2023) Is 3D-printed prosthesis stable and economic enough for anterior spinal column reconstruction after spinal tumor resection? A retrospective comparative study between 3D-printed off-the-shelf prosthesis and titanium mesh cage. Eur Spine J 32:261–270. https://doi.org/10.1007/s00586-022-07480-9
  16. Shimizu T, Kato S, Demura S, et al (2023) Characteristics and risk factors of instrumentation failure following total en bloc spondylectomy. Bone Joint J 105-B:172–179. https://doi.org/10.1302/0301-620X.105B2.BJJ-2022-0761.R2
  17. Hu J, Song G, Chen H, et al (2023) Surgical outcomes and risk factors for surgical complications after en bloc resection following reconstruction with 3D-printed artificial vertebral body for thoracolumbar tumors. World J Surg Oncol 21:385. https://doi.org/10.1186/s12957-023-03271-8
  18. Hu X, Barber SM, Ji Y, et al (2023) Implant failure and revision strategies after total spondylectomy for spinal tumors. Journal of Bone Oncology 42:100497. https://doi.org/10.1016/j.jbo.2023.100497
  19. Schwendner M, Ille S, Kirschke JS, et al (2023) Clinical evaluation of vertebral body replacement of carbon fiber–reinforced polyetheretherketone in patients with tumor manifestation of the thoracic and lumbar spine. Acta Neurochir. https://doi.org/10.1007/s00701-023-05502-z
  20. Li Z, Guo L, Zhang P, et al (2022) A Systematic Review of Perioperative Complications in en Bloc Resection for Spinal Tumors. Global Spine Journal. https://doi.org/10.1177/21925682221120644
  21. Xu H, Wang X, Han Y, et al (2022) Biomechanical comparison of different prosthetic reconstructions in total en bloc spondylectomy: a finite element study. BMC Musculoskeletal Disorders 23:955. https://doi.org/10.1186/s12891-022-05919-0
  22. Heary RF, Parvathreddy N, Sampath S, Agarwal N (2017) Elastic modulus in the selection of interbody implants. Journal of Spine Surgery 3:163–167. https://doi.org/10.21037/jss.2017.05.01
  23. Warburton A, Girdler SJ, Mikhail CM, et al (2020) Biomaterials in Spinal Implants: A Review. Neurospine 17:101–110. https://doi.org/10.14245/ns.1938296.148
  24. Frost HM (2004) A 2003 update of bone physiology and Wolff’s Law for clinicians. Angle Orthod 74:3–15. https://doi.org/10.1043/0003-3219(2004)074<0003:AUOBPA>2.0.CO;2

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рисунок 1. Блок-схема поиска и отбора публикаций

Скачать (782KB)

© Эко-Вектор, 2025

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».