Perifocal Soft Tissue Reactions in Response to Contaminated Implants With a Composite Antibacterial Coating: Experimental Study

Cover Page

Cite item

Abstract

Background. Protection against microbial colonization of surface fixators for metal osteosynthesis can reduce the number of infectious complications.

The aim of the study was to experimentally assess early perifocal tissue reactions to metal implants with a composite antibacterial coating under microbial load.

Methods. Fragments of steel pins for osteosynthesis (diameter 1 mm) with a four-component antibacterial coating based on polylactide, polyurethane, ciprofloxacin and silver nanoparticles were contaminated by methicillin-resistant S. aureus (MRSA) 43431. They were implanted in rats within the quadriceps femoris. Contaminated uncoated pins were used as a control. The animals were withdrawn from the experiment on the 2nd, 4th, 7th day after implantation. Histopathological specimens from tissue around implants were prepared. A semiquantitative assessment of reactions was performed.

Results. The microbial load before implantation was (1.12±0.26)×106 S. aureus cells for the control implants and (0.86±0.31)×106 cells for implants with antibacterial coating. Tissue inflammatory reactions on the second day of implantation were equally evident in the control and investigated groups. There was a significant reduction in the number of immune cells and necrotic detritus, as well as increased growth of connective tissue and neoangiogenesis in the experimental group by the 4th day. The appearance of a less pronounced well-vascularized fibrous capsule around the experimental implants was noted by the 7th day. It indicates a more favorable healing of soft tissues in comparison with the control.

Conclusion. Weak morphological manifestations of tissue reactions in response to the fitting of contaminated implants with an antibacterial coating can be associated with both the direct antimicrobial effect of the coating components and the anti-inflammatory activity of silver nanoparticles and ciprofloxacin included in its composition.

About the authors

Oleg P. Savchuk

Gomel State Medical University

Email: osa78@tut.by
ORCID iD: 0000-0003-4360-7091
Belarus, Gomel

Dmitry V. Tapalski

Gomel State Medical University

Author for correspondence.
Email: tapalskiy@gmail.com
ORCID iD: 0000-0002-9484-7848

Dr. Sci. (Med.)

Belarus, Gomel

Dmitry A. Zinovkin

Gomel State Medical University

Email: zinovkin2012@gmail.com
ORCID iD: 0000-0002-3808-8832

Cand. Sci. (Biol.)

Belarus, Gomel

Vladimir I. Nikolaev

Gomel State Medical University

Email: nikolaev.52.52@mail.ru
ORCID iD: 0000-0001-9886-7216

Cand. Sci. (Med.)

Belarus, Gomel

Maksim A. Yarmolenko

Francisk Skorina Gomel State University

Email: simmak79@mail.ru
ORCID iD: 0000-0002-1283-8762

Dr. Sci. (Tech.)

Belarus, Gomel

Aleksandr A. Rogachev

Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus

Email: rogachev78@mail.ru
ORCID iD: 0000-0003-4993-0519

Dr. Sci. (Tech.)

Belarus, Minsk

References

  1. Romanò C.L., Bozhkova S.A., Artyukh V., Romanò D., Tsuchiya H., Drago L. Local antibacterial implant protection in orthopedics and trauma: what’s new? Travmatologiya i ortopediya Rossii [Traumatology and Orthopedics of Russia]. 2019;25(4):64-74. doi: 10.21823/2311-2905-2019-25-4-64-74.
  2. Harris L.G., Richards R.G. Staphylococci and implant surfaces: a review. Injury. 2006;37 Suppl 2:S3-14. doi: 10.1016/j.injury.2006.04.003.
  3. Tande A.J., Patel R. Prosthetic joint infection. Clin Microbiol Rev. 2014;27(2):302-45. doi: 10.1128/CMR.00111-13.
  4. Bohara S., Suthakorn J. Surface coating of orthopedic implant to enhance the osseointegration and reduction of bacterial colonization: a review. Biomater Res. 2022;26(1):26. doi: 10.1186/s40824-022-00269-3.
  5. Zilberman M., Elsner J.J. Antibiotic-eluting medical devices for various applications. J Control Release. 2008;130(3):202-215. doi: 10.1016/j.jconrel.2008.05.020.
  6. Tobin E.J. Recent coating developments for combination devices in orthopedic and dental applications: A literature review. Adv Drug Deliv Rev. 2017;112:88-100. doi: 10.1016/j.addr.2017.01.007.
  7. Nie B., Huo S., Qu X., Guo J., Liu X., Hong Q. et al. Bone infection site targeting nanoparticle-antibiotics delivery vehicle to enhance treatment efficacy of orthopedic implant related infection. Bioact Mater. 2022;16:134-148. doi: 10.1016/j.bioactmat.2022.02.003.
  8. Chouirfa H., Bouloussa H., Migonney V., Falentin-Daudré C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019;83:37-54. doi: 10.1016/j.actbio.2018.10.036.
  9. Hasan J., Crawford R.J., Ivanova E.P. Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol. 2013;31(5):295-304. doi: 10.1016/j.tibtech.2013.01.017.
  10. Tapalski D.V., Boytsova N. Yu., Osipov V.A., Rogachev A.A., Yarmolenko M.A., Rogachev A.V. et al. [New antibacterial coating based on the mixture of polyurethane and poly-l-lactide]. Doklady Nacionalʹnoj akademii nauk Belarusi [Doclady of the National Academy of Sciences of Belarus]. 2013;57(4):89-95. (In Russian).
  11. Rogachev A.A., Yarmolenko M.A., Rogachou A.V., Tapalski D.V., Liu X., Gorbachev D.L. Morphology and structure of antibacterial nanocomposite organic–polymer and metal-polymer coatings deposited from active gas phase. RSC Adv. 2013;3(28):11226-11233. doi: 10.1039/C3RA23284K.
  12. Qi C., Rogachev A.V., Tapalski D.V., Yarmolenko M.A., Rogachev A.A., Jiang X. et al. Nanocomposite coatings for implants protection from microbial colonization: Formation features, structure, and properties. Surf Coatings Technol. 2017;315:350-358. doi: 10.1016/j.surfcoat.2017.02.066.
  13. Tapalski D.V., Osipov V.A., Sukhaya G.N., Yarmolenko M.A., Rogachiov A.A., Rogachiov A.V. [Biocompatible composite antibacterial coatings for protection of implants against microbial biofilms]. Problemy zdorov’ya i ekologii [Health and Ecology Issues]. 2013;(2):129-134. (In Russian). doi: 10.51523/2708-6011.2013-10-2-24.
  14. Maki D.G., Weise C.E., Sarafin H.W. A semiquantitative culture method for identifying intravenous-catheter-related infection. N Engl J Med. 1977;296(23):1305-1309. doi: 10.1056/NEJM197706092962301.
  15. Velnar T., Bailey T., Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res. 2009;37(5):1528-1542. doi: 10.1177/147323000903700531.
  16. Takeo M., Lee W., Ito M. Wound healing and skin regeneration. Cold Spring Harb Perspect Med. 2015;5(1):a023267. doi: 10.1101/cshperspect.a023267.
  17. Sharma S., Bano S., Ghosh A.S., Mandal M., Kim H.W., Dey T. et al. Silk fibroin nanoparticles support in vitro sustained antibiotic release and osteogenesis on titanium surface. Nanomedicine. 2016;12(5):1193-1204. doi: 10.1016/j.nano.2015.12.385.
  18. Wilkinson H.N., Hardman M.J. Wound healing: cellular mechanisms and pathological outcomes. Open Biol. 2020;10(9):e200223. doi: 10.1098/rsob.200223.
  19. Sachse F., von Eiff C., Becker K., Rudack C. Anti-inflammatory effects of ciprofloxacin in S. aureus Newman induced nasal inflammation in vitro. J Inflamm. 2008;5(1):e11. doi: 10.1186/1476-9255-5-11.
  20. Pastar I., Wong L.L., Egger A.N., Tomic-Canic M. Descriptive vs mechanistic scientific approach to study wound healing and its inhibition: Is there a value of translational research involving human subjects? Exp Dermatol. 2018;27(5):551-562. doi: 10.1111/exd.13663.
  21. Gordina E.M., Bozhkova S.A., Erusin A.A. [Highly effective silver oxides: influence of oxygen concentration on antibacterial activity against clinical strains of Staphylococcus aureus]. Sibirskoe meditsinskoe obozrenie [Siberian Medical Review]. 2021;(131):54-60. (In Russian). doi: 10.20333/25000136-2021-5-54-60.
  22. Necula B.S., Fratila-Apachitei L.E., Zaat S.A., Apachitei I., Duszczyk J. In vitro antibacterial activity of porous TiO2-Ag composite layers against methicillin-resistant Staphylococcus aureus. Acta Biomater. 2009;5(9):3573-3580. doi: 10.1016/j.actbio.2009.05.010.
  23. Hamdan S., Pastar I., Drakulich S., Dikici E., Tomic-Canic M., Deo S. et al. Nanotechnology-Driven Therapeutic Interventions in Wound Healing: Potential Uses and Applications. ACS Cent Sci. 2017;3(3):163-175. doi: 10.1021/acscentsci.6b00371.
  24. Vijayakumar V., Samal S.K., Mohanty S., Nayak S.K. Recent advancements in biopolymer and metal nanoparticle-based materials in diabetic wound healing management. Int J Biol Macromol. 2019;122:137-148. doi: 10.1016/j.ijbiomac.2018.10.120.
  25. Szmyd R., Goralczyk A.G., Skalniak L., Cierniak A., Lipert B., Filon F.L. et al. Effect of silver nanoparticles on human primary keratinocytes. Biol Chem. 2013;394(1):113-123. doi: 10.1515/hsz-2012-0202.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Pathohistological picture at the site of implantation on the 2nd day: a — in the control group; b — in the experimental group. Stained with hematoxylin and eosin. Mag. ×200

Download (131KB)
3. Fig. 2. Statistical characteristics of the scores in the groups on the 2nd dayNote: The vertical bold dotted line the median line on the graph, the normal dotted line indicates the 25th and 75th percentiles. The curves of the outer lines which form shapes at the graph, show the distribution of cases in the group

Download (10KB)
4. Fig. 3. Pathohistological picture at the site of implantation on the 4th day: a — in the control group; b — in the experimental group. Stained with hematoxylin and eosin. Mag. ×200

Download (100KB)
5. Fig. 4. Statistical characteristics of the scores in the groups at the day 4 Note: See Figure 2

Download (10KB)
6. Fig. 5. Pathohistological picture at the site of implantation on the 7th day: a — in the control group; b — in the experimental group. Stained with hematoxylin and eosin. Mag. ×200

Download (107KB)
7. Fig. 6. Statistical characteristics of the scores in the groups at the day 7 Note: See Figure 2

Download (7KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».