Perifocal Soft Tissue Reactions in Response to Contaminated Implants With a Composite Antibacterial Coating: Experimental Study
- Authors: Savchuk O.P.1, Tapalski D.V.1, Zinovkin D.A.1, Nikolaev V.I.1, Yarmolenko M.A.2, Rogachev A.A.3
-
Affiliations:
- Gomel State Medical University
- Francisk Skorina Gomel State University
- Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus
- Issue: Vol 29, No 1 (2023)
- Pages: 36-45
- Section: Theoretical and experimental studies
- URL: https://journals.rcsi.science/2311-2905/article/view/132697
- DOI: https://doi.org/10.17816/2311-2905-2000
- ID: 132697
Cite item
Abstract
Background. Protection against microbial colonization of surface fixators for metal osteosynthesis can reduce the number of infectious complications.
The aim of the study was to experimentally assess early perifocal tissue reactions to metal implants with a composite antibacterial coating under microbial load.
Methods. Fragments of steel pins for osteosynthesis (diameter 1 mm) with a four-component antibacterial coating based on polylactide, polyurethane, ciprofloxacin and silver nanoparticles were contaminated by methicillin-resistant S. aureus (MRSA) 43431. They were implanted in rats within the quadriceps femoris. Contaminated uncoated pins were used as a control. The animals were withdrawn from the experiment on the 2nd, 4th, 7th day after implantation. Histopathological specimens from tissue around implants were prepared. A semiquantitative assessment of reactions was performed.
Results. The microbial load before implantation was (1.12±0.26)×106 S. aureus cells for the control implants and (0.86±0.31)×106 cells for implants with antibacterial coating. Tissue inflammatory reactions on the second day of implantation were equally evident in the control and investigated groups. There was a significant reduction in the number of immune cells and necrotic detritus, as well as increased growth of connective tissue and neoangiogenesis in the experimental group by the 4th day. The appearance of a less pronounced well-vascularized fibrous capsule around the experimental implants was noted by the 7th day. It indicates a more favorable healing of soft tissues in comparison with the control.
Conclusion. Weak morphological manifestations of tissue reactions in response to the fitting of contaminated implants with an antibacterial coating can be associated with both the direct antimicrobial effect of the coating components and the anti-inflammatory activity of silver nanoparticles and ciprofloxacin included in its composition.
Full Text
##article.viewOnOriginalSite##About the authors
Oleg P. Savchuk
Gomel State Medical University
Email: osa78@tut.by
ORCID iD: 0000-0003-4360-7091
Belarus, Gomel
Dmitry V. Tapalski
Gomel State Medical University
Author for correspondence.
Email: tapalskiy@gmail.com
ORCID iD: 0000-0002-9484-7848
Dr. Sci. (Med.)
Belarus, GomelDmitry A. Zinovkin
Gomel State Medical University
Email: zinovkin2012@gmail.com
ORCID iD: 0000-0002-3808-8832
Cand. Sci. (Biol.)
Belarus, GomelVladimir I. Nikolaev
Gomel State Medical University
Email: nikolaev.52.52@mail.ru
ORCID iD: 0000-0001-9886-7216
Cand. Sci. (Med.)
Belarus, GomelMaksim A. Yarmolenko
Francisk Skorina Gomel State University
Email: simmak79@mail.ru
ORCID iD: 0000-0002-1283-8762
Dr. Sci. (Tech.)
Belarus, GomelAleksandr A. Rogachev
Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus
Email: rogachev78@mail.ru
ORCID iD: 0000-0003-4993-0519
Dr. Sci. (Tech.)
Belarus, MinskReferences
- Romanò C.L., Bozhkova S.A., Artyukh V., Romanò D., Tsuchiya H., Drago L. Local antibacterial implant protection in orthopedics and trauma: what’s new? Travmatologiya i ortopediya Rossii [Traumatology and Orthopedics of Russia]. 2019;25(4):64-74. doi: 10.21823/2311-2905-2019-25-4-64-74.
- Harris L.G., Richards R.G. Staphylococci and implant surfaces: a review. Injury. 2006;37 Suppl 2:S3-14. doi: 10.1016/j.injury.2006.04.003.
- Tande A.J., Patel R. Prosthetic joint infection. Clin Microbiol Rev. 2014;27(2):302-45. doi: 10.1128/CMR.00111-13.
- Bohara S., Suthakorn J. Surface coating of orthopedic implant to enhance the osseointegration and reduction of bacterial colonization: a review. Biomater Res. 2022;26(1):26. doi: 10.1186/s40824-022-00269-3.
- Zilberman M., Elsner J.J. Antibiotic-eluting medical devices for various applications. J Control Release. 2008;130(3):202-215. doi: 10.1016/j.jconrel.2008.05.020.
- Tobin E.J. Recent coating developments for combination devices in orthopedic and dental applications: A literature review. Adv Drug Deliv Rev. 2017;112:88-100. doi: 10.1016/j.addr.2017.01.007.
- Nie B., Huo S., Qu X., Guo J., Liu X., Hong Q. et al. Bone infection site targeting nanoparticle-antibiotics delivery vehicle to enhance treatment efficacy of orthopedic implant related infection. Bioact Mater. 2022;16:134-148. doi: 10.1016/j.bioactmat.2022.02.003.
- Chouirfa H., Bouloussa H., Migonney V., Falentin-Daudré C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019;83:37-54. doi: 10.1016/j.actbio.2018.10.036.
- Hasan J., Crawford R.J., Ivanova E.P. Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol. 2013;31(5):295-304. doi: 10.1016/j.tibtech.2013.01.017.
- Tapalski D.V., Boytsova N. Yu., Osipov V.A., Rogachev A.A., Yarmolenko M.A., Rogachev A.V. et al. [New antibacterial coating based on the mixture of polyurethane and poly-l-lactide]. Doklady Nacionalʹnoj akademii nauk Belarusi [Doclady of the National Academy of Sciences of Belarus]. 2013;57(4):89-95. (In Russian).
- Rogachev A.A., Yarmolenko M.A., Rogachou A.V., Tapalski D.V., Liu X., Gorbachev D.L. Morphology and structure of antibacterial nanocomposite organic–polymer and metal-polymer coatings deposited from active gas phase. RSC Adv. 2013;3(28):11226-11233. doi: 10.1039/C3RA23284K.
- Qi C., Rogachev A.V., Tapalski D.V., Yarmolenko M.A., Rogachev A.A., Jiang X. et al. Nanocomposite coatings for implants protection from microbial colonization: Formation features, structure, and properties. Surf Coatings Technol. 2017;315:350-358. doi: 10.1016/j.surfcoat.2017.02.066.
- Tapalski D.V., Osipov V.A., Sukhaya G.N., Yarmolenko M.A., Rogachiov A.A., Rogachiov A.V. [Biocompatible composite antibacterial coatings for protection of implants against microbial biofilms]. Problemy zdorov’ya i ekologii [Health and Ecology Issues]. 2013;(2):129-134. (In Russian). doi: 10.51523/2708-6011.2013-10-2-24.
- Maki D.G., Weise C.E., Sarafin H.W. A semiquantitative culture method for identifying intravenous-catheter-related infection. N Engl J Med. 1977;296(23):1305-1309. doi: 10.1056/NEJM197706092962301.
- Velnar T., Bailey T., Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res. 2009;37(5):1528-1542. doi: 10.1177/147323000903700531.
- Takeo M., Lee W., Ito M. Wound healing and skin regeneration. Cold Spring Harb Perspect Med. 2015;5(1):a023267. doi: 10.1101/cshperspect.a023267.
- Sharma S., Bano S., Ghosh A.S., Mandal M., Kim H.W., Dey T. et al. Silk fibroin nanoparticles support in vitro sustained antibiotic release and osteogenesis on titanium surface. Nanomedicine. 2016;12(5):1193-1204. doi: 10.1016/j.nano.2015.12.385.
- Wilkinson H.N., Hardman M.J. Wound healing: cellular mechanisms and pathological outcomes. Open Biol. 2020;10(9):e200223. doi: 10.1098/rsob.200223.
- Sachse F., von Eiff C., Becker K., Rudack C. Anti-inflammatory effects of ciprofloxacin in S. aureus Newman induced nasal inflammation in vitro. J Inflamm. 2008;5(1):e11. doi: 10.1186/1476-9255-5-11.
- Pastar I., Wong L.L., Egger A.N., Tomic-Canic M. Descriptive vs mechanistic scientific approach to study wound healing and its inhibition: Is there a value of translational research involving human subjects? Exp Dermatol. 2018;27(5):551-562. doi: 10.1111/exd.13663.
- Gordina E.M., Bozhkova S.A., Erusin A.A. [Highly effective silver oxides: influence of oxygen concentration on antibacterial activity against clinical strains of Staphylococcus aureus]. Sibirskoe meditsinskoe obozrenie [Siberian Medical Review]. 2021;(131):54-60. (In Russian). doi: 10.20333/25000136-2021-5-54-60.
- Necula B.S., Fratila-Apachitei L.E., Zaat S.A., Apachitei I., Duszczyk J. In vitro antibacterial activity of porous TiO2-Ag composite layers against methicillin-resistant Staphylococcus aureus. Acta Biomater. 2009;5(9):3573-3580. doi: 10.1016/j.actbio.2009.05.010.
- Hamdan S., Pastar I., Drakulich S., Dikici E., Tomic-Canic M., Deo S. et al. Nanotechnology-Driven Therapeutic Interventions in Wound Healing: Potential Uses and Applications. ACS Cent Sci. 2017;3(3):163-175. doi: 10.1021/acscentsci.6b00371.
- Vijayakumar V., Samal S.K., Mohanty S., Nayak S.K. Recent advancements in biopolymer and metal nanoparticle-based materials in diabetic wound healing management. Int J Biol Macromol. 2019;122:137-148. doi: 10.1016/j.ijbiomac.2018.10.120.
- Szmyd R., Goralczyk A.G., Skalniak L., Cierniak A., Lipert B., Filon F.L. et al. Effect of silver nanoparticles on human primary keratinocytes. Biol Chem. 2013;394(1):113-123. doi: 10.1515/hsz-2012-0202.
Supplementary files
