Intraosseous Injection of Autologous Bone Marrow Aspirate Concentrate and Platelet-Rich Plasma for Treatment of Knee Osteoarthritis

Cover Page

Cite item

Abstract

The aim of the study was to determine the effectiveness of autologous bone marrow aspirate concentrate (BMAC) and platelet-rich plasma (PRP) intraosseous injection in the treatment of patients with knee OA stages II-III.

Methods: The multicenter randomized study involved 40 patients (27 women, 13 men, average age 67.0±7.8 years, BMI 32.7±4.8, duration of disease 17.3±3.7 months) with knee OA of stages II-III according to the Kellgren-Lawrence (K-L) classification. Patients of the main (BMAC group) group (n=19) underwent a single intraosseous injection of BMAC, in the comparison group (n = 21) – a PRP injection (PRP group). The results were evaluated after 1, 3, 6, 12 months with the verbal rating scale (VRS), VAS, Leken and WOMAC scales.

Results: Comparison of the results in the groups on the VRS showed that at an earlier time (3 and 6 months), the preferences of patients were in favor of the treatment of BMAC (65% and 55% positive reviews) before PRP (55% and 45% positive reviews), whereas after 12 months the differences were insignificant. Analysis of VAS indicators in patients of both groups indicated a more pronounced decrease in the severity of pain syndrome after BMAC intraosseous injection. The analysis of the Leken scale indicators showed in favor of BMAC throughout the entire observation period, the differences were most pronounced in the first 3 months of observation. The ratio of the values of the WOMAC index in both patients groups indicated statistically significant differences that persisted in all periods of follow-up, the increase in indicators occurred to a lesser extent after the introduction of BMAC compared with PRP.

Conclusions: A single intraosseous BMAC injection has an advantage over a similar PRP injection in terms of pain, knee function and physical activity of patients at all follow-up periods. Both methods of treatment are equally safe.

About the authors

Dmitriy A. Malanin

Volgograd State Medical University

Email: malanin67@mail.ru
ORCID iD: 0000-0001-7507-0570

Dr. Sci. (Med.), Professor

Russian Federation, Volgograd

Vladimir D. Sikilinda

Rostov State Medical University

Email: sikilinda_vd@rostgmu.ru
ORCID iD: 0000-0002-3062-2543

Dr. Sci. (Med.), Professor

Russian Federation, Rostov-on-Don

Andrei I. Gorbatenko

Rostov State Medical University

Email: gorbatenkophmd@gmail.com
ORCID iD: 0000-0001-7779-4863

Cand. Sci. (Med.)

Russian Federation, Rostov-on-Don

Maxim V. Demeshchenko

Volgograd State Medical University

Author for correspondence.
Email: maximus275@yandex.ru
ORCID iD: 0000-0003-1797-2431

Cand. Sci. (Med.)

Russian Federation, Volgograd

Il’ya A. Suchilin

Volgograd State Medical University

Email: omnio@mail.ru
ORCID iD: 0000-0001-7375-5365

Cand. Sci. (Med.)

Russian Federation, Volgograd

Vladimir V. Kondrashenko

Volgograd State Medical University

Email: vovamail2009@yandex.ru
ORCID iD: 0000-0001-7512-492X

аспирант кафедры травматологии, ортопедии и ВПХ

Russian Federation, Volgograd

Nataliya O. Kostyanaya

Southern Federal University

Email: mornatalia@yandex.ru
ORCID iD: 0000-0001-5922-7099

биолог, Академия биологии и биотехнологии им. Д.И. Ивановского

Russian Federation, Rostov-on-Don

References

  1. Алексеева Л.И. Остеоартрит: эпидемиология, классификация, факторы риска и прогрессирования, клиника, диагностика, лечение. Современная ревматология. 2019;13(2):9-21. doi: 10.14412/1996-7012-2019-2-9-21.
  2. Alekseeva L.I. [Osteoarthritis: epidemiology, classification, risk factors, and progression, clinical presentation, diagnosis, and treatment]. Sovremennaya revmatologiya [Modern Rheumatology Journal]. 2019;13(2):9-21. (In Russian). doi: 10.14412/1996-7012-2019-2-9-21.
  3. Зайцева М.Ю., Нетылько Г.И., Каземерский А.В. Вопросы дифференциальной диагностики остеонекроза мыщелков бедренной и большеберцовой костей аваскулярного и посттравматического генеза. Травматология и ортопедия России. 2005;4(37):53-56.
  4. Zaitseva M.Ju., Netylko G.I., Kazemirsky A.V. [Problems of differential diagnostics of avascular and posttraumatic necroses of femoral and tibial condyles]. Travmatologiya i ortopediya Rossii [Traumatology and Orthopedics of Russia]. 2005;4(37):53-56. (In Russian).
  5. Лычагин А.В., Гаркави А.В., Ислейих О.И., Катунян П.И., Боборов Д.С., Явлиева Р.Х. и др. Эффективность внутрикостного введения аутологичной обогащенной тромбоцитами плазмы в зону отека костного мозга при остеоартрозе коленного сустава. Вестник РГМУ. 2019;(4):50-56. doi: 10.24075/brsmu.2019.053.
  6. Lychagin A.V., Garkavi A.V.,Islaieh O.I., Katunyan P.I., Bobrov D.S., Yavlieva R.H. et al. [Effectiveness of intraosseous infiltration of autologous platelet-rich plasma in the area of the bone marrow edema in osteoarthritis of the knee joint]. Vestnik RGMU [Bulletin of RSMU]. 2019;(4):50-56. (In Russian). doi: 10.24075/brsmu.2019.053.
  7. Маланин Д.А., Демещенко М.В., Черезов Л.Л., Грунин С.В. Эффективность применения плазмы обогащенной тромбоцитами при лечении пациентов с остеоартритом коленного сустава. Практическая медицина. 2020;18(4):29-35.
  8. Malanin D.A., Demeshchenko M.V., Cherezov L.L., Grunin S.V. [Efficacy of platelet-rich plasma for treating patients with knee osteoarthritis]. Prakticheskaya meditsina [Practical Medicine]. 2020;18(4):29-35. (In Russian).
  9. Маланин Д.А., Норкин А.И., Трегубов А.С., Демещенко М.В., Черезов Л.Л. Применение PRP-терапии при тендинопатиях вращательной манжеты и длинной головки двуглавой мышцы плеча. Травматология и ортопедия России. 2019;25(3):57-66. doi: 10.21823/2311-2905-2019-25-3-57-66.
  10. Malanin D.A., Norkin A.I., Tregubov A.S., Demeshchenko M.V., Cherezov L.L. [PRP-Therapy for Tendinopathies of Rotator Cuff and Long Head of Biceps]. Travmatologiya i ortopediya Rossii [Traumatology and Orthopedics of Russia]. 2019;25(3):57-66. (In Russian). doi: 10.21823/2311-2905-2019-25-3-57-66.
  11. Некачалов В.В. Патология костей и суставов. СПб: Сотис; 2000. 285 с.
  12. Nekachalov V.V. [Pathology of bones and joints]. SPb: Sotis; 2000. 285 p.
  13. Andia I., Sánchez M., Maffulli N. Joint pathology and platelet-rich plasma therapies. Expert Opin Biol Ther. 2012;12(1):7-22. doi: 10.1517/14712598.2012.632765.
  14. Chahla J., Alland J.A., Verma N.N. Bone Marrow Aspirate Concentrate for Orthopaedic Use. Orthop Nurs. 2018;37(6):379-381. doi: 10.1097/NOR.0000000000000502.
  15. Choi B.H., Zhu S.J., Kim B.Y., Huh J.Y., Lee S.H., Jung J.H. Effect of platelet-rich plasma (PRP) concentration on the viability and proliferation of alveolar bone cells: an in vitro study. Int J Oral Maxillofac Surg. 2005;34(4):420-424. doi: 10.1016/j.ijom.2004.10.018.
  16. Eymard F., Ornetti P., Maillet J., Noel É., Adam P., Legré-Boyer V. et al. Intra-articular injections of platelet-rich plasma in symptomatic knee osteoarthritis: a consensus statement from French-speaking experts. Knee Surg Sports Traumatol Arthrosc. 2021;29(10):3195-3210. doi: 10.1007/s00167-020-06102-5.
  17. Fiz N., Delgado D., Garate A., Sánchez P., Oraa J., Bilbao A.M. et al. Intraosseous infiltrations of Platelet-Rich Plasma for severe hip osteoarthritis: A pilot study. J Clin Orthop Trauma. 2020;11(Suppl 4):S585-S590. doi: 10.1016/j.jcot.2019.12.012.
  18. Foster T.E., Puskas B.L., Mandelbaum B.R., Gerhardt M.B., Rodeo S.A. Platelet-rich plasma: from basic science to clinical applications. Am J Sports Med. 2009;37(11):2259-2272. doi: 10.1177/0363546509349921.
  19. Gianakos A.L., Sun L., Patel J.N., Adams D.M., Liporace F.A. Clinical application of concentrated bone marrow aspirate in orthopaedics: A systematic review. World J Orthop. 2017;8(6):491-506. doi: 10.5312/wjo.v8.i6.491.
  20. Giovanini A.F., Gonzaga C.C., Zielak J.C., Deliberador T.M., Kuczera J., Göringher I. et al. Platelet-rich plasma (PRP) impairs the craniofacial bone repair associated with its elevated TGF-β levels and modulates the co-expression between collagen III and α-smooth muscle actin. J Orthop Res. 2011;29(3):457-463. doi: 10.1002/jor.21263.
  21. Hernigou P., Auregan J.C., Dubory A., Flouzat- Lachaniette C.H., Chevallier N., Rouard H. Subchondral stem cell therapy versus contralateral total knee arthroplasty for osteoarthritis following secondary osteonecrosis of the knee. Int Orthop. 2018;42(11):2563-2571. doi: 10.1007/s00264-018-3916-9.
  22. Hernigou P., Bouthors C., Bastard C., Flouzat Lachaniette C.H., Rouard H., Dubory A. Subchondral bone or intra-articular injection of bone marrow concentrate mesenchymal stem cells in bilateral knee osteoarthritis: what better postpone knee arthroplasty at fifteen years? A randomized study. Int Orthop. 2021;45(2):391-399. doi: 10.1007/s00264-020-04687-7.
  23. Hernigou P., Delambre J., Quiennec S., Poignard A. Human bone marrow mesenchymal stem cell injection in subchondral lesions of knee osteoarthritis: a prospective randomized study versus contralateral arthroplasty at a mean fifteen year follow-up. Int Orthop. 2021;45(2):365-373. doi: 10.1007/s00264-020-04571-4.
  24. Holton J., Imam M., Ward J., Snow M. The Basic Science of Bone Marrow Aspirate Concentrate in Chondral Injuries. Orthop Rev (Pavia). 2016;8(3):6659. doi: 10.4081/or.2016.6659.
  25. Imam M.A., Mahmoud S.S.S., Holton J., Abouelmaati D., Elsherbini Y., Snow M. A systematic review of the concept and clinical applications of Bone Marrow Aspirate Concentrate in Orthopaedics. SICOT J. 2017;3:17. doi: 10.1051/sicotj/2017007.
  26. Jiang J., Chen J. Diagnostic issue on spontaneous osteonecrosis of medial tibial plateau. Chin Med J. 2019;132(6):755-756. doi: 10.1097/CM9.0000000000000119.
  27. Kobayashi Y., Saita Y., Nishio H., Ikeda H., Takazawa Y., Nagao M. et al. Leukocyte concentration and composition in platelet-rich plasma (PRP) influences the growth factor and protease concentrations. J Orthop Sci. 2016;21(5):683-689. doi: 10.1016/j.jos.2016.07.009.
  28. Kon E., Boffa A., Andriolo L., Di Martino A., Di Matteo B., Magarelli N. et al. Subchondral and intra-articular injections of bone marrow concentrate are a safe and effective treatment for knee osteoarthritis: a prospective, multi-center pilot study. Knee Surg Sports Traumatol Arthrosc. 2021. doi: 10.1007/s00167-021-06530-x.
  29. Kon E., Di Matteo B., Delgado D., Cole B., Dorotei A., Dragoo J. Platelet-rich plasma for the treatment of knee osteoarthritis: an expert opinion and proposal for a novel classification and coding system. Expert Opin Biol Ther. 2020;20(12):1447-1460. doi: 10.1080/14712598.2020.1798925.
  30. Krüger J.P., Hondke S., Endres M., Pruss A., Siclari A., Kaps C. Human platelet-rich plasma stimulates migration and chondrogenic differentiation of human subchondral progenitor cells. J Orthop Res. 2012;30(6):845-852. doi: 10.1002/jor.22005.
  31. Manferdini C., Maumus M., Gabusi E., Piacentini A., Filardo G., Peyrafitte J.A. et al. Adipose-derived mesenchymal stem cells exert antiinflammatory effects on chondrocytes and synoviocytes from osteoarthritis patients through prostaglandin E2. Arthritis Rheum. 2013;65(5):1271-1281. doi: 10.1002/art.37908.
  32. Di Matteo B., Polignano A., Onorato F., La Porta A., Iacono F., Bonanzinga T. et al. Knee Intraosseous Injections: A Systematic Review of Clinical Evidence of Different Treatment Alternatives. Cartilage. 2020:1947603520959403. doi: 10.1177/1947603520959403.
  33. de Vries-van Melle M.L., Narcisi R., Kops N., Koevoet W.J., Bos P.K., Murphy J.M. et al. Chondrogenesis of mesenchymal stem cells in an osteochondral environment is mediated by the subchondral bone. Tissue Eng Part A. 2014;20(1-2):23-33. doi: 10.1089/ten.TEA.2013.0080.
  34. Muiños-López E., Delgado D., Sánchez P., Paiva B., Anitua E., Fiz N. et al. Modulation of Synovial Fluid-Derived Mesenchymal Stem Cells by Intra-Articular and Intraosseous Platelet Rich Plasma Administration. Stem Cells Int. 2016;2016:1247950. doi: 10.1155/2016/1247950.
  35. Murray I.R., Robinson P.G., West C.C., Goudie E.B., Yong L.Y., White T.O. et al. Reporting Standards in Clinical Studies Evaluating Bone Marrow Aspirate Concentrate: A Systematic Review. Arthroscopy. 2018;34(4):1366-1375. doi: 10.1016/j.arthro.2017.11.036.
  36. Patel S., Dhillon M.S., Aggarwal S., Marwaha N., Jain A. Treatment with platelet-rich plasma is more effective than placebo for knee osteoarthritis: a prospective, double-blind, randomized trial. Am J Sports Med. 2013;41(2):356-364. doi: 10.1177/0363546512471299.
  37. Peterfy C.G., Guermazi A., Zaim S., Tirman P.F., Miaux Y., White D. et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage. 2004;12(3):177-190. doi: 10.1016/j.joca.2003.11.003.
  38. Post S.R., Post G.R., Nikolic D., Owens R., Insuasti-Beltran G. Development of an unbiased, semi-automated approach for classifying plasma cell immunophenotype following multicolor flow cytometry of bone marrow aspirates. Cytometry B Clin Cytom. 2018;94(5):602-610. doi: 10.1002/cyto.b.21635.
  39. Rodriguez-Fontan F., Piuzzi N.S., Kraeutler M.J., Pascual-Garrido C. Early Clinical Outcomes of Intra-Articular Injections of Bone Marrow Aspirate Concentrate for the Treatment of Early Osteoarthritis of the Hip and Knee: A Cohort Study. PM R. 2018;10(12):1353-1359. doi: 10.1016/j.pmrj.2018.05.016.
  40. Sánchez M., Anitua E., Delgado D., Sanchez P., Prado R., Goiriena J.J. et al. A new strategy to tackle severe knee osteoarthritis: Combination of intra-articular and intraosseous injections of Platelet Rich Plasma. Expert Opin Biol Ther. 2016;16(5):627-643. doi: 10.1517/14712598.2016.1157162.
  41. Sekiya I., Ojima M., Suzuki S., Yamaga M., Horie M., Koga H. et al. Human mesenchymal stem cells in synovial fluid increase in the knee with degenerated cartilage and osteoarthritis. J Orthop Res. 2012;30(6):943-949. doi: 10.1002/jor.22029.
  42. Schottel P.C., Warner S.J. Role of Bone Marrow Aspirate in Orthopedic Trauma. Orthop Clin North Am. 2017;48(3):311-321. doi: 10.1016/j.ocl.2017.03.005.
  43. Shapiro S.A., Kazmerchak S.E., Heckman M.G., Zubair A.C., O’Connor M.I. A Prospective, Single-Blind, Placebo-Controlled Trial of Bone Marrow Aspirate Concentrate for Knee Osteoarthritis. Am J Sports Med. 2017;45(1):82-90. doi: 10.1177/0363546516662455.
  44. Sharkey P., Cohen S., Leinberry C., Parvizi J. Subchondral bone marrow lesions associated with knee osteoarthritis. Am J Orthop. 2012;41(9):413-417.
  45. Su K., Bai Y., Wang J., Zhang H., Liu H., Ma S. Comparison of hyaluronic acid and PRP intra-articular injection with combined intra-articular and intraosseous PRP injections to treat patients with knee osteoarthritis. Clin Rheumatol. 2018;(37):1341-1350. doi: 10.1007/s10067-018-3985-6.
  46. Sundaram K., Vargas-Hernández J.S., Sanchez T.R., Moreu N.M., Mont M.A., Higuera C.A. et al. Are Subchondral Intraosseous Injections Effective and Safe for the Treatment of Knee Osteoarthritis? A Systematic Review. J Knee Surg. 2019;32(11):1046-1057. doi: 10.1055/s-0039-1677792.
  47. Sundman E.A., Cole B.J., Karas V., Della Valle C., Tetreault M.W., Mohammed H.O. et al. The anti-inflammatory and matrix restorative mechanisms of platelet-rich plasma in osteoarthritis. Am J Sports Med. 2014;42(1):35-41. doi: 10.1177/0363546513507766.
  48. Vad V., Barve R., Linnell E., Harrison J. Knee Osteoarthritis Treated with Percutaneous Chondral-Bone Interface Optimization: A Pilot Trial. Surgical Sci. 2016;7:1-12. doi: 10.4236/ss.2016.71001. Available from: https://www.scirp.org/pdf/SS_2016010814274096.pdf.
  49. Zhen G., Wen C., Jia X., Li Y., Crane J.L., Mears S.C. et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med. 2013;19(6):704-712. doi: 10.1038/nm.3143.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. MRI picture of the aseptic necrosis zone of the femoral condyle intero-posterior compartment in T1 mode: a — coronary section; b — sagittal section

Download (21KB)
3. Fig. 2. Zone of overload edema of the femoral and tibial condyles in T1 mode: a — coronary section; b — sagittal section

Download (24KB)
4. Fig. 3. PRP preparation: a — level of the hematocrit layer after the first centrifugation; b — platelet layer sampling

Download (17KB)
5. Fig. 4. Injection of BMAC under fluoroscopic control into the area of overload edema of the bone marrow of the internal femoral condyle

Download (7KB)
6. Fig. 5. Decrease in signal intensity and the size of the bone marrow edema zone in the area of the femoral and tibial condyles after injection of BMAC: a — before injection; b — after 3 months

Download (22KB)

Copyright (c) 2021 Malanin D.A., Sikilinda V.D., Gorbatenko A.I., Demeshchenko M.V., Suchilin I.A., Kondrashenko V.V., Kostyanaya N. .

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».