Dielectric Mismatch Effects on Polyelectrolyte Solutions in Electrified Nanopores: Insights from Mean-Field Theory

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We utilize the self-consistent field theory to explore the mechanical and electrical properties of charged surfaces immersed in polyelectrolyte solutions that could be potentially useful for electrochemical applications. Our research focuses on how the dielectric heterogeneity of the solution could affect the disjoining pressure and differential capacitance of the electric double layer. Relying on the developed theoretical framework, based on the Noether’s theorem, we calculate the stress tensor, containing the term, arising from the conformational entropy of the polymer chains. With its help we compute the disjoining pressure in polyelectrolyte solution confined between two parallel charged surfaces and analyze its behavior as a function of separation between the surfaces for different values of dielectric mismatch parameter. We also calculate the differential capacitance of the electric double layer and discuss how dielectric heterogeneity of the polyelectrolyte solution influences its values.

Авторлар туралы

Yu. Budkov

Laboratory of Computational Physics, HSE University; .A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences

Email: ybudkov@hse.ru
123458, Moscow, Russia; 153045, Ivanovo, Russia

N. Kalikin

Laboratory of Computational Physics, HSE University; .A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: ybudkov@hse.ru
123458, Moscow, Russia; 153045, Ivanovo, Russia

Әдебиет тізімі

  1. Dobrynin A.V., Rubinstein M. // Progr. Polym. Sci. 2005. V. 30. № 11. P. 1049.
  2. Netz R.R., Andelman D. // Phys. Rep. 2003. V. 380. № 1–2. P. 1.
  3. Nishimura N., Ohno H. // Polymer. 2014. V. 55. № 16. P. 3289.
  4. Kornyshev A.A. // J. Phys. Chem. B. 2007. V. 111. № 20. P. 5545.
  5. Fedorov M.V., Kornyshev A.A. // Am. Chem. Soc. 2014. Text : electronic.
  6. Budkov Y.A., Kalikin N.N., Kolesnikov A.L. // Phys. Chem. Chem. Phys. 2022. V. 24. № 3. P. 1355.
  7. Kalikin N.N., Kolesnikov A.L., Budkov Y.A. // Curr. Opinion Electrochem. 2022. V. 36. P. 101134.
  8. Kolesnikov A.L., Mazur D.A., Budkov Y.A. // Epl. 2022. V. 140. № 1.
  9. Kolesnikov A.L., Budkov Y.A., Gor G.Y. // J. Phys. Condens. Matter. 2022. V. 34. № 6. P. 63002.
  10. Asnacios A., Espert A., Colin A., Langevin D. // Phys. Rev. Lett. 1997. V. 78. № 26. P. 4974.
  11. Salmi J., Osterberg M., Stenius P., Laine J. // Nordic Pulp Paper Res. J. 2007. V. 22. № 2. P. 249.
  12. Yethiraj A. // J. Chem. Phys. 1999. V. 111. № 5. P. 1797.
  13. Tadmor R., Hern’andez-Zapata E., Chen N., Pincus P., Israelachvili J.N. // Macromolecules. 2002. V. 35. № 6. P. 2380.
  14. Turesson M., Woodward C.E., Åkesson T., Forsman J. // J. Phys. Chem. B. 2008. V. 112. № 16. P. 5116.
  15. Åkesson T., Woodward C., Jönsson B. // J. Chem. Phys. 1989. V. 91. № 4. P. 2461.
  16. Podgornik R. // Chem. Phys. Lett. 1990. V. 174. № 2. P. 191.
  17. Budkov Y.A., Kalikin N.N. // Phys. Rev. E. 2023. V. 107. № 2. P. 24503.
  18. Khokhlov A.R., Kramarenko E.Y. // Macromol. Theor. Simul. 1994. V. 3. № 1. P. 45.
  19. Khokhlov A.R., Kramarenko E.Y. // Macromolecules. 1996. V. 29. № 2. P. 681.
  20. Kramarenko E.Y., Khokhlov A.R., Yoshikawa K. // Macromol. Theor. Simul. 2000. V. 9. № 5. P. 249.
  21. Kramarenko E.Y., Erukhimovich I.Y., Khokhlov A.R. // Macromol. Theor. Simul. 2002. V. 11. № 5. P. 462.
  22. Budkov Y.A., Kalikin N.N., Kolesnikov A.L. // Eur. Phys. J. E. 2017. V. 40. № 4.
  23. Borukhov I., Andelman D., Orland H. // Phys. Rev. Lett. 1997. V. 79. № 3. P. 435.
  24. Maggs A.C., Podgornik R. // Soft Matter. 2016. V. 12. № 4. P. 1219.
  25. Lifshitz I. // Soviet J. Experim. Theor. Phys. 1969. V. 28. № 6. P. 1280.
  26. Grosberg A.Y., Khokhlov A.R. // Stat. Phys. Macromol., Am. Inst of Physics, 1994.
  27. Borue V.Y., Erukhimovich I.Y. // Macromolecules. 1990. V. 23. № 15. P. 3625.
  28. Landau L.D., Lifshitz E.M. Statistical Physics. Oxford: Elsevier, 2013. V. 5.
  29. Hatlo M.M., Van Roij R., Lue L. // Epl. 2012. V. 97. № 2. P. 28010.
  30. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред М.: Физматлит, 2005.
  31. Budkov Y.A., Kolesnikov A.L., Goodwin Z.A., Kiselev M.G., Kornyshev A.A. // Electrochim. Acta. 2018. V. 284. P. 346.
  32. Budkov Y.A., Kolesnikov A.L. // J. Stat. Mech.: Theory and Experiment. 2022. V. 2022. № 5. P. 53205.
  33. Brandyshev P.E., Budkov Y.A. // J. Chem. Phys. 2023. V. 158. № 17. P. 174114.
  34. Derjaguin B.V., Churaev N.V., Muller V.M. // Surf. Forces. 1987. P. 293.
  35. Budkov Y.A., Kolesnikov A.L. // Curr. Opin. Electrochem. 2022. V. 33. P. 100931.
  36. Podgornik R., Jönsson B. // Europhys. Lett. 1993. V. 24. № 6. P. 501.
  37. Podgornik R., Åkesson T., Jönsson B. // J. Chem. Phys. 1995. V. 102. № 23. P. 9423.
  38. Podgornik R., Livcer M. // Curr. Opin. Colloid Interface Sci. 2006. V. 11. № 5. P. 273.
  39. Budkov Y.A., Kolesnikov A.L., Kiselev M.G. // Europhys. Lett. 2015. V. 111. № 2. P. 28002.
  40. Budkov Y.A., Kolesnikov A.L., Kiselev M.G. // J. Chem. Phys. 2016. V. 144. № 18. P. 184703.
  41. Budkov Y.A., Sergeev A.V., Zavarzin S.V., Kolesnikov A.L. // J. Phys. Chem. C. 2020. V. 124. № 30. P. 16308.
  42. Budkov Y.A., Zavarzin S.V., Kolesnikov A.L. // J. Phys. Chem. C. 2021. V. 125. № 38. P. 21151.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (322KB)
3.

Жүктеу (256KB)

© Ю.А. Будков, Н.Н. Каликин, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>