Компьютерное моделирование нанокомпозитов на основе полиимида р-одфо, наполненного графеном: структурная симметрия графена и ее влияние на упорядочение цепей вблизи поверхности

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Ароматические полиимиды относятся к одному из наиболее перспективных классов функциональных полимеров, свойствами которых можно управлять путем добавления наночастиц графена. Структурные свойства композитов на основе полимеров, наполненных графеном, во многом определяются упорядочением цепей полиимидов вблизи поверхности наночастиц и зависят от особенностей межмолекулярного взаимодействия между ними. С этой точки зрения важной особенностью графена является его структурная симметрия, заключающаяся в наличии двух различных направлений (или осей), вдоль которых расположены атомы углерода – “zig-zag” и “armchair”. Непосредственное экспериментальное исследование связи самоорганизации полиимидов с наличием данных осей является крайне сложной задачей. Тем не менее понимание этого эффекта необходимо для поиска методов управления структурой и свойствами полиимидных нанокомпозитов, содержащих графен. В данной работе с применением метода полноатомной молекулярной динамики проведено компьютерное моделирование самоорганизации олигомеров и макромолекул полиимида Р-ОДФО вблизи графена. При рассмотрении самоорганизации олигомеров компьютерное моделирование выполнено для систем, состоящих из одного, двух и трех слоев димеров вблизи поверхности графена. В свою очередь, при рассмотрении самоорганизации макромолекул компьютерное моделирование проведено на микросекундном масштабе времен для трех различных конфигураций исследуемой системы. Показано, что направление упорядочения цепей на масштабе отдельных повторяющихся звеньев как в олигомерных, так и в полимерных системах можно считать скоррелированным с направлением осей, вдоль которых расположены атомы углерода, однако ни одна из них не является предпочтительной.

About the authors

S. V. Larin

Branch of the Federal State Budgetary Institution 'Petersburg Nuclear Physics Institute named after B.P. Konstantinov of the National Research Center 'Kurchatov Institute'

Email: selarin@macro.ru
199004 St. Petersburg, Bolshoy Pr., 31

S. G. Falkovich

Branch of the Federal State Budgetary Institution 'Petersburg Nuclear Physics Institute named after B.P. Konstantinov of the National Research Center 'Kurchatov Institute'

199004 St. Petersburg, Bolshoy Pr., 31

I. V. Volgin

Branch of the Federal State Budgetary Institution 'Petersburg Nuclear Physics Institute named after B.P. Konstantinov of the National Research Center 'Kurchatov Institute'

199004 St. Petersburg, Bolshoy Pr., 31

V. M. Nazarychev

Branch of the Federal State Budgetary Institution 'Petersburg Nuclear Physics Institute named after B.P. Konstantinov of the National Research Center 'Kurchatov Institute'

199004 St. Petersburg, Bolshoy Pr., 31

A. Yu. Dobrovskiy

Branch of the Federal State Budgetary Institution 'Petersburg Nuclear Physics Institute named after B.P. Konstantinov of the National Research Center 'Kurchatov Institute'

199004 St. Petersburg, Bolshoy Pr., 31

S. V. Lyulin

Branch of the Federal State Budgetary Institution 'Petersburg Nuclear Physics Institute named after B.P. Konstantinov of the National Research Center 'Kurchatov Institute'

199004 St. Petersburg, Bolshoy Pr., 31

References

  1. Gouzman I., Grossman E., Verker R., Atar N., Bolker A., Eliaz N. // Adv. Mater. 2019. V. 31. № 18. P. 1807738.
  2. Silva M., Alves N.M., Paiva M.C. // Polym. Adv. Technol. 2018. V. 29. № 2. P. 687.
  3. Díez-Pascual A.M., Sánchez J.A.L., Capilla R.P., Díaz P.G. // Polymers. 2018. V. 10. № 2. P. 217.
  4. Valenkov A.M., Gofman I.V., Nosov K.S., Shapovalov V.M., Yudin V.E. // Russ. J. Appl. Chem. 2011. V. 84. P. 735.
  5. Gudkov M.V., Stolyarova D.Y., Shiyanova K.A., Mel’nikov V.P. // Polymer Science C. 2022. V. 64. № 1. P. 40.
  6. Gerasin V.A., Antipov E.M., Karbushev V.V., Kulichikhin V.G., Karpacheva G.P., Talroze R.V., Kudryavtsev Y.V. // Russ. Chem. Rev. 2013. V. 82. № 4. P. 303.
  7. Irzhak V.I. // Polymer Science C. 2020. V. 62. № 1. P. 51.
  8. Nazarychev V.M., Larin S.V., Kenny J.M., Lyulin S.V. // Rev. Adv. Chem. 2021. V. 11. P. 85.
  9. Sahatiya P., Puttapati S.K., Srikanth V.V.S.S., Badhulika S. // Flex. Print. Electron. 2016. V. 1. № 2. P. 1.
  10. Park S., Chang H.Y., Rahimi S., Lee A.L., Tao L., Akinwande D. // Adv. Electron. Mater. 2018. V. 4. № 2. P. 1700043.
  11. Huang J., Wang J., Yang Z., Yang S. // ACS Appl. Mater. Interfaces. 2018. V. 10. № 9. P. 8180.
  12. Shokri R., Lacour M.A., Jarrosson T., Lère-Porte J.P., Serein-Spirau F., Miqueu K., Sotiropoulos J.M., Vonau F., Aubel D., Cranney M. // J. Am. Chem. Soc. 2013. V. 135. № 15. P. 5693.
  13. Nadtochiy A., Gorelov B., Polovina O., Shulga S., Korotchenkov O. // J. Mater. Sci. 2021. V. 56. № 25. P. 14047.
  14. Kim K.L., Lee W., Hwang S.K., Joo S.H., Cho S.M., Song G., Cho S.H., Jeong B., Hwang I., Ahn J.H. , Yu Y.-J., Tae J.S., Kwak S.K., Kang S.J., Park C. // Nano Lett. 2016. V. 16. № 1. P. 334.
  15. Huang C., He M., Liu D., Sun X., Gao B. // J. Phys. Chem. C. 2016. V. 120. № 31. P. 17564.
  16. Komarov P.V., Mikhailov I.V., Chiu Y.-T., Chen S.-M., Khalatur P.G. // Macromol. Theory Simulations. 2013. V. 22. № 3. P. 187.
  17. Goyal S., Park H.H., Lee S.H., Savoy E., McKenzie M.E., Rammohan A.R., Mauro J.C., Kim H., Min K., Cho E. // J. Phys. Chem. C. 2016. V. 120. № 41. P. 23631.
  18. Lee S.H., Stewart R.J., Park H., Goyal S., Botu V., Kim H., Min K., Cho E., Rammohan A.R., Mauro J.C. // J. Phys. Chem. C. 2017. V. 121. № 44. P. 24648.
  19. Min K., Kim Y., Goyal S., Lee S.H., McKenzie M., Park H., Savoy E.S. // Polymer. 2016. V. 98. P. 1.
  20. Zhao Y., Qi X., Ma J., Song L., Yang Y., Yang Q. // J. Appl. Polym. Sci. 2018. V. 135. № 27. P. 1.
  21. McKenzie M.E. Goyal S., Lee S.H., Park H.H., Savoy E., Rammohan A.R., Mauro J.C., Kim H., Min K., Cho E. // J. Phys. Chem. C. 2017. V. 121. № 1. P. 392.
  22. Min K., Rammohan A.R., Lee H.S., Shin J., Lee S.H., Goyal S., Park H., Mauro J.C., Stewart R., Botu V. // Sci. Rep. 2017. V. 7. № 1. P. 10475.
  23. Bourque A.J., Rutledge G.C. // Eur. Polym. J. 2018. V. 104. P. 64.
  24. Gulde M., Rissanou A.N., Harmandaris V., Müller M., Schäfer S., Ropers C. // Nano Lett. 2016. V. 16. № 11. P. 6994.
  25. Dobrovskiy A.Y., Nazarychev V.M., Larin S.V., Lyulin S.V. // J. Chem. Phys. 2024. V. 161. № 11. P. 114901.
  26. Yang J., Kim K., Lee Y., Kim K., Lee W.C., Park J. // FlatChem. 2017. V. 5. P. 50.
  27. Zhao Y., Wu Q., Chen Q., Wang J. // J. Phys. Chem. Lett. 2015. V. 6. № 22. P. 4518.
  28. Kim K., Santos E.J.G., Lee T.H., Nishi Y., Bao Z. // Small. 2015. V. 11. № 17. P. 2037.
  29. Mukhopadhyay T.K., Datta A. // J. Phys. Chem. C. 2017. V. 121. № 18. P. 10210.
  30. Toraman G., Sert E., Gulasik H., Toffoli D., Ustunel H., Gurses E. // Comput. Mater. Sci. 2021. V. 191. P. 110320.
  31. Falkovich S.G., Nazarychev V.M., Larin S.V., Kenny J.M., Lyulin S.V. // J. Phys. Chem. C. 2016. V. 120. № 12. P. 6771.
  32. Falkovich S.G., Larin S.V., Lyulin A.V., Yudin V.E., Kenny J.M., Lyulin S.V. // RSC Adv. 2014. V. 4. № 89. P. 48606.
  33. Kudryavtsev V.V., Sukhanova T.E., Didenko A.L., Gubanova G.N., Svetlichnyi V.M., Yudin V.E., Marom G., Ratner S. // J. Appl. Polym. Sci. 2002. V. 83. № 13. P. 2873.
  34. Larin S.V., Falkovich S.G., Nazarychev V.M., Gurtovenko A.A., Lyulin A.V., Lyulin S.V. // RSC Adv. 2014. V. 4. № 2. P. 830.
  35. Lyulin S.V., Larin S.V., Gurtovenko A.A., Nazarychev V.M., Falkovich S.G., Yudin V.E., Svetlichnyi V.M., Gofman I.V., Lyulin A.V. // Soft Matter. 2014. V. 10. № 8. P. 1224.
  36. Oostenbrink C., Villa A., Mark A.E., Van Gunsteren W.F. // J. Comput. Chem. 2004. V. 25. № 13. P. 1656.
  37. Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindah E. // SoftwareX. 2015. V. 1. P. 19.
  38. Berendsen H.J.C., Postma J.P.M., Van Gunsteren W.F., Dinola A., Haak J.R. // J. Chem. Phys. 1984. V. 81. № 8. P. 3684.
  39. Dobrovskiy A.Y., Nazarychev V.M., Volgin I.V., Lyulin S.V. // Membranes. 2022. V. 12. № 9. P. 856.
  40. de Gennes P.G, J. Prost // The Physics of Liquid Crystals. Oxford: Oxford Univ. Press, 1995.
  41. Nazarychev V.M., Vaganov G.V., Larin S.V., Didenko A.L., Elokhovskiy V.Y., Svetlichnyi V.M., Yudin V.E., Lyulin S.V. // Polymers. 2022. V. 14. № 15. P. 3154.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».