DF-5 compound delays development of diabetic nephropathy in rats

封面

如何引用文章

详细

Advanced glycation end-products play an important role in the development of diabetic complications, so slowing down of glycated proteins’ cross-links formation have been suggested as a potential therapeutic option for the treatment of vascular diabetic complications and preventing their progression.

The aim of the work was to assess the influence of novel anticrosslinking agent DF-5 on the renal advanced glycation end-products and collagen contents, body weight, blood glucose and glycated hemoglobin levels and the development of early renal disease in streptozotocin-induced diabetic rats.

Materials and methods. 40 male Sprague-Dawley rats were used in the study. Two months after inducing diabetes, the study substance was administered intragastrically once a day for 28 days (12.5 mg/kg). Measurements included the assessment of blood glucose and HbA1c levels, the evaluation of the renal function, and the results of histology and immunohistochemical staining of kidneys.

Results. A repeated intragastric administration of DF-5 for 30 days significantly reduced the level of HbA1c in the blood, but did not affect the level of fasting blood glucose. DF-5 compound significantly reduced proteinuria and prevented kidney damage in experimental animals by limiting damage of the glomeruli and tubules. It was found that DF-5 inhibits the progression of an early renal dysfunction in rats with streptozotocin-induced diabetic nephropathy. This was associated with a decreased accumulation of advanced glycation end-products in the kidney, accompanied by the improvement of both renal morphology and function.

Conclusion. The results obtained provide investigators with additional therapeutic options for the treatment of diabetic nephropathy and possibly other complications of diabetes.

作者简介

Alexander Spasov

Volgograd State Medical University; Volgograd Medical Research Center

Email: aspasov@mail.ru
ORCID iD: 0000-0002-7185-4826

Doctor of Sciences (Medicine), Academician of RAS, Head of the Pharmacology and Bioinformatics Department, Volgograd State Medical University; Head of the Laboratory of Experimental Pharmacology, Volgograd Medical Research Center

俄罗斯联邦, 1, Pavshikh Bortsov Sq., Volgograd, 400131; 1, Pavshikh Bortsov Sq., Volgograd, 400131

Olga Zhukovskaya

Institute of Physical and Organic Chemistry, Southern Federal University

Email: zhukowskaia.ol@yandex.ru
ORCID iD: 0000-0003-2485-2139

Candidate of Sciences (Chemistry), Senior researcher of the Organic Synthesis Laboratory

俄罗斯联邦, Bldg 2, 194, Stachki Ave., Rostov-on-Don, 344090

Andrey Rashchenko

Volgograd State Medical University

Email: a.rashencko@yandex.ru

Candidate of Sciences (Pharmacy), Senior researcher of the Metabotropic Drugs Laboratory

俄罗斯联邦, 1, Pavshikh Bortsov Sq., Volgograd, 400131

Anasthasia Brigadirova

Volgograd State Medical University; Volgograd Medical Research Center

Email: a.brigadirova@gmail.com
ORCID iD: 0000-0003-0957-7087

Candidate of Sciences (Medicine), Associate Professor, Pharmacology and Bioinformatics Department, Volgograd State Medical University; Volgograd Medical Research Center

俄罗斯联邦, 1, Pavshikh Bortsov Sq., Volgograd, 400131; 1, Pavshikh Bortsov Sq., Volgograd, 400131

Roman Litvinov

Volgograd State Medical University; Volgograd Medical Research Center

编辑信件的主要联系方式.
Email: litvinov.volggmu@mail.ru
ORCID iD: 0000-0002-0162-0653

Candidate of Sciences (Medicine), Senior researcher of the Metabotropic drugs Laboratory, Volgograd State Medical University; Researcher of the Laboratory of Experimental Pharmacology, Volgograd Medical Research Center

俄罗斯联邦, 1, Pavshikh Bortsov Sq., Volgograd, 400131; 1, Pavshikh Bortsov Sq., Volgograd, 400131

Natalia Gurova

Volgograd State Medical University

Email: gurova.vlgmed@mail.ru
ORCID iD: 0000-0002-0670-1444

Doctor of Sciences (Medicine), Professor of the Pharmacology and Bioinformatics Department

俄罗斯联邦, 1, Pavshikh Bortsov Sq., Volgograd, 400131

Alexey Smirnov

Volgograd State Medical University; Volgograd Medical Research Center

Email: alexey-smirnov@rambler.ru
ORCID iD: 0000-0001-5351-6105

Doctor of Sciences (Medicine), Head of the Pathological Anatomy Department, Volgograd State Medical University

俄罗斯联邦, 1, Pavshikh Bortsov Sq., Volgograd, 400131; 1, Pavshikh Bortsov Sq., Volgograd, 400131

Nicolay Pan’shin

Volgograd State Medical University

Email: panshin.nickolay@gmail.com
ORCID iD: 0000-0002-4035-4108

Candidate of Sciences (Medicine), Associate Professor, Pathological Anatomy Department

俄罗斯联邦, 1, Pavshikh Bortsov Sq., Volgograd, 400131

Haider Abbas

Institute of Physical and Organic Chemistry, Southern Federal University

Email: vip.haider89@gmail.ru

Master’s student of the Organic Synthesis Laboratory

俄罗斯联邦, Bldg 2, 194, Stachki Ave., Rostov-on-Don, 344090

Anatoliy Morkovnik

Institute of Physical and Organic Chemistry, Southern Federal University

Email: asmork@mail.ru
ORCID iD: 0000-0002-9182-6101

Doctor of Sciences (Chemistry), Chief Researcher, Organic Synthesis Laboratory

俄罗斯联邦, Bldg 2, 194, Stachki Ave., Rostov-on-Don, 344090

参考

  1. Silva JAD, Souza ECF, Echazú Böschemeier AG, Costa CCMD, Bezerra HS, Feitosa EELC. Diagnosis of diabetes mellitus and living with a chronic condition: participatory study. BMC Public Health. 2018 Jun 5;18(1):699. doi: 10.1186/s12889-018-5637-9
  2. Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol. 2014 Feb;18(1):1–14. doi: 10.4196/kjpp.2014.18.1.1
  3. Rhee SY, Kim YS. The Role of Advanced Glycation End Products in Diabetic Vascular Complications. Diabetes Metab J. 2018 Jun;42(3):188–95. doi: 10.4093/dmj.2017.0105
  4. Chaudhuri J, Bains Y, Guha S, Kahn A, Hall D, Bose N, Gugliucci A, Kapahi P. The Role of Advanced Glycation End Products in Aging and Metabolic Diseases: Bridging Association and Causality. Cell Metab. 2018 Sep 4;28(3):337–52. doi: 10.1016/j.cmet.2018.08.014
  5. Bodiga VL, Eda SR, Bodiga S. Advanced glycation end products: role in pathology of diabetic cardiomyopathy. Heart Fail Rev. 2014 Jan;19(1):49–63. doi: 10.1007/s10741-013-9374-y
  6. Bhat S, Mary S, Giri AP, Kulkarni MJ. Advanced Glycation End Products (AGEs) in Diabetic Complications. In: Kartha CC, Ramachandran S, Pillai RM, editors. Mechanisms of Vascular Defects in Diabetes Mellitus, Cham: Springer International Publishing; 2017, p. 423–49. doi: 10.1007/978-3-319-60324-7_19
  7. Rabbani N, Thornalley PJ. Advanced glycation end products in the pathogenesis of chronic kidney disease. Kidney Int. 2018 Apr;93(4):803–13. doi: 10.1016/j.kint.2017.11.034
  8. Nabi R, Alvi SS, Saeed M, Ahmad S, Khan MS. Glycation and HMG-CoA Reductase Inhibitors: Implication in Diabetes and Associated Complications. Curr Diabetes Rev. 2019;15(3):213–23. doi: 10.2174/1573399814666180924113442
  9. Nabi R, Alvi SS, Khan RH, Ahmad S, Ahmad S, Khan MS. Antiglycation study of HMG-R inhibitors and tocotrienol against glycated BSA and LDL: A comparative study. Int J Biol Macromol. 2018 Sep;116:983–92. doi: 10.1016/j.ijbiomac.2018.05.115
  10. Rahbar S, Figarola JL. Novel inhibitors of advanced glycation endproducts. Arch Biochem Biophys. 2003 Nov 1;419(1):63–79. doi: 10.1016/j.abb.2003.08.009
  11. Akhter F, Khan MS, Ahmad S. Acquired immunogenicity of calf thymus DNA and LDL modified by D-ribose: a comparative study. Int J Biol Macromol. 2015 Jan;72:1222-7. doi: 10.1016/j.ijbiomac.2014.10.034
  12. Jabir NR, Ahmad S, Tabrez S. An insight on the association of glycation with hepatocellular carcinoma. Semin Cancer Biol. 2018 Apr;49:56–63. doi: 10.1016/j.semcancer.2017.06.005
  13. Brings S, Fleming T, Freichel M, Muckenthaler MU, Herzig S, Nawroth PP. Dicarbonyls and Advanced Glycation End-Products in the Development of Diabetic Complications and Targets for Intervention. Int J Mol Sci. 2017 May 5;18(5):984. doi: 10.3390/ijms18050984
  14. Vasan S, Foiles P, Founds H. Therapeutic potential of breakers of advanced glycation end product-protein crosslinks. Arch Biochem Biophys. 2003 Nov 1;419(1):89–96. doi: 10.1016/j.abb.2003.08.016
  15. Zuehlke CW. Methods of Organic Elemental Microanalysis. J Am Chem Soc. 1963;85(16):2536. doi: 10.1021/ja00899a055
  16. Vasan S, Zhang X, Zhang X, Kapurniotu A, Bernhagen J, Teichberg S, Basgen J, Wagle D, Shih D, Terlecky I, Bucala R, Cerami A, Egan J, Ulrich P. An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature. 1996 Jul 18;382(6588):275–8. doi: 10.1038/382275a0
  17. Zhukovskaya ON, Anisimova VA, Morkovnik AS, Petrov VI, Spasov AA, Rashchenko AI, Brigadirova AA, Abbas HSA. 9-Benzyl-2-biphenylimidazo[1,2-a]benzimidazole and pharmaceutically acceptable salts thereof that express properties of destroyers of transversal cross-links of glycosylated proteins. RU 2627769 C1, 2017.
  18. Zhang B, He K, Chen W, Cheng X, Cui H, Zhong W, Li S, Wang L. Alagebrium (ALT-711) improves the anti-hypertensive efficacy of nifedipine in diabetic-hypertensive rats. Hypertens Res. 2014 Oct;37(10):901–7. doi: 10.1038/hr.2014.98
  19. Cheng G, Wang LL, Qu WS, Long L, Cui H, Liu HY, Cao YL, Li S. C16, a novel advanced glycation endproduct breaker, restores cardiovascular dysfunction in experimental diabetic rats. Acta Pharmacol Sin. 2005 Dec; 26(12):1460–6. doi: 10.1111/j.1745-7254.2005.00240.x
  20. Cheng G, Wang LL, Long L, Liu HY, Cui H, Qu WS, Li S. Beneficial effects of C36, a novel breaker of advanced glycation endproducts cross-links, on the cardiovascular system of diabetic rats. Br J Pharmacol. 2007 Dec;152(8):1196–206. doi: 10.1038/sj.bjp.0707533
  21. Spasov AA, Zhukovskaya ON, Brigadirova AA, Abbas HSA, Anisimova VA, Sysoeva VA, Rashchenko AI, Litvinov RA, Mayka OYu, Babkov DA, Morkovnik AS. Synthesis and pharmacological activity of 2-(biphenyl-4-yl)imidazo[1,2-a]benzimidazoles. Russ Chem Bull. 2017;66:1905–1912. doi: 10.1007/s11172-017-1965-7
  22. Cho SJ, Roman G, Yeboah F, Konishi Y. The road to advanced glycation end products: a mechanistic perspective. Curr Med Chem. 2007;14(15):1653–71. doi: 10.2174/092986707780830989
  23. Tang SCW, Yiu WH. Innate immunity in diabetic kidney disease. Nat Rev Nephrol. 2020 Apr;16(4):206–22. doi: 10.1038/s41581-019-0234-4
  24. Yao D, Wang S, Wang M, Lu W. Renoprotection of dapagliflozin in human renal proximal tubular cells via the inhibition of the high mobility group box 1-receptor for advanced glycation end products-nuclear factor-κB signaling pathway. Mol Med Rep. 2018 Oct;18(4):3625–30. doi: 10.3892/mmr.2018.9393
  25. Kolset SO, Reinholt FP, Jenssen T. Diabetic nephropathy and extracellular matrix. J Histochem Cytochem. 2012 Dec;60(12):976–86. doi: 10.1369/0022155412465073
  26. Dalla Vestra M, Saller A, Mauer M, Fioretto P. Role of mesangial expansion in the pathogenesis of diabetic nephropathy. J Nephrol. 2001 Nov-Dec;14 Suppl 4:S51-7.
  27. Amorim RG, Guedes GDS, Vasconcelos SML, Santos JCF. Kidney Disease in Diabetes Mellitus: Cross-Linking between Hyperglycemia, Redox Imbalance and Inflammation. Arq Bras Cardiol. 2019 Jun 6;112(5):577–87. doi: 10.5935/abc.20190077. Erratum in: Arq Bras Cardiol. 2019 Aug 08;113(1):182.
  28. Vasan S, Foiles PG, Founds HW. Therapeutic potential of AGE inhibitors and breakers of AGE protein cross-links. Expert Opin Investig Drugs. 2001 Nov;10(11):1977–87. doi: 10.1517/13543784.10.11.1977
  29. Forbes JM, Thallas V, Thomas MC, Founds HW, Burns WC, Jerums G, Cooper ME. The breakdown of preexisting advanced glycation end products is associated with reduced renal fibrosis in experimental diabetes. FASEB J. 2003 Sep;17(12):1762–4. doi: 10.1096/fj.02-1102fje
  30. Kim YS, Kim J, Kim CS, Sohn EJ, Lee YM, Jeong IH, Kim H, Jang DS, Kim JS. KIOM-79, an Inhibitor of AGEs-Protein Cross-linking, Prevents Progression of Nephropathy in Zucker Diabetic Fatty Rats. Evid Based Complement Alternat Med. 2011;2011:761859. doi: 10.1093/ecam/nep078
  31. Jung E, Park SB, Jung WK, Kim HR, Kim J. Antiglycation Activity of Aucubin In Vitro and in Exogenous Methylglyoxal Injected Rats. Molecules. 2019 Oct 10;24(20):3653. doi: 10.3390/molecules24203653
  32. Kim J, Kim CS, Kim YS, Lee IS, Kim JS. Jakyakgamcho-tang and Its Major Component, Paeonia Lactiflora, Exhibit Potent Anti-glycation Properties. J Exerc Nutrition Biochem. 2016 Dec 31;20(4):60–4. doi: 10.20463/jenb.2016.0049
  33. Kim CS, Jo K, Pyo MK, Kim JS, Kim J. Pectin lyase-modified red ginseng extract exhibits potent anti-glycation effects in vitro and in vivo. J Exerc Nutrition Biochem. 2017 Jun 30;21(2):56–62. doi: 10.20463/jenb.2017.0011
  34. Coughlan MT, Forbes JM, Cooper ME. Role of the AGE crosslink breaker, alagebrium, as a renoprotective agent in diabetes. Kidney International. 2007;72(Suppl 106): 54–60. DOI:doi.org/10.1038/sj.ki.5002387
  35. Thallas-Bonke V, Lindschau C, Rizkalla B, Bach LA, Boner G, Meier M, Haller H, Cooper ME, Forbes JM. Attenuation of Extracellular Matrix Accumulation in Diabetic Nephropathy by the Advanced Glycation End Product Cross-Link Breaker ALT-711 via a Protein Kinase C- -Dependent Pathway. Diabetes. 2004;53:2921–30. doi: 10.2337/diabetes.53.11.2921
  36. Yang S, Litchfield JE, Baynes JW. AGE-breakers cleave model compounds, but do not break Maillard crosslinks in skin and tail collagen from diabetic rats. Arch Biochem Biophys. 2003 Apr 1;412(1):42–6. doi: 10.1016/s0003-9861(03)00015-8
  37. Nasiri R, Field MJ, Zahedi M, Moosavi-Movahedi AA. Cross-linking mechanisms of arginine and lysine with α,β-dicarbonyl compounds in aqueous solution. J Phys Chem A. 2011 Nov 24;115(46):13542–55. doi: 10.1021/jp205558d
  38. Nasiri R, Field MJ, Zahedi M, Moosavi-Movahedi AA. Comparative DFT Study To Determine if α-Oxoaldehydes are Precursors for Pentosidine Formation. J Phys Chem A 2012;116(11):2986–96. doi: 10.1021/jp2104165
  39. Nobécourt E, Zeng J, Davies MJ, Brown BE, Yadav S, Barter PJ, Rye KA. Effects of cross-link breakers, glycation inhibitors and insulin sensitisers on HDL function and the non-enzymatic glycation of apolipoprotein A-I. Diabetologia. 2008 Jun;51(6):1008–17. doi: 10.1007/s00125-008-0986-z
  40. Kim T, Spiegel DA. The unique reactivity of N-phenacyl-derived thiazolium salts toward α-dicarbonyl compounds. Rejuvenation Res. 2013 Feb;16(1):43–50. doi: 10.1089/rej.2012.1370
  41. Sherwani SI, Khan HA, Ekhzaimy A, Masood A, Sakharkar MK. Significance of HbA1c Test in Diagnosis and Prognosis of Diabetic Patients. Biomark Insights. 2016 Jul 3;11: 95–104. doi: 10.4137/BMI.S38440
  42. Nagai R, Murray DB, Metz TO, Baynes JW. Chelation: a fundamental mechanism of action of AGE inhibitors, AGE breakers, and other inhibitors of diabetes complications. Diabetes. 2012 Mar;61(3):549–59. doi: 10.2337/db11-1120
  43. Toprak C, Yigitaslan S. Alagebrium and Complications of Diabetes Mellitus. Eurasian J Med. 2019 Oct;51(3): 285–92. doi: 10.5152/eurasianjmed.2019.18434

补充文件

附件文件
动作
1. JATS XML
2. Figure 1 – Synthesis scheme for preparation of 9-benzyl-2-biphenylimidazo[1,2-a]benzimidazole hydrochloride (DF-5)

下载 (45KB)
3. Figure 2 – Chemical structure of ALT-711 (alagebrium)

下载 (19KB)
4. Figure 3 – Glomerular histopathology. Effect of diabetes and either DF-5 or ALT-711 on kidney tissues

下载 (519KB)
5. Figure 4 – Effect of diabetes and either DF-5 or ALT-711 on renal AGEs accumulation

下载 (317KB)

版权所有 © Spasov A., Zhukovskaya O., Rashchenko A., Brigadirova A., Litvinov R., Gurova N., Smirnov A., Pan’shin N., Abbas H., Morkovnik A., 2023

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可
 
##common.cookie##