Effect of solid dispersions on the solubility of metronidazole

封面

如何引用文章

详细

The aim of the work is to study the effect of solid dispersions using polyethylene glycols of various molecular weights on the solubility of metronidazole in water. Metronidazole is an antimicrobial and antiprotozoal drug. Its low solubility in water limits the use of metronidazole, causing technological difficulties and reducing its bioavailability. The solubility and release of the active substance from dosage forms can be increased using the solid dispersion methods. Solid dispersions are bi- or multicomponent systems consisting of an active substance and a carrier (a highly dispersed solid phase of the active substance or molecular-dispersed solid solutions) with a partial formation of complexes of variable compositions with the carrier material.

Materials and methods. The substance of metronidazole used in the experiment, was manufactured by Hubei Hongyuan Pharmaceutical Technology Co., Ltd. (China). To obtain solid dispersions, polyethylene glycols of various molar masses – 1500, 2000 and 3000 g/mol – were used. The solid dispersions were prepared by “the solvent removal method”: metronidazole and the polymer were dissolved in a minimum volume of 96% ethyl alcohol (puriss. p.a./analytical grade) at 65±2°C, and then the solvent was evaporated under vacuum to the constant weight. A vacuum pump and a water bath were used at the temperature of 40±2°C. The dissolution of the samples was studied using a magnetic stirrer with heating, and a thermostatting device. The concentration of metronidazole was determined on a spectrophotometer using quartz cuvettes at the wavelength of 318±2 nm. To filter the solutions, syringe nozzles were used, the pores were 0.45 μm, the filter was nylon. Microcrystalloscopy was performed using a microscope with a digital camera. The optical properties of the solutions were investigated using a quartz cuvette and a mirror camera (the image exposure – 20 sec).

Results. Obtaining solid dispersions increases the completeness and rate of the metronidazole dissolution. The solubility of metronidazole from solid dispersions increases by 14–17% in comparison with the original substance. The complex of physical-chemical methods of the analysis, including UV spectrophotometry, microcrystalloscopy and the study of the optical properties of the obtained solutions, makes it possible to suggest the following. The increase in the solubility of metronidazole from solid dispersions is explained by the loss of crystallinity and the formation of a solid solution of the active substance and the solubilizing effect of the polymer with the formation of colloidal solutions of metronidazole at subsequent dissolution of the solid dispersion in water.

Conclusion. The preparation of solid dispersions with polyethylene glycols improves the dissolution of metronidazole in water. The results obtained are planned to be used in the development of rapidly dissolving solid dosage forms of metronidazole with an accelerated release and an increased bioavailability.

作者简介

Ivan Krasnyuk

Sechenov First Moscow State Medical University

编辑信件的主要联系方式.
Email: krasnyuk.79@mail.ru
ORCID iD: 0000-0001-8557-8829

Doctor of Sciences (Pharmacy), Professor, Institute of Pharmacy n. a. A.P. Nelyubin, Department of Analytical, Physical and Colloidal Chemistry

俄罗斯联邦, Bldg. 2, 8, Trubetskaya St., Moscow, Russia, 119991

Savva Naryshkin

Sechenov First Moscow State Medical University

Email: savva.naryshkin@gmail.com
ORCID iD: 0000-0003-1775-4805

post-graduate student, Institute of Pharmacy n. a. A.P. Nelyubin, Department of Analytical, Physical and Colloidal Chemistry

俄罗斯联邦, Bldg. 2, 8, Trubetskaya St., Moscow, Russia, 119991

Iv. Krasnyuk

Sechenov First Moscow State Medical University

Email: krasnyuki@mail.ru
ORCID iD: 0000-0002-7242-2988

Doctor of Sciences (Pharmacy), Professor, Institute of Pharmacy n. a. A.P. Nelyubin, Department of Pharmaceutical Technology

俄罗斯联邦, Bldg. 2, 8, Trubetskaya St., Moscow, Russia, 119991

Anastasia Belyatskaya

Sechenov First Moscow State Medical University

Email: av.beliatskaya@mail.ru
ORCID iD: 0000-0002-8214-4483

Candidate of Sciences (Pharmacy), Associate Professor, Institute of Pharmacy n. a. A.P. Nelyubin, Department of Pharmaceutical Technology

俄罗斯联邦, Bldg. 2, 8, Trubetskaya St., Moscow, Russia, 119991

Olga Stepanova

Sechenov First Moscow State Medical University

Email: o.i.nikulina@mail.ru
ORCID iD: 0000-0002-9885-3727

Candidate of Sciences (Pharmacy), Senior Lecturer, Department of Pharmacology, Institute of Pharmacy n. a. A.P. Nelyubin, Department of Pharmacology

俄罗斯联邦, Bldg. 2, 8, Trubetskaya St., Moscow, Russia, 119991

Ivan Bobrov

Sechenov First Moscow State Medical University

Email: bobrov2602@yandex.ru
ORCID iD: 0000-0001-8263-5541

student, Institute of Pharmacy n. a. A.P. Nelyubin, Department of Analytical, Physical and Colloidal Chemistry

俄罗斯联邦, Bldg. 2, 8, Trubetskaya St., Moscow, Russia, 119991

Viktoria Yankova

Sechenov First Moscow State Medical University

Email: yankowa@rambler.ru
ORCID iD: 0000-0002-8233-5087

Candidate of Sciences (Pharmacy), Associate Professor, Institute of Pharmacy n. a. A.P. Nelyubin, Department of Analytical, Physical and Colloidal Chemistry

俄罗斯联邦, Bldg. 2, 8, Trubetskaya St., Moscow, Russia, 119991

Julietta Rau

Sechenov First Moscow State Medical University; Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR)

Email: giulietta.rau@ism.cnr.it
ORCID iD: 0000-0002-7953-1853

Candidate of Sciences (Chemistry), Associate Professor of the Department of Analytical, Physical and Colloidal Chemistry

意大利, Bldg. 2, 8, Trubetskaya St., Moscow, Russia, 119991; Via del Fosso del Cavaliere, 100-00133 Rome, Italy

Alexander Vorobiev

Peoples’ Friendship University of Russia

Email: alek_san2007@mail.ru
ORCID iD: 0000-0002-7182-9911

Candidate of Sciences (Pharmacy), Head of the Laboratory of Industrial Pharmaceutical Technology, Center for Collective Use (REC)

俄罗斯联邦, 6, Miklukho-Maclay St., Moscow, Russia, 117198

参考

  1. Krasnyuk II, Beliatskaya AV, Krasnyuk II, et al. Influence of Polymers on the Physicochemical Properties of Benzonal in Solid Dispersions. Moscow Univ. Chem. Bull. 2020; 75: 388–90. doi: 10.3103/S0027131420060127.
  2. Beliatskaya AV, Krasnyuk II, Elagina AO, et al. Study of the Solubility of Furazolidone from Solid Dispersions with Polyvinylpyrrolidone. Moscow Univ. Chem. Bull. 2020; 75: 43–6. doi: 10.3103/S0027131420010046.
  3. Kosenkova SI, Krasnyuk II, Krasnyuk Jr II, et al. Antimycotic Activity of Naftifine Hydrochloride Solution in Combination with Poly(Ethylene Glycols). Pharm Chem J. 2020; 54: 310–1. doi: 10.1007/s11094-020-02196-w
  4. Belyatskaya AV, Kashlikova IM, Krasnyuk II, Krasnyuk II Jr, Stepanova OI, Vorob’ev AN. Development of compositions and production technology for gels with a solid dispersal of nitrofural. Pharmaceutical Chemistry Journal. 2020; 53(10): 981–5. doi: 10.1007/s11094-020-02109-x.
  5. Krasnyuk II Jr, Ovsyannikova LV, Stepanova OI, Belyatskaya AV, Krasnyuk II, Grikh VV, Kosheleva TM, Kozin DA, Skovpen YV. Development of dosage forms containing solid dispersion of diclofenac. Pharmaceutical Chemistry Journal. 2018; 52(4): 357–60. doi: 10.1007/s11094-018-1821-6.
  6. Krasnyuk II Jr, Beliatskaya AV, Krasnyuk II, Stepanova OI, Korol LA, Valeeva AM, Grikh VV, Ovsyannikova LV, Kosheleva TM. Effect of solid dispersions on the dissolution of ampicillin. BioNanoScience. 2017;7(2): 340–4. doi: 10.1007/s12668-016-0342-6.
  7. Krasnyuk II Jr, Kosheleva TM, Belyatskaya AV, Krasnyuk II, Stepanova OI, Skovpen YV, Grikh VV, Ovsyannikova LV. Effect of solid dispersions with polyethylene glycol 1500 on the solubility of indomethacin. Pharmaceutical Chemistry Journal. 2018;52(3):241–4. doi: 10.1007/s11094-018-1799-0.
  8. Belyatskaya AV, Krasnyuk II Jr, Krasnyuk II, Stepanova OI, Kosheleva TM, Kudinova TP, Vorob’ev AN, Maryanyan MM. Dissolution of ketoprofen from poly(ethylene glycol) solid dispersions. Pharmaceutical Chemistry Journal. 2019; 52(12):1001–6. doi: 10.1007/s11094-019-01941-0.
  9. Belyatskaya AV, Krasnyuk II Jr, Krasnyuk II, Stepanova OI, Abgaryan ZA, Kudinova TP, Vorob’yov AN, Nesterenko IS. Study on the solubility of ketoprofen from solid dispersions with polyvinylpyrrolidone. Moscow university chemistry bulletin. 2019;74(2):93–9. doi: 10.3103/S0027131419020056.
  10. Silaeva SYu, Belenova AS, Slivkin AI, Chupandina EE, Naryshkin SR, Krasnyuk II Jr, Krasnyuk II. Use of solid dispersion systems in pharmacy. Condensed Matter and Interphases. 2020;22(2):173–81. doi: 10.17308/kcmf.2020.22/2820.
  11. Troyanova SYu, Korsunskaia IM, Sorkina IL, Sobolev VV. Justification of the efficacy of metronidazole in the treatment of rosacea. Klinicheskaya Dermatologiya i Venerologiya. 2017;16(5):45–8. doi: 10.17116/klinderma201716545-48. Russian
  12. Feres M, Retamal-Valdes B, Mestnik MJ, de Figueiredo LC, Faveri M, Duarte PM, Fritoli A, Faustino E, Souto MLS, de Franco Rodrigues M, Giudicissi M, Nogueira BCL, Saraiva L, Romito GA, Pannuti CM. The ideal time of systemic metronidazole and amoxicillin administration in the treatment of severe periodontitis: study protocol for a randomized controlled trial. Trials. 2018 Mar 27;19(1):201. doi: 10.1186/s13063-018-2540-8.
  13. Buddenkotte J, Steinhoff M. Recent advances in understanding and managing rosacea. F1000Res. 2018 Dec 3;7:F1000 Faculty Rev-1885. doi: 10.12688/f1000research.16537.1.
  14. Singh N, Sarangi Mk, Solid Dispersion – a Novel Approach for Enhancement of Bioavailability of Poorly Soluble Drugs in Oral Drug Delivery System. Global Journal of Pharmacy & Pharmaceutical Sciences. 2017;3(2):30–7. doi: 10.19080/GJPPS.2017.03.555608
  15. Huang S, Mao C, Williams RO 3rd, Yang CY. Solubility Advantage (and Disadvantage) of Pharmaceutical Amorphous Solid Dispersions. J Pharm Sci. 2016 Dec;105(12):3549–3561. doi: 10.1016/j.xphs.2016.08.017.
  16. Huang Y, Dai WG. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharmaceutica Sinica B. 2013; 4(1): 18-25. doi: 10.1016/j.apsb.2013.11.001.
  17. Chen X, Partheniadis I, Nikolakakis I, Al-Obaidi H. Solubility Improvement of Progesterone from Solid Dispersions Prepared by Solvent Evaporation and Co-milling. Polymers (Basel). 2020 Apr 7;12(4):854. doi: 10.3390/polym12040854.
  18. Teodorescu M, Bercea M, Morariu S. Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges. Biotechnol Adv. 2019 Jan-Feb;37(1):109–31. doi: 10.1016/j.biotechadv.2018.11.008.
  19. Hou HH, Rajesh A, Pandya KM, Lubach JW, Muliadi A, Yost E, Jia W, Nagapudi K. Impact of Method of Preparation of Amorphous Solid Dispersions on Mechanical Properties: Comparison of Coprecipitation and Spray Drying. J Pharm Sci. 2019 Feb;108(2):870–9. doi: 10.1016/j.xphs.2018.09.008.
  20. Parker AS, Gilpin CJ, Stewart AA, Beaudoin SP, Taylor LS. Dissolution of indomethacin crystals into a polymer melt: role of diffusion and fragmentation. Crystal growth and design. 2019; 19(6): 3315–28. DOI: 0000-0001-6986–8252.
  21. Siepmann J, Faham A, Clas SD, Boyd BJ, Jannin V, Bernkop-Schnürch A, Zhao H, Lecommandoux S, Evans JC, Allen C, Merkel OM, Costabile G, Alexander MR, Wildman RD, Roberts CJ, Leroux JC. Lipids and polymers in pharmaceutical technology: Lifelong companions. Int J Pharm. 2019 Mar 10;558:128–42. doi: 10.1016/j.ijpharm.2018.12.080.
  22. Younis MA. Solid dispersion technology, a contemporary overview on a well established technique. Universal Journal of Pharmaceutical Research. 2017; 2(3):15–9. doi: 10.22270/ujpr.v2i3.RW1.
  23. Luebbert C, Klanke C, Sadowski G. Investigating phase separation in amorphous solid dispersions via Raman mapping. Int J Pharm. 2018 Jan 15;535(1–2):245–52. doi: 10.1016/j.ijpharm.2017.11.014.
  24. Okada K, Hirai D, Hayashi Y, Kumada S, Kosugi A, Onuki Y. A Novel Approach to Evaluate Amorphous-to-Crystalline Transformation of Active Pharmaceutical Ingredients in Solid Dispersion Using Time-Domain NMR. Chem Pharm Bull (Tokyo). 2019;67(3):265-70. doi: 10.1248/cpb.c18-00887.
  25. Singh A., Van den Mooter G. Spray drying formulation of amorphous solid dispersions. Adv Drug Deliv Rev. 2016 May 1;100:27–50. doi: 10.1016/j.addr.2015.12.010.

补充文件

附件文件
动作
1. JATS XML
2. Figure 1 – Structural formula of metronidazole C6H9N3O3, 2-(2-Methyl-5-nitro-1H-imidazol-1-yl)ethanol, (171.15 g/mol)

下载 (10KB)
3. Figure 2 – Changes in concentrations of metronidazole and SD solutions with PEG-1500 and PEG-2000 over time

下载 (141KB)
4. Figure 3 – Changes in concentrations of metronidazole and SD solutions with PEG-2000 and PEG-3000 over time

下载 (126KB)
5. Figure 4 – Microcrystalloscopic analysis (magnification x 64)

下载 (294KB)
6. Figure 5 – Optical properties of SD metronidazole solutions

下载 (90KB)

版权所有 © Krasnyuk I.I., Naryshkin S.R., Krasnyuk I.I., Belyatskaya A.V., Stepanova O.I., Bobrov I.S., Yankova V.G., Rau J.V., Vorobiev A.N., 2021

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可
 
##common.cookie##