Multisensory colorimetric analysis of drugs dydrogesterone, troxerutin and ademetionine using barcodes

封面

如何引用文章

详细

The aim of this study is to develop a universal, rapid and affordable method for the identification of dydrogesterone, troxerutin, and ademetionine in drugs by multisensor digital colorimetry using a unique two-dimensional code. The developed approach can be applied to rapid detection of counterfeit drugs at the preliminary stage of the analysis (before using more expensive specialized equipment).

Materials and methods. To implement the proposed approach, the substances of dydrogesterone (“Abbott Biologicals B.V.”, Netherlands), troxerutin (JSC “Interfarma”, Prague, Czech Republic) and ademetionine (LLC “Farmamed”, Moscow, Russia), troxerutin capsules 300 mg (LLC “Pranafarm”, Samara, Russia), lyophilisate for an intravenous solution and the intramuscular administration “Heptral”® (ademetionine) 400 mg (“Abbott Laboratories”, GMBH, Germany), tablets “Duphaston”® (dydrogesterone) 10 mg (“Abbott Healthcare Products B.V.”, Netherlands), were used. A multisensor colorimetry method has been implemented using the following set of 8 sensors (C1–C8): an intact solution – a 96% (v/v) aqueous ethanol solution – C1; 1 mM alcoholic solution of anthraquinone green (CAS#4403-90-1) – C2; a 0.2% aqueous solution of 3-methylbenzothiazolinone hydrazone (CAS#1128-67-2) – C3; a 0.2% methyl orange aqueous solution (CAS#547-58-0) – C4; a 1 mM alcoholic solution of sulforhodamine B (CAS#3520-42-1) – C5; a 1 mM alcoholic solution of 1-hydroxypyrene (CAS#5315-79-7) – C6; 1 mM alcoholic solution of allura red AC (CAS#25956-17-6) – C7; a 1 mM aqueous solution of iron (III) chloride – C8. Transparent flat-bottomed polypropylene plates with 96 cells, with a cell volume of 350 µl (Thermo Fischer Scientific, USA, cat. No. 430341) were used as a base for the chip. For obtaining raster images, an Epson Perfection 1670 office flatbed scanner (CCD-matrix) with a removable cover was used. The obtained digital images of the cells were processed using the ImageJ software (Wayne Rasband, National Institutes of Health, USA; http://imagej.nih.gov/ij) with a 24-bit RGB color model (8 bits per channel).

Results. The adequacy of the developed approach was confirmed by the analysis of the above-listed drugs. It has been shown that the results obtained have no statistically significant differences from the values determined by the spectrophotometric method.

Conclusion. The possibility of using multisensor digital colorimetry for pharmaceutical analysis has been shown. The developed methods for the identification of the active substances can serve as a good supplement to more expensive traditional methods.

作者简介

Oksana Monogarova

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: o_monogarova@mail.ru
ORCID iD: 0000-0002-5790-1462

Associate Professor, Candidate of Sciences (Chemistry), Department of Chemistry, Analytical Chemistry Division

俄罗斯联邦, 1-3, Leninskie gory, Moscow, 119991

Aleksandr Chaplenko

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: a.a.chaplenko@yandex.ru
ORCID iD: 0000-0003-1176-4658

Associate Professor, Candidate of Sciences (Pharmacy)

俄罗斯联邦, 2-4 Bolshaya Pirogovskaya str., Moscow, 119435

Kirill Oskolok

Lomonosov Moscow State University

Email: k_oskolok@mail.ru
ORCID iD: 0000-0002-7785-4835

Associate Professor, Candidate of Sciences (Chemistry), Department of Chemistry, Analytical Chemistry Division

俄罗斯联邦, 1-3, Leninskie gory, Moscow, 119991

参考

  1. Apyari VV, Gorbunova MV, Isachenko AI, Dmitrienko SG, Zolotov YuA. The use of consumer color-registering devices in quantitative chemical analysis. Zhurnal analiticheskoi khimii. 2017;11(72):963–977. doi: 10.7868/S0044450217110019. Russian.
  2. Ivanov VM, Monogarova OV, Oskolok KV. Opportunities and prospects for the development of the colorimetric method in analytical chemistry. Zhurnal analiticheskoi khimii. 2015;10(70):1011–1025. doi: 10.7868/S0044450215100114. Russian.
  3. Monogarova OV, Oskolok KV, Apyari VV. Colorimetry in chemical analysis. Zhurnal analiticheskoi khimii. 2018;11(73):857–867. doi: 10.1134/S0044450218110063. Russian.
  4. Khimchenko S.V., Eksperiandova L.P. Colorimetry in instrumental and visual test analysis. Lambert Academic Publishing. 2014:220 p. Russian.
  5. Shultz EV, Monogarova OV, Oskolok KV. Digital colorimetry: analytical potential and prospects of use. Vestnik Moskovskogo universiteta. Series 2: Chemistry. 2019;2(60):79–87. doi: 10.3103/S002713141902007X. Russian.
  6. Chernousova OV, Rudakov OB. Digital images in analytical chemistry for quantitative and qualitative analysis. Khimiya, fizika i mekhanika materialov. 2019;2(21):55–125. Russian.
  7. Pogotskaya AA, Buzuk GN. The use of the scanner and software digital image processing for quantitative determination of alkaloids in the leaves of plume poppy. Vestnik farmatsii. 2009;4(46):32–38. Russian.
  8. Ershik OA, Buzuk GN. The use of a scanner and computer software for digital image processing for the quantitative determination of phenolic compounds of rhizomes with roots of marsh cinquefoil. Vestnik farmatsii. 2008;4(42):6–12. Russian.
  9. Ivankova MN, Buzuk GN. Colorimetric method to determine the composition of powders from medicinal plant materials. Vestnik farmatsii. 2010;4(50):22–28. Russian.
  10. Vernigorova MN, Buzuk GN. Colorimetric method to determine the component composition of herbal powders of bur beggar-ticks (BIDENS TRIPARTITA L.). Vestnik farmatsii. 2013;4(62):28–33. Russian.
  11. Buzuk GN, Kuzmicheva NA. Colorimetric and densitometric methods of analysis in the standardization of tablets “Ascorutin” and “Rutascorbin”. Vestnik farmatsii. 2011;3(53):12–18. Russian.
  12. Rudakova LV, Vasilieva AP, Shvedov GI, Poplavskaya EV. Digital technologies for determining the color and whiteness of drugs. Farmatsevticheskie tekhnologii i upakovka. 2012;2(215):38–40. Russian.
  13. Choodum A, Daeid NN. Rapid and semi-quantitative presumptive tests for opiate drugs. Talanta. 2011;(86):284–292. doi: 10.1016/j.talanta.2011.09.015.
  14. Choodum A, Parabun K, Daeid NN, Kanatharana P, Wongniramaikul W. Real time quantitative colorimetric test for methamphetamine detection using digital and mobile phone technology. Forensic Science International. 2014;(235):8–13. doi: 10.1016/j.forsciint.2013.11.018.
  15. Oskolok KV, Shults EV, Monogarova OV, Chaplenko AA. Optical molecular analysis using office flatbed photo scanner: new approaches and solutions. Talanta. 2018;(178):377–383. doi: 10.1016/j.talanta.2017.09.049.
  16. Oskolok KV, Shultz EV, Monogarova OV, Chaplenko AA. Optical molecular analysis of pharmaceuticals using an office flatbed scanner: colorimetry and photometry. Voprosy biologicheskoi, meditsinskoi i farmatsevticheskoi khimii. 2017;8(20):22–27. Russian.
  17. Monogarova OV, Chaplenko AA, Oskolok KV. Multisensory digital colorimetry to identify and determination of active substances in drugs. Sensors and Actuators, B: Chemical. 2019;(299). doi: 10.1016/j.snb.2019.126909.
  18. Ushakov EN, Alfimov MV, Gromov SP. Principles of design of optical molecular sensors and photocontrolled receptors based on crown ethers. Uspekhi khimii. 2008;1(77):39–59. Russian.
  19. Kangas MJ, Ernest A, Lukowicz RM, Mora AV, Quossi A, Perez M, Kyes N, Holmes AE. The identification of seven chemical warfare mimics using a colorimetric array. Sensors. 2018;4291(18):1–8. doi: 10.3390/s18124291.
  20. Kangas MJ, Wilson KL, Burks LM, Atwater J, Lukowicz RM, Garver B, Mayer M, Havenridge S, Holmes AE. An improved comparison of chemometric analysis for the identification of acids and bases with colorimetric sensor arrays. International Journal of Chemistry. 2018;(10):36–55. doi: 10.5539/ijc.v10n2p36.
  21. Kangas MJ, Burks RM, Atwater J, Lukowicz RM, Garver B, Holmes AE. Comparative chemometric analysis for classification of acids and bases via a colorimetric sensor array. Journal of Chemometrics. 2017; e2961. doi: 10.1002/cem.2961.
  22. Zhang C, Bailey DP, Suslick KS. Colorimetric sensor arrays for the analysis of beers: A feasibility study // Journal of Agricultural and Food Chemistry. 2006;14(54):4925–4931. doi: 10.1021/jf060110a.
  23. Zhang C, Suslick KS. A colorimetric sensor array for organics in water. Journal of the American Chemical Society. 2005;33(127):11548–11549. doi: 10.1021/ja052606z.
  24. Palacios MA, Wang Z, Montes VA, Zyryanov GV, Anzenbacher PJr. Rational design of a minimal size sensor array for metal ion detection. Journal of the American Chemical Society. 2008;31(130):10307–10314. doi: 10.1021/ja802377k.
  25. Feng L, Musto CJ, Kemling JW, Lim SH, Zhong W, Suslick KS. Colorimetric sensor array for determination and identification of toxic industrial chemicals. Analytical Chemistry. 2010;22(82):9433–9440. doi: 10.1021/ac1020886.
  26. Lin H, Suslick KS. A colorimetric sensor array for detection of triacetone triperoxide vapor. Journal of the American Chemical Society. 2010;44(132):15519–15521. doi: 10.1021/ja107419t.
  27. Carey JR, Suslick KS, Hulkower KI, Imlay JA, Imlay KRC, Ingison CK, Ponder JB, Sen A, Wittrig AE. Rapid identification of bacteria with a disposable colorimetric sensing array. Journal of the American Chemical Society. 2011;19(133):7571–7576. doi: 10.1021/ja201634d.
  28. Suslick BA, Feng L, Suslick KS. Discrimination of complex mixtures by a colorimetric sensor array: coffee aromas. Analytical Chemistry. 2010;5(82):2067–2073. doi: 10.1021/ac902823w.
  29. Goodey A. Development of multianalyte sensor arrays composed of chemically derivatized polymeric microspheres localized in micromachined cavities. Journal of the American Chemical Society. 2001;11(123):2559–2570. doi: 10.1021/ja003341l.
  30. Monogarova O.V., Chaplenko A.A., Oskolok K.V. Identification and determination of chloramphenicol in drugs by multisensor digital colorimetry. Vestnik Moskovskogo universiteta. Series 2: Chemistry. 2020;1(61):3–10. doi: 10.3103/S0027131420010071. Russian.
  31. Johnke H. Detecting concentration of analytes with DETECHIP: a molecular sensing array. Journal of Sensor Technology. 2013:3(3):94–99. doi: 10.4236/jst.2013.3301.
  32. Smith A. Improved image analysis of DETECHIP® allows for increased specificity in drug discrimination. Journal of Forensic Research. 2012;8(3):161–164. doi: 10.4172/2157-7145.1000161.
  33. Okuom MO, Holmes AE. Developing a color-based molecular sensing device: DETECHIP®. Sensors & Transducers. 2014;12(183):30–33.

补充文件

附件文件
动作
1. JATS XML
2. Table 2. Fig. 1

下载 (11KB)
3. Table 2. Fig. 2

下载 (10KB)
4. Table 2. Fig. 3

下载 (11KB)
5. Table 2. Fig. 4

下载 (12KB)
6. Table 2. Fig. 5

下载 (11KB)
7. Table 2. Fig. 6

下载 (9KB)
8. Table 2. Fig. 7

下载 (11KB)
9. Table 2. Fig. 8

下载 (9KB)
10. Table 2. Fig. 9

下载 (10KB)
11. Table 2. Fig. 10

下载 (9KB)
12. Table 2. Fig. 11

下载 (10KB)
13. Table 2. Fig. 12

下载 (10KB)
14. Table 2. Fig. 13

下载 (10KB)
15. Table 2. Fig. 14

下载 (8KB)
16. Table 2. Fig. 15

下载 (9KB)
17. Figure 1 – Structural formulas of dydrogesterone (a), troxerutin (b), ademetionine (c)

下载 (60KB)
18. Figure 2 – Dependence of the first main component vs concentration of dydrogesterone (a), troxerutin (b), ademetionine (c) in calibration solutions

下载 (73KB)

版权所有 © Monogarova O.V., Chaplenko A.A., Oskolok K.V., 2021

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可
 
##common.cookie##