Дендримеры в таргетной доставке противоопухолевых препаратов: достижения, проблемы и перспективы дальнейших исследований

Обложка

Цитировать

Полный текст

Аннотация

Дендримеры – это наночастицы с уникальными характеристиками, представляющими собой сферическую трехмерную форму и нанометровый размер. Доступность многочисленных концевых функциональных групп и модифицируемая инженерия поверхности позволяет изменить поверхность дендримеров с помощью нескольких терапевтических агентов, диагностических групп и таргетных веществ.

Цель. Ознакомить читателей с дизайном, разработкой, ограничениями, проблемами и перспективами дальнейших исследований противоопухолевых биодендримеров.

Материалы и методы. База данных была представлена такими системами как Medline, Cochrane Central Register of Controlled Trials, Scopus, Web of Science Core Collection, PubMed. gov, Google-Academy. Проведен поиск по следующим ключевым словам и сочетаниям: полипропиленимин, поли-L-лизин, Полиамидоамин – Polyamidoamine (PAMAM); рак; доставка лекарств; дендримеры.

Результаты. Высокая инкапсуляция препарата и эффективное пассивное таргетирование относятся к числу его терапевтических применений. Были описаны последние разработки в области химиотерапевтической доставки лекарств с помощью дендримеров. По большей части, потенциал и эффективность дендримеров, как ожидается, окажут значительное прогрессивное влияние на таргетирование при доставке лекарств. Заключение. Новейшие открытия показали, что дендритные наноносители обладают многими уникальными свойствами, которые требуют дополнительных исследований и разработок.

Об авторах

Мухаммад Вахаб Амджад

Университет Северных Границ

Автор, ответственный за переписку.
Email: mwbamjad@yahoo.com
ORCID iD: 0000-0002-5832-8602

доцент кафедры фармацевтики фармацевтического факультета

Саудовская Аравия, 76322, Рафха

Список литературы

  1. Jabir N.R., Tabrez S., Ashraf G.M., Shakil S., Damanhouri G.A., Kamal M.A. Nanotechnology-based approaches in anticancer research // Int J Nanomedicine. – 2012. – No.7. – P. 4391–4408. doi: 10.2147/IJN.S33838.
  2. Peer D., Karp J.M., Hong S., Farokhzad O.C., Margalit R., Langer R. Nanocarriers as an emerging platform for cancer therapy // Nature Nanotechnology. – 2007. – Vol. 2, No.12. – P. 751–760. doi: 10.1038/nnano.2007.387.
  3. Malam Y., Loizidou M., Seifalian A.M. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer // Trends Pharmacol Sci. – 2009. – Vol. 30, No.11. – P. 592–599. doi: 10.1016/j.tips.2009.08.004.
  4. Sutradhar K.B., Amin M.L. Nanoemulsions: increasing possibilities in drug delivery // Eur J Nanomedicine. – 2013. – Vol. 5, No.2. – P. 97–110. doi: 10.1515/ejnm-2013-0001.
  5. Liu Z., Sun X., Nakayama-Ratchford N., Dai H. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery // ACS Nano. – 2007. – Vol.1, No.1. – P.50-56. doi: 10.1021/nn700040t.
  6. Popov A.M., Lozovik Y.E., Fiorito S., Yahia L. Biocompatibility and applications of carbon nanotubes in medical nanorobots // Int J Nanomedicine. – 2007. – Vol. 2, No.3. – P. 361–372.
  7. Nagahara L.A., Lee J.S., Molnar L.K., Panaro N.J., Farrell D., Ptak K., Alper J., Grodzinski P. Strategic workshops on cancer nanotechnology // Cancer Res. – 2010. – Vol. 70, No.11. – P. 4265–4268. doi: 10.1158/0008-5472.CAN-09-3716.
  8. Choudhary S., Gupta L., Rani S., Dave K., Gupta U. Impact of Dendrimers on Solubility of Hydrophobic Drug Molecules // Front Pharmacol. – 2017. – No.8. – P. 261. doi: 10.3389/fphar.2017.00261.
  9. Kaga S., Arslan M., Sanyal R., Sanyal A.. Dendrimers and Dendrons as Versatile Building Blocks for the Fabrication of Functional Hydrogels // Molecules. – 2016. – Vol. 21, No.4. – P. 497. doi: 10.3390/molecules21040497.
  10. Tomalia D.A., Baker H., Dewald J., Hall M., Kallos G., Martin S., Roeck J., Ryder J., Smith P. A new class of polymers: starburst-dendritic macromolecules // Polym J. – 1985. – No.17. – P. 117–132.
  11. Newkome G.R., Yao Z., Baker G.R., Gupta V.K. Cascade molecules: a new approach to micelles // A [27]-Arborol. J Org Chem. – 1985. – No.50. – P. 2003–2004. doi: 10.1021/jo00211a052.
  12. Aulenta F., Hayes W., Rannard S. Dendrimers: a new class of nanoscopic containers and delivery devices // Eur Polym J. – 2003. – No.39. – P. 1741–1771.
  13. Stiriba S., Frey H., Haag R. Dendritic polymers in biomedical applications: from potential to clinical use in diagnostics and therapy // Angew Chem Int Ed Engl. – 2002. – No.41. – P. 1329–1334. doi: 10.1002/1521-3773(20020415)41:8<1329::aid-anie1329>3.0.co;2-p.
  14. Patri A.K., Majoros I.J., Baker J.R. Dendritic polymer macromolecular carriers for drug delivery // Curr Opin Chem Biol. – 2002. – Vol. 6, No.4. – P. 466–471. doi: 10.1016/s1367-5931(02)00347-2.
  15. Boas U., Heegaard P.M. Dendrimers in drug research // Chem Soc Rev. – 2004. – Vol. 33, No.1. – P. 43–63. doi: 10.1039/b309043b.
  16. Wang Y.S., Youngster S., Grace M., Bausch J., Bordens R., Wyss D.F. Structural and biological characterization of pegylated recombinant interferon alpha-2b and its therapeutic implications // Adv Drug Deliv Rev. – 2002. – Vol. 54, No.4. – P. 547–570. doi: 10.1016/s0169-409x(02)00027-3.
  17. Molineux G. The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta) // Curr Pharm Des. – 2004. – Vol. 10, No.11. – P. 1235–1244. doi: 10.2174/1381612043452613.
  18. Duncan R. The dawning era of polymer therapeutics // Nat Rev Drug Discov. – 2003. – Vol. 2, No.5. – P. 347–360. doi: 10.1038/nrd1088.
  19. Jain K., Kesharwani P., Gupta U., Jain N.K. A review of glycosylated carriers for drug delivery // Biomaterials. – 2012. – Vol. 33, No.16. – P. 4166–4186. doi: 10.1016/j.biomaterials.2012.02.033.
  20. Li T., Smet M., Dehaen W., Xu H. Selenium-Platinum Coordination Dendrimers with Controlled Anti-Cancer Activity // ACS Appl Mater Interfaces. – 2016. – Vol.8, No.6. – P.3609-3614. doi: 10.1021/acsami.5b07877.
  21. Cavell T.A., Elledge L.C., Malcolm K.T., Faith M.A, Hughes JN. Relationship quality and the mentoring of aggressive, high-risk children // J Clin Child Adolesc Psychol. – 2009. – Vol. 38, No.2. – P. 185–198. doi: 10.1080/15374410802698420.
  22. Allen E., Howell M.D. miRNAs in the biogenesis of trans-acting siRNAs in higher plants // Semin Cell Dev Biol. – 2010. – Vol. 21, No.8. – P. 798–804. doi: 10.1016/j.semcdb.2010.03.008.
  23. Choi Y., Thomas T., Kotlyar A., Islam M.T., Baker J.R. Jr. Synthesis and functional evaluation of DNA-assembled polyamidoamine dendrimer clusters for cancer cell-specific targeting // Chem Biol. – 2005. – Vol. 12, No.1. – P. 35–43. doi: 10.1016/j.chembiol.2004.10.016.
  24. Quintana A., Raczka E., Piehler L., Lee I., Myc A., Majoros I., Patri A.K., Thomas T., Mulé J., Baker J.R. Jr. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor // Pharm Res. – 2002. – Vol. 19, No.9. – P. 1310–1316. doi: 10.1023/a:1020398624602.
  25. Allen J.R., Harris C.R., Danishefsky S.J. Pursuit of optimal carbohydrate-based anticancer vaccines: preparation of a multiantigenic unimolecular glycopeptide containing the Tn, MBr1, and Lewis(y) antigens // J Am Chem Soc. – 2001. – Vol. 123, No.9. – 1890–1897. doi: 10.1021/ja002779i.
  26. Kudryashov V., Glunz P.W., Williams L.J., Hintermann S., Danishefsky S.J., Lloyd K.O. Toward optimized carbohydrate-based anticancer vaccines: epitope clustering, carrier structure, and adjuvant all influence antibody responses to Lewis(y) conjugates in mice // Proc Natl Acad Sci USA. – 2001. – Vol. 98, No.6. – P. 3264–3269. doi: 10.1073/pnas.051623598.
  27. Roy R., Baek M.G. Glycodendrimers: novel glycotope isosteres unmasking sugar coding. case study with T-antigen markers from breast cancer MUC1 glycoprotein // J Biotechnol. – 2002. – Vol. 90, No.3–4. – P. 291–309. doi: 10.1016/s1389-0352(01)00065-4.
  28. Toyokuni T., Hakomori S., Singhal A.K. Synthetic carbohydrate vaccines: synthesis and immunogenicity of Tn antigen conjugates // Bioorg Med Chem. – 1994. – Vol. 2, No.11. – P. 1119–1132. doi: 10.1016/s0968-0896(00)82064-7.
  29. Kiessling L.L., Pohl N.L. Strength in numbers: non-natural polyvalent carbohydrate derivatives // Chem Biol. – 1996. – Vol. 3, No.2. – P. 71–77. doi: 10.1016/s1074-5521(96)90280-x.
  30. Lundquist J.J., Toone E.J. The cluster glycoside effect // Chem Rev. – 2002. – Vol. 102, No.2. – P. 555–578. doi: 10.1021/cr000418f.
  31. Yarema K.J., Bertozzi C.R. Chemical approaches to glycobiology and emerging carbohydrate-based therapeutic agents // Curr Opin Chem Biol. – 1998. – Vol. 2, No.1. – P. 49–61. doi: 10.1016/s1367-5931(98)80035-5.
  32. Keppler O.T., Horstkorte R., Pawlita M., Schmidt C., Reutter W. Biochemical engineering of the N-acyl side chain of sialic acid: biological implications // Glycobiology. – 2001. – Vol. 11, No.2. – P. 11R–18R. doi: 10.1093/glycob/11.2.11r.
  33. Mahal L.K., Yarema K.J., Bertozzi C.R. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis // Science. – 1997. – Vol. 276, No.5315. – P. 1125–1128. doi: 10.1126/science.276.5315.1125.
  34. Nauman D.A., Bertozzi C.R. Kinetic parameters for small-molecule drug delivery by covalent cell surface targeting // Biochim Biophys Acta. – 2001. – Vol. 1568, No.2. – P. 147–154. doi: 10.1016/s0304-4165(01)00211-2.
  35. Thomas T.P., Shukla R., Kotlyar A., Liang B., Ye J.Y., Norris T.B., Baker J.R. Jr. Dendrimer-epidermal growth factor conjugate displays superagonist activity // Biomacromolecules. – 2008. – Vol. 9, No.2. – P. 603–609. doi: 10.1021/bm701185p.
  36. Shi X., Wang S.H., Van Antwerp M.E., Chen X., Baker J.R. Jr. Targeting and detecting cancer cells using spontaneously formed multifunctional dendrimer-stabilized gold nanoparticles // Analyst. – 2009. – Vol. 134, No.7. – P. 1373–1379. doi: 10.1039/b902199j.
  37. Hill E., Shukla R., Park S.S., Baker J.R. Jr. Synthetic PAMAM-RGD conjugates target and bind to odontoblast-like MDPC 23 cells and the predentin in tooth organ cultures // Bioconjug Chem. – 2007. – Vol. 18, No.6. – P. 1756–1762. doi: 10.1021/bc0700234.
  38. Lesniak W.G., Kariapper M.S., Nair B.M., Tan W., Hutson A., Balogh L.P., Khan M.K. Synthesis and characterization of PAMAM dendrimer-based multifunctional nanodevices for targeting alphavbeta3 integrins // Bioconjug Chem. – 2007. – Vol. 18, No.4. – P. 1148–1154. doi: 10.1021/bc070008z.
  39. Thomas T.P., Patri A.K., Myc A., Myaing M.T., Ye J.Y., Norris T.B., Baker J.R. Jr. In vitro targeting of synthesized antibody-conjugated dendrimer nanoparticles // Biomacromolecules. – 2004. – Vol. 5, No.6. – P. 2269–2274. doi: 10.1021/bm049704h.
  40. Chen H.T., Neerman M.F., Parrish A.R., Simanek E.E. Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery // J Am Chem Soc. – 2004. – Vol. 126, No.32. – P. 10044–10048. doi: 10.1021/ja048548j.
  41. Allen J.R., Allen J.G., Zhang X.F., Williams L.J., Zatorski A., Ragupathi G., Livingston P.O., Danishefsky S.J. A second generation synthesis of the MBr1 (globo-H) breast tumor antigen: new application of the n-pentenyl glycoside method for achieving complex carbohydrate protein linkages // Chemistry. – 2000. – Vol. 6, No.8. – P. 1366–1375. doi: 10.1002/(sici)1521-3765(20000417)6:8<1366::aid-chem1366>3.0.co;2-k.
  42. Young K.A., Liu Y., Wang Z. The neurobiology of social attachment: A comparative approach to behavioral, neuroanatomical, and neurochemical studies // Comp Biochem Physiol C Toxicol Pharmacol. – 2008. – Vol. 148, No.4. – P. 401–410. doi: 10.1016/j.cbpc.2008.02.004.
  43. Chang H., Wang H., Shao N., Wang M., Wang X., Cheng Y. Surface-engineered dendrimers with a diaminododecane core achieve efficient gene transfection and low cytotoxicity // Bioconjug Chem. – 2014. – Vol. 25, No.2. – P. 342–350. doi: 10.1021/bc400496u.
  44. Esfand R., Tomalia D.A. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications // Drug Discov Today. – 2001. – Vol., No.8. – P. 427–436. doi: 10.1016/s1359-6446(01)01757-3.
  45. Zhu S., Hong M., Zhang L., Tang G., Jiang Y., Pei Y. PEGylated PAMAM dendrimer-doxorubicin conjugates: in vitro evaluation and in vivo tumor accumulation // Pharm Res. – 2010. – Vol. 27, No.1. – P. 161–174. doi: 10.1007/s11095-009-9992-1.
  46. Takemura S.Y., Nern A., Chklovskii D.B., Scheffer L.K., Rubin G.M., Meinertzhagen I.A. The comprehensive connectome of a neural substrate for ‘ON’ motion detection in Drosophila // Elife. – 2017. – No.6. – P. e24394. doi: 10.7554/eLife.24394.
  47. Aher N., Banerjee S., Bhansali S., Yadav R., Shidore M., Mhaske S., Chaudhari R., Asai S., Jalota-Badhwar A., Khandare J. Poly(ethylene glycol) versus dendrimer prodrug conjugates: influence of prodrug architecture in cellular uptake and transferrin mediated targeting // J Biomed Nanotechnol. – 2013. – Vol. 9, No.5. – P. 776–789. doi: 10.1166/jbn.2013.1582.
  48. Araújo RV, Santos SDS, Igne Ferreira E, Giarolla J. New Advances in General Biomedical Applications of PAMAM Dendrimers // Molecules. – 2018. – Vol. 23, No.11. – P. 2849. doi: 10.3390/molecules23112849.
  49. Wang K., Zhang X., Liu Y., Liu C., Jiang B., Jiang Y. Tumor penetrability and anti-angiogenesis using iRGD-mediated delivery of doxorubicin-polymer conjugates // Biomaterials. – 2014. – Vol. 35, No.30. – P. 8735–8747. doi: 10.1016/j.biomaterials.2014.06.042.
  50. Zhong Q., Bielski E.R., Rodrigues L.S., Brown M.R., Reineke J.J., da Rocha S.R. Conjugation to Poly(amidoamine) Dendrimers and Pulmonary Delivery Reduce Cardiac Accumulation and Enhance Antitumor Activity of Doxorubicin in Lung Metastasis // Mol Pharm. – 2016. – Vol. 13, No.7. – P. 2363–2375. doi: 10.1021/acs.molpharmaceut.6b00126.
  51. Kale A.A., Torchilin V.P. Design, synthesis, and characterization of pH-sensitive PEG-PE conjugates for stimuli-sensitive pharmaceutical nanocarriers: the effect of substitutes at the hydrazone linkage on the ph stability of PEG-PE conjugates // Bioconjug Chem. – 2007. – Vol. 18, No.2. – P. 363–370. doi: 10.1021/bc060228x.
  52. Mura S., Nicolas J., Couvreur P. Stimuli-responsive nanocarriers for drug delivery // Nat Mater. – 2013. – Vol. 12, No.11. – P. 991–1003. doi: 10.1038/nmat3776.
  53. Palmerston Mendes L., Pan J., Torchilin V.P. Dendrimers as Nanocarriers for Nucleic Acid and Drug Delivery in Cancer Therapy // Molecules. – 2017. – Vol. 22, No.9. – P. 1401. doi: 10.3390/molecules22091401.
  54. Satsangi G., Yadav S., Pipal A.S., Kumbhar N. Characteristics of trace metals in fine (PM2.5) and inhalable (PM10) particles and its health risk assessment along with in-silico approach in indoor environment of India // Atmos Environ – 2014. – No.92. – P. 384–393. doi: 10.1016/j.atmosenv.2014.04.047
  55. Paz-Yaacov N., Bazak L., Buchumenski I., Porath H.T., Danan-Gotthold M., Knisbacher B.A., Eisenberg E., Levanon E.Y. Elevated RNA Editing Activity Is a Major Contributor to Transcriptomic Diversity in Tumors // Cell Rep. – 2015. – Vol. 13, No.2. – P. 267–276. doi: 10.1016/j.celrep.2015.08.080.
  56. Kulhari H., Pooja D., Singh M.K., Chauhan A.S. Optimization of carboxylate-terminated poly(amidoamine) dendrimer-mediated cisplatin formulation // Drug Dev Ind Pharm. – 2015. – Vol. 41, No.2. – P. 232–238. doi: 10.3109/03639045.2013.858735.
  57. Chung A., Cui X., Audeh W., Giuliano A. Current status of anti-human epidermal growth factor receptor 2 therapies: predicting and overcoming herceptin resistance // Clin Breast Cancer. – 2013. – Vol. 13, No.4. – P. 223–232. doi: 10.1016/j.clbc.2013.04.001.
  58. Pan J., Mendes L.P., Yao M., Filipczak N., Garai S., Thakur G.A., Sarisozen C., Torchilin V.P. Polyamidoamine dendrimers-based nanomedicine for combination therapy with siRNA and chemotherapeutics to overcome multidrug resistance // Eur J Pharm Biopharm. – 2019. – No.136. – P. 18–28. doi: 10.1016/j.ejpb.2019.01.006.
  59. Guo X.L., Kang X.X., Wang Y.Q., Zhang X.J., Li C.J., Liu Y., Du L.B. Co-delivery of cisplatin and doxorubicin by covalently conjugating with polyamidoamine dendrimer for enhanced synergistic cancer therapy // Acta Biomater. – 2019. – No.84. – P. 367–377. doi: 10.1016/j.actbio.2018.12.007.
  60. Zhang M., Zhu J., Zheng Y., Guo R., Wang S., Mignani S., Caminade A.M., Majoral J.P., Shi X. Doxorubicin-Conjugated PAMAM Dendrimers for pH-Responsive Drug Release and Folic Acid-Targeted Cancer Therapy // Pharmaceutics. – 2018. – Vol. 10, No.3. – P. 162. doi: 10.3390/pharmaceutics10030162.
  61. Yao H., Ma J. Dendrimer-paclitaxel complexes for efficient treatment in ovarian cancer: study on OVCAR-3 and HEK293T cells // Acta Biochim Pol. – 2018. – Vol. 65, No.2. – P. 219–225. doi: 10.18388/abp.2017_2331.
  62. Pishavar E., Attaranzadeh A., Alibolandi M., Ramezani M., Hashemi M. Modified PAMAM vehicles for effective TRAIL gene delivery to colon adenocarcinoma: in vitro and in vivo evaluation. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S503-S513. doi: 10.1080/21691401.2018.1500372.
  63. Tripathi P.K., Tripathi S. 6 – Dendrimers for anticancer drug delivery // In Micro and Nano Technologies. – 2020. – P. 131–150. doi: 10.1016/B978-0-12-814527-2.00006-8.
  64. Bae S., Park J., Kim J.S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases // Bioinformatics. – 2014. – Vol. 30, No.10. – P. 1473–1475. doi: 10.1093/bioinformatics/btu048.
  65. Shao N., Su Y., Hu J., Zhang J., Zhang H., Cheng Y. Comparison of generation 3 polyamidoamine dendrimer and generation 4 polypropylenimine dendrimer on drug loading, complex structure, release behavior, and cytotoxicity // Int J Nanomedicine. – 2011. – No.6. – P. 3361–3372. doi: 10.2147/IJN.S27028.
  66. Al-Jamal K.T., Al-Jamal W.T., Wang J.T., Rubio N., Buddle J., Gathercole D., Zloh M., Kostarelos K. Cationic poly-L-lysine dendrimer complexes doxorubicin and delays tumor growth in vitro and in vivo // ACS Nano. – 2013. – Vol. 7, No.3. – P. 1905–1917. doi: 10.1021/nn305860k.
  67. Kesharwani P., Tekade R.K., Jain N.K. Generation dependent safety and efficacy of folic acid conjugated dendrimer based anticancer drug formulations // Pharm Res. – 2015. – Vol. 32, No.4. – P. 1438–1450. doi: 10.1007/s11095-014-1549-2.
  68. Kesharwani P., Tekade R.K., Jain N.K. Generation dependent cancer targeting potential of poly(propyleneimine) dendrimer // Biomaterials. – 2014. – Vol. 35, No.21. – P. 5539–5548. doi: 10.1016/j.biomaterials.2014.03.064.
  69. Jain N.K., Tare M.S., Mishra V., Tripathi P.K. The development, characterization and in vivo anti-ovarian cancer activity of poly(propylene imine) (PPI)-antibody conjugates containing encapsulated paclitaxel // Nanomedicine. – 2015. – Vol. 11, No.1. – P. 207–218. doi: 10.1016/j.nano.2014.09.006.
  70. Malekmohammadi S., Hadadzadeh H. Immobilization of gold nanoparticles on folate-conjugated dendritic mesoporous silica-coated reduced graphene oxide nanosheets: a new nanoplatform for curcumin pH-controlled and targeted delivery // Soft Matter. – 2018. – Vol. 14, No.12. – P. 2400–2410. doi: 10.1039/c7sm02248d.
  71. Jain A., Mahira S., Majoral J.P., Bryszewska M., Khan W., Ionov M. Dendrimer mediated targeting of siRNA against polo-like kinase for the treatment of triple negative breast cancer // J Biomed Mater Res A. – 2019. – Vol. 107, No.9. – P. 1933–1944. doi: 10.1002/jbm.a.36701.
  72. Rompicharla S.V.K., Kumari P., Bhatt H., Ghosh B., Biswas S. Biotin functionalized PEGylated poly(amidoamine) dendrimer conjugate for active targeting of paclitaxel in cancer // Int J Pharm. – 2019. – No.557. – P. 329–341. doi: 10.1016/j.ijpharm.2018.12.069.
  73. Holt G.E., Daftarian P. Non-small-cell lung cancer homing peptide-labeled dendrimers selectively transfect lung cancer cells // Immunotherapy. – 2018. – Vol. 10, No.16. – P. 1349–1360. doi: 10.2217/imt-2018-0078.
  74. Hsu H.J., Palka-Hamblin H., Bhide G.P., Myung J.H., Cheong M., Colley K.J., Hong S. Noncatalytic Endosialidase Enables Surface Capture of Small-Cell Lung Cancer Cells Utilizing Strong Dendrimer-Mediated Enzyme-Glycoprotein Interactions // Anal Chem. – 2018. – Vol. 90, No.6. – P. 3670–3675. doi: 10.1021/acs.analchem.8b00427.
  75. Amreddy N., Babu A., Panneerselvam J., Srivastava A., Muralidharan R., Chen A., Zhao Y.D., Munshi A., Ramesh R. Chemo-biologic combinatorial drug delivery using folate receptor-targeted dendrimer nanoparticles for lung cancer treatment // Nanomedicine. – 2018. – Vol. 14, No.2. – P. 373–384. doi: 10.1016/j.nano.2017.11.010.
  76. Ayatollahi S., Salmasi Z., Hashemi M., Askarian S., Oskuee R.K., Abnous K., Ramezani M. Aptamer-targeted delivery of Bcl-xL shRNA using alkyl modified PAMAM dendrimers into lung cancer cells // Int J Biochem Cell Biol. – 2017. – No.92. – P. 210–217. doi: 10.1016/j.biocel.2017.10.005.
  77. Venuganti V.V., Saraswathy M., Dwivedi C., Kaushik R.S., Perumal O.P. Topical gene silencing by iontophoretic delivery of an antisense oligonucleotide-dendrimer nanocomplex: the proof of concept in a skin cancer mouse model // Nanoscale. – 2015. – Vol. 7, No.9. – P. 3903–3914. doi: 10.1039/c4nr05241b.
  78. Dabrzalska M., Benseny-Cases N., Barnadas-Rodríguez R., Mignani S., Zablocka M., Majoral J.P., Bryszewska M., Klajnert-Maculewicz B., Cladera J. Fourier transform infrared spectroscopy (FTIR) characterization of the interaction of anti-cancer photosensitizers with dendrimers // Anal Bioanal Chem. – 2016. – Vol. 408, No.2. – P. 535–544. doi: 10.1007/s00216-015-9125-0.
  79. Tripathi P.K., Khopade A.J., Nagaich S., Shrivastava S., Jain S., Jain N.K. Dendrimer grafts for delivery of 5-fluorouracil // Pharmazie. – 2002. – Vol. 57, No.4. – P. 261–264.
  80. Liu Y., Ng Y., Toh M.R., Chiu G.N.C. Lipid-dendrimer hybrid nanosystem as a novel delivery system for paclitaxel to treat ovarian cancer // J Control Release. – 2015. – Vol. 220, No.Pt A. – P. 438–446. doi: 10.1016/j.jconrel.2015.11.004.
  81. Kesavan A., Ilaiyaraja P., Sofi Beaula W., Veena Kumari V., Sugin Lal J., Arunkumar C., Anjana G., Srinivas S., Ramesh A., Rayala S.K., Ponraju D., Venkatraman G. Tumor targeting using polyamidoamine dendrimer-cisplatin nanoparticles functionalized with diglycolamic acid and herceptin // Eur J Pharm Biopharm. – 2015. – No.96. – P. 255–263. doi: 10.1016/j.ejpb.2015.08.001.
  82. Chopdey P.K., Tekade R.K., Mehra N.K., Mody N., Jain N.K. Glycyrrhizin Conjugated Dendrimer and Multi-Walled Carbon Nanotubes for Liver Specific Delivery of Doxorubicin // J Nanosci Nanotechnol. – 2015. – Vol. 15, No.2. – P. 1088–1100. doi: 10.1166/jnn.2015.9039.
  83. Modi D.A., Sunoqrot S., Bugno J., Lantvit D.D., Hong S., Burdette J.E. Targeting of follicle stim ulating hormone peptide-conjugated dendrimers to ovarian cancer cells // Nanoscale. – 2014. – Vol. 6, No.5. – P. 2812–2820.
  84. Sharma A.K., Gupta L., Sahu H., Qayum A., Singh S.K., Nakhate K.T., Ajazuddin, Gupta U. Chitosan Engineered PAMAM Dendrimers as Nanoconstructs for the Enhanced Anti-Cancer Potential and Improved In vivo Brain Pharmacokinetics of Temozolomide // Pharm Res. – 2018. – Vol. 35, No.1. – P. 9. doi: 10.1007/s11095-017-2324-y.
  85. Patel H.K., Gajbhiye V., Kesharwani P., Jain N.K. Ligand anchored poly(propyleneimine) dendrimers for brain targeting: Comparative in vitro and in vivo assessment // J Colloid Interface Sci. – 2016. – No.482. – P. 142–150. doi: 10.1016/j.jcis.2016.07.047.
  86. Xu X., Li J., Han S., Tao C., Fang L., Sun Y., Zhu J., Liang Z., Li F. A novel doxorubicin loaded folic acid conjugated PAMAM modified with borneol, a nature dual-functional product of reducing PAMAM toxicity and boosting BBB penetration // Eur J Pharm Sci. – 2016. – No.88. – P. 178–190. doi: 10.1016/j.ejps.2016.02.015.
  87. Agrawal A., Min D.H., Singh N., Zhu H., Birjiniuk A., von Maltzahn G., Harris T.J., Xing D., Woolfenden S.D., Sharp P.A., Charest A., Bhatia S. Functional delivery of siRNA in mice using dendriworms // ACS Nano. – 2009. – Vol. 3, No.9. – P. 2495–504. doi: 10.1021/nn900201e.
  88. Wu G., Yang W., Barth R.F., Kawabata S., Swindall M., Bandyopadhyaya A.K., Tjarks W., Khorsandi B., Blue T.E., Ferketich A.K., Yang M., Christoforidis G.A., Sferra T.J., Binns P.J., Riley K.J., Ciesielski M.J., Fenstermaker R.A. Molecular targeting and treatment of an epidermal growth factor receptor-positive glioma using boronated cetuximab // Clin Cancer Res. – 2007. – Vol. 13, No.4. – P. 1260–1268. doi: 10.1158/1078-0432.CCR-06-2399.
  89. Wu J., Huang W., He Z. Dendrimers as carriers for siRNA delivery and gene silencing: a review // Scientific World Journal. – 2013. – No.2013. – P.630654. doi: 10.1155/2013/630654.
  90. Roberts B.P., Scanlon M.J., Krippner G.Y., Chalmers D.K. Molecular dynamics of poly(l-lysine) dendrimers with naphthalene disulfonate caps // Macromolecules. – 2009. – Vol. 42, No.7. – P. 2775–2783. doi: 10.1021/ma802154e
  91. Choi J.S., Nam K., Park J.Y., Kim J.B., Lee J.K., Park J.S. Enhanced transfection efficiency of PAMAM dendrimer by surface modification with L-arginine // J Control Release. – 2004. – Vol. 99, No.3. – P. 445–456. doi: 10.1016/j.jconrel.2004.07.027.
  92. Kaminskas L.M., Kelly B.D., McLeod V.M., Sberna G., Owen D.J., Boyd B.J., Porter C.J. Characterisation and tumour targeting of PEGylated polylysine dendrimers bearing doxorubicin via a pH labile linker // J Control Release. – 2011. – Vol. 152, No.2. – P. 241–248. doi: 10.1016/j.jconrel.2011.02.005.
  93. Al-Jamal K.T., Al-Jamal W.T., Akerman S., Podesta J.E., Yilmazer A., Turton J.A., Bianco A., Vargesson N., Kanthou C., Florence A.T., Tozer G.M., Kostarelos K. Systemic antiangiogenic activity of cationic poly-L-lysine dendrimer delays tumor growth // Proceedings of the National Academy of Sciences of the United States of America. – 2010. – Vol. 107, No.9. – P. 3966–3971. doi: 10.1073/pnas.0908401107.
  94. Bugno J., Hsu H.J., Pearson R.M., Noh H., Hong S. Size and Surface Charge of Engineered Poly(amidoamine) Dendrimers Modulate Tumor Accumulation and Penetration: A Model Study Using Multicellular Tumor Spheroids // Mol Pharm. – 2016. – Vol. 13, No.7. – P. 2155–2163. doi: 10.1021/acs.molpharmaceut.5b00946.
  95. Sunoqrot S., Liu Y., Kim D.H., Hong S. In vitro evaluation of dendrimer-polymer hybrid nanoparticles on their controlled cellular targeting kinetics // Mol Pharm. – 2013. – Vol. 10, No.6. – P. 2157–2166. doi: 10.1021/mp300560n.
  96. Li J., Piehler L.T., Qin D., Baker J.R, Tomalia D.A., Meier D.J. Visualization and characterization of poly(amidoamine) dendrimers by atomic force microscopy // Langmuir. – 2000. – Vol. 16, No.13. – P. 5613–5616. doi: 10.1021/la000035c
  97. Niidome T., Yamauchi H., Takahashi K., Naoyama K., Watanabe K., Mori T., Katayama Y. Hydrophobic cavity formed by oligopeptide for doxorubicin delivery based on dendritic poly(L-lysine) // J Biomater Sci Polym Ed. – 2014. – Vol. 25, No.13. – P. 1362–1373. doi: 10.1080/09205063.2014.938979.
  98. Ryan G.M., Kaminskas L.M., Bulitta J.B., McIntosh M.P., Owen D.J., Porter C.J.H. PEGylated polylysine dendrimers increase lymphatic exposure to doxorubicin when compared to PEGylated liposomal and solution formulations of doxorubicin // J Control Release. – 2013. – Vol. 172, No.1. – P. 128–136. doi: 10.1016/j.jconrel.2013.08.004.

© Амджад М.В., 2021

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.
 

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах