Using quantum-chemical parameters for predicting anti-radical (HO∙) activity of related structures containing a cinnamoyl fragment II. derivatives of 2’,4’-dihydroxychalcone, flavanone and flavone, containing a hydroxy group in position 7

Cover Page

Cite item

Full Text

Abstract

42 derivatives of 2’,4’-dihydroxychalcone, flavanone and flavone, containing the hydroxy group in position 7 (ring “A”), as well as substituents in the ring “B”, have been studied.

The aim is to study the quantum-chemical parameters of 2’,4’-dihydroxychalcone, flavanone and flavone derivatives containing a hydroxy group in position 7, in order to identify the effect of substituents on Mulliken charges (a.e) in the aromatic core “A”, bond numbers (Nµ), the unsaturation index (IUA) and the electron density of the carbon atoms of the cinnamoyl fragment.

Materials and methods. The listed above parameters have been calculated by the semi-empirical method PM7 (WinMopac 2016 program) on the workstation with an Intel Xeon E5-1620 3.5 GHz processor, 20 GB of RAM.

Results and discussion. The analysis of the values of quantum-chemical parameters, as well as their comparison with the corresponding indicators presented in Report I, revealed a number of important features associated with the influence of the hydroxy group in position 7 (ring “A”) on the studied quantum-chemical parameters of molecules. It has been established that the hydroxy group in the ring “A” does not significantly affect the Mulliken charge and the electron density of the carbon atoms of the propenone unit C-7→C-8→C-9. On atom C-9 (carbonyl carbon), the Mulliken charge always has a positive value, and the electron density is about 3.4670-3.4840 for all three groups of compounds. The transition from 2’,4’-dihydroxychalcone to flavanone and flavone by the formation of the pyrone heterocycle, is accompanied by an increase in the negative charge on C-8, which can be explained by the involvement of the oxygen heteroatom in the transmission of electronic effects. The hydroxy group in the ring “A”, has practically no effect on the charge and electron density of atoms. An analysis of the values of bond numbers and unsaturation indices suggests that atoms C-1 of 2’,4’-dihydroxychalcone and 7-hydroxyflavanone derivatives, are characterized by the lowest Nµ value; the lowest bond numbers are characteristic for atom C-8 derivatives of 7-hydroxyflavone. Consequently, the primary attack of the HO·radical will be directed at C-1 (in chalcones and flavanones) and at C-8 in flavones.

Conclusion. The performed quantum-chemical calculations make it possible to analyze the effect on the main quantum-chemical parameters of the molecule, which can be useful in predicting the biological activity of flavanoid compounds due to their antiradical effect on reactive oxygen intermediate species (ROIs).

About the authors

Eduard T. Oganesyan

Pyatigorsk Medical and Pharmaceutical Institute – а branch of Volgograd State Medical University

Author for correspondence.
Email: edwardov@mail.ru
ORCID iD: 0000-0002-2756-9382

Doctor of Sciences (Pharmacy), Professor, the Head of the Department of Organic Chemistry

Russian Federation, 11, Kalinin ave., Pyatigorsk, 357532

Stanislav S. Shatokhin

Pyatigorsk Medical and Pharmaceutical Institute – а branch of Volgograd State Medical University

Email: Shatohin.stanislav95@yandex.ru
ORCID iD: 0000-0001-7891-8338

post-graduate student of the Department of Organic Chemistry

Russian Federation, 11, Kalinin ave., Pyatigorsk, 357532

References

  1. Myhre O, Utkilen H, Duale N, Brunborg G, Hofer T. Metal dyshomeostasis and inflammation in Alzheimer’s and Parkinson’s diseases: possible impact of environmental exposures. Oxidative Medicine and Cellular Longevity. 2013, 1−19. Oxidative Medicine and Cellular Longevity. 2013;2013:1−19. doi: 10.1155/2013/726954.
  2. Snodderly DM. Evidence for protection against age-relatedmacular degeneration by carotenoids and antioxidant vitamins. The American Journal of Clinical Nutrition. 1995;62:1448−1461. doi: 10.1093/ajcn/62.6.1448s.
  3. Thome J, Zhang, JJ, Davids E, Foley P, Weijers HG, Wiesbeck GA, Boning J, Riederer P, Gerlach M. Evidence forincreased oxidative stress in alcohol-dependent patients provided byquantification of in vivo salicylate hydroxylation products. Alcoholism, clinical and experimental research.1997;21:82−85. doi: 10.1111/J.1530-0277.1997.TB03732X.
  4. Agadzhanayan VS, Oganesyan ET. Primenenie kvantovo-himicheskih metodov analiza dlja interpretacii antiradikal’noj aktivnosti v rjadu gidroksiproizvodnyh korichnoj kisloty [The use of quantum chemical analysis methods for the interpretation of anti-radical activity in a series of hydroxy derivatives of cinnamic acid]. Chemical Pharmaceuticals. 2008;42(11):12–17. Russian. doi: 10.30906/0023-1134-2008-42-11-12-17.
  5. Oganesyan ET, Shatokhin SS, Glushko AA. Ispol’zovanie kvantovo-himicheskih parametrov dlja prognozirovanija antiradikal’noj (no∙) aktivnosti rodstvennyh struktur, soderzhashhih cinnamoil’nyj fragment [The use of quantum chemical parameters to predict the antiradical (HО) activity of related structures containing a cinnamoyl fragment. I. Derivatives of cinnamic acid, chalcone and flavanone]. Pharmacy and Pharmacology. 2019;7(1):53–66. Russian. doi: 10.19163/2307-9266-2019-7-1-53-66.
  6. Litvinenko VI. Natural flavonoids. In the book “Technology and standardization of drugs”. Rostov, LLC Rireg. 1996:784 p.
  7. Handbook of a chemist in 6 volumes. M.: Chemistry. 1964;3:1005 p.
  8. Neuvonen K, Neuvonen H, Koch A, Kleinpeter E. Taft equation in the light of NBO computations. Introduction of a novelpolar computational substituent constant scale σ*q for alkyl groups. Computational and Theoretical Chemistry. 2012;981:52–58. doi: 10.1016/j.comptc.2011.11.044.
  9. Minkin VI, Simkin BYa, Minyaev RM. Theory of the structure of molecules. Rostov-on-Don. 1997:560 p.
  10. Krasnov KS. Molecules and chemical bonding. M. “Higher School”. 1977:280 p.
  11. Zhdanov YuA. Theory of the structure of organic compounds. M. “HigherSchool”. 1971:288 p.
  12. Aghajanayan VS, Oganesyan ET, Abaev VT. Celenapravlennyj poisk soedinenija-lidera v rjadu proizvodnyh korichnoj kisloty, obladajushhih antiradikal’noj aktivnost’ju [A purposeful search for a leader compound in a series of cinnamic acid derivatives with antiradical activity]. Khimiko-Farmatsevticheskii Zhurnal. 2010;44(7):21–26. Russian. doi: 10.30906/0023-1134-2010-44-7-21-26.
  13. Oganesyan ET, Dorkina EG, Khochava MR, Tuskaev VA, Maltsev YuA. Ispol’zovanie kvantovo-himicheskih metodov dlja obosnovanija antiradikal’nogo (ON˙) dejstvija poligidroksihalkonov [The use of quantum chemical methods to substantiate the antiradical (OH˙) action of polyhydroxychalcones]. Khimiko-Farmatsevticheskii Zhurnal. 2002;36(12):21–25. Russian.
  14. Oganesyan ET, Maltsev YuA, Tvorovsky DE. Issledovanie mehanizma reakcii proizvodnyh flavona s gidroksil’nym radikalom polujempiricheskimi metodami [Investigation of the reaction mechanism of flavone derivatives with a hydroxyl radical by semi-empirical methods]. 2001;71(6):99–1005. Russian.
  15. Voronkov AV, Abaev VT, Oganesyan ET, Pozdnyakov DI. Nekotorye aspekty cerebroprotektornoj aktivnosti 4-gidroksi-3,5-di-tretbutil korichnoj kisloty pri ishemicheskom povrezhdenii golovnogo mozga v jeksperimente [Some aspects of the cerebroprotective activity of 4-hydroxy-3,5-di-tert-butyl cinnamic acid in ischemic brain damage in the experiment]. Medicinskij vestnik Severnogo Kavkaza. 2018;13(1.1.):90–93. Russian.
  16. Voronkov AV, Pozdnyakov DI, Khuri EI, Kulbekova YuA, Kobin AA. Ocenka antioksidantnoj aktivnosti 4-gidroksi-3,5-ditretbutil korichnoj kisloty, meksidola i tioktovoj kisloty na modeli fokal’noj ishemii golovnogo mozga [Evaluation of the antioxidant activity of 4-hydroxy-3,5-ditretbutyl cinnamic acid, mexidol and thioctic acid in a model of focal cerebral ischemia]. Voprosy biologicheskoj, medicinskoj i farmacevticheskoj himii. 2017;20(2):48–52. Russian.
  17. Voronkov AV, Oganesyan ET, Pozdnyakov DI, Abaev VT. Izuchenie dozozavisimogo jendoteliotropnogo vlijanija soedinenija ATACL v uslovijah ishemicheskogo povrezhdenija golovnogo mozga u krys v jeksperimente [The study of the dose-dependent endotheliotropic effect of the ATACL compound under conditions of ischemic brain damage in rats in the experiment]. Vestnik VolgGMU. 2017;1(61):54–58. Russian.
  18. Voronkov AV, Oganesyan ET, Gerashchenko AD. Aspekty aktoprotektornoj aktivnosti nekotoryh prirodnyh soedinenij razlichnoj himicheskoj struktury [Aspects of actoprotective activity of some natural compounds of different chemical structures]. Sportivnaja medicina: nauka i praktika. 2017;7(1):92–96. Russian. doi: 10.17238/ISSN2223-2524.2017.1.92.
  19. Illyel E. Fundamentals of stereochemistry. – M: Binom; Laboratory of Knowledge. 2014:120 p.
  20. Tsukerman SV, Surov YuN, Lavrushin VG. Dipol’nye momenty s IK-spektrami 4 i 4 ʼ-monozameshhennyh halkonov [Dipole moments with IR spectra of 4 and 4ʼ-monosubstituted chalcones]. Zhokh. 1968;38(38):524–529. Russian.
  21. Tarakhovsky YuS, Kim YuA, Abdrasilov BS, Muzafarov EN. Flavonoids: biochemistry, biophysics, medicine. Synchrobook, Pushchino. 2013:310 p. Russian.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1

Download (61KB)
3. Fig.2

Download (24KB)
4. Fig.3

Download (24KB)
5. Fig.4

Download (24KB)
6. Fig.5

Download (15KB)
7. Fig.6

Download (15KB)
8. Fig.7

Download (15KB)
9. Fig.8

Download (17KB)
10. Fig.9

Download (16KB)
11. Fig.10

Download (17KB)
12. Fig.11

Download (66KB)
13. Fig.12

Download (26KB)
14. Fig.13

Download (24KB)
15. Fig.14

Download (16KB)
16. Fig.15

Download (19KB)
17. Fig.16

Download (19KB)
18. Fig.17

Download (19KB)
19. Fig.18

Download (32KB)
20. Fig.19

Download (39KB)
21. 2’, 4’-dihydroxychalcone

Download (19KB)
22. 7-OH-flavanone

Download (19KB)
23. 7-OH-flavone

Download (20KB)

Copyright (c) 2020 Oganesyan E.T., Shatokhin S.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies