Анализ боковых реакций почвы на колесах трактора при повороте

Обложка

Цитировать

Полный текст

Аннотация

Задачей проведённых исследований явилось аналитическое определение боковых реакций на колёсах трактора со стороны опорной поверхности на участках «вход в поворот» и «установившийся поворот» кругового беспетлевого поворота. Объекты исследований: навесной комбини-рованный широкозахватный агрегат КРШ-8,1 + НП-5,4 + ЛТЗ-155 + ССТ-18
и кинематические способы поворота трактора (передние управляемые колёса; передние и задние управляемые колёса — поворот их относительно остова
в разные стороны). Расчёт выполнен численной реализацией математической модели криволинейного движения машинно-тракторного агрегата
в интерактивной среде программирования Matlab/Simulink. При расчётах принято, что переход от прямолинейного движения на траекторию большой кривизны совершается при одном и том же законе равномерного вращения рулевого колеса и, следовательно, при том же законе поворота управляемых колёс. Установлено отрицательное влияние поворота задних колёс на управляемость и устойчивость движения машинно-тракторного агрегата: с одной стороны, при способе поворота четырьмя управляемыми колёсами мгновенный радиус поворота уменьшается,
но интенсивность и величина отклонения его от заданной траектории движения увеличиваются. Боковая сила увеличивается также при повышении скорости движения за счёт роста центробежной силы инерции и момента сопротивления повороту вследствие более интенсивного динамического воздействия микропрофиля опорной поверхности. В простейшем случае, когда направляющими являются колёса только переднего моста, величина боковой реакции, приходящейся на его колёса, при входе в поворот со скоростью движения 0,68 м/с выше в 6,6—8,8 раза, чем на колёса задней оси, а со скоростью
1,37 м/с — в 2,0—2,3 раза. При всех управляемых колёсах получены
следующие результаты: при скорости 0,68 м/с — 1,16—1,20 раза,
при 1,37 м/с — 1,50—1,52 раза. Полученный характер изменения боковых реакций и перераспределения их по осям трактора обусловлен величинами
и соотношениями касательных сил тяги, сил сопротивления качению
и вертикальных сил на колёсах, условиями их качения, изменением положения центра тяжести машинно-тракторного агрегата, ускорений вертикальных колебаний и геометрических характеристик поворота. Более равномерное распределение боковых сил по мостам трактора при входе в поворот всеми управляемыми колёсами способствует лучшей управляемости и устойчивости агрегата, несмотря на то, что вертикальная нагрузка, приходящаяся на передний мост, в 1,56—1,63 раза выше, чем на задний, во всех вариантах расчёта. При этом создаются наиболее благоприятные условия качения колёс и реализации силы тяги. Таким образом, рациональным с точки зрения создания наиболее благоприятных условий для улучшения управляемости и повышения устойчивости движения при повороте является применение способа поворота передними и задними колёсами на всех этапах кругового беспетлевого поворота.

Об авторах

Александр Николаевич Беляев

Воронежский государственный аграрный университет имени императора Петра I

Email: aifkm_belyaev@mail.ru

Татьяна Владимировна Тришина

Воронежский государственный аграрный университет имени императора Петра I

Email: t.v.trishina@gmail.com

Дмитрий Николаевич Афоничев

Воронежский государственный аграрный университет имени императора Петра I

Email: dmafonichev@yandex.ru

Список литературы

  1. Troyanovskaya I. P., Voinash S. A. Model for stationary turn of an arbitrary vehicle // IOP Conference Series: Materials Science and Engineering. Electronic Edition. 2018. P. 032035. Available at: http://iopscience.iop.org/volume/1757-899X/450. Text. Image: electronic.Troyanovskaya I. P., Pozin B. M., Noskov N. K. Ploughing tractor lateral withdrawal model // Procedia Engineering. CEP. «International Conference on Industrial Engineering, ICIE 2017». 2017. P. 1540—1546. Available at: http://www.sciencedirect.com/science/article/pii/S1877705817353596. Text. Image: electronic.Determination of theoretical path of vehicle motion upon cornering / A. N. Belyaev, T. V. Trishina, V. P. Shatsky, V. G. Kozlov, I. A. Vysotskaya // Journal of Applied Science and Engineering (Taiwan). 2022. Vol. 25, no. 5. P. 741—747. Available at: http://jase.tku.edu.tw/articles/jase-202210-25-5-0004. Text. Image: electronic.Носков Н. К., Позин Б. М., Трояновская И. П. Математическая модель бокового увода трактора // Известия МГТУ МАМИ. 2017. № 1 (31). С. 35—39.Носков Н. К., Трояновская И. П., Титов С. А. Математическая модель силового взаимодействия колеса с грунтом при повороте машины // Вестник ЮУрГУ. 2017. Т. 17, № 3. С. 5—15. doi: 10.14529/engin170301.Жилейкин М. М. Исследование автоколебательных процессов в зоне взаимодействия эластичной шины с твёрдым опорным основанием // Известия вузов. Сер. Машиностроение. 2021. № 10. С. 3—15. URL: http://izvuzmash.ru/catalog/mechanical/mach_scien/1883.html. Текст : электронный.Antonyan A., Zhileykin M., Eranosyan A. The algorithm of diagnosing the development of a skid when driving a two-axle vehicle // IOP Conference Series: Materials Science and Engineering. Design Technologies for Wheeled and Tracked Vehicles, MMBC. 2020. P. 012003. Available at: https://iopscience.iop.org/article/10.1088/1757899X/820/1/012003/pdf. Text. Image: electronic.Zhileykin M., Eranosyan A. Method of torque distribution between the axles and the wheels of the rear axle to improve the manageability of two-axle all-wheel drive vehicles // IOP Conference Series: Materials Science and Engineering. Design Technologies for Wheeled and Tracked Vehicles, MMBC. 2019. 2020. P. 012008. Available at: https://iopscience.iop.org/article/10.1088/1757-899X/820/1/012008/pdf. Text. Image: electronic.Сиротин П. В., Жилейкин М. М. Исследование динамики движения зерно- и кормоуборочных комбайнов методами математического и имитационного моделирования // Тракторы и сельскохозяйственные машины. 2019. № 1. С. 53—59.Field R. V., Hurtago E. J. Modeling of dynamic forces of a tractor in the MATLAB-simulink program environment. New York: Society of Automotive Engineers, 2003. 112 p.Klee H., Allen R. Simulation of Dynamic Systems with MATLAB and Simulink. Taylor & Francis Group, LLC, 2018. 853 p. Available at: https://doi.org/10.1201/9781315154176. Text. Image: electronic.Исследование движения колёсной машины по криволинейной траектории / А. Н. Беляев, Т. В. Тришина, А. Е. Новиков, Ю. В. Дяченко, И. А. Высоцкая // Вестник Воронежского государственного аграрного университета. 2021. Т. 14, № 4 (71). С. 21—29.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Беляев А.Н., Тришина Т.В., Афоничев Д.Н., 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».