Estimation of the influence of the water vapor concentration in a heated air on the characteristics of the operation process
- Authors: Surikov E.V.1, Sharov M.S.1, Kolomentsev P.A.1, Alekseeva O.M.1, Fedorichev A.V.2, Zhesterev D.V.2
-
Affiliations:
- Baranov Central Institute of Aviation Motors
- Soyuz Federal Center for Dual-Use Technologies
- Issue: Vol 14, No 1 (2021)
- Pages: 68-76
- Section: Articles
- URL: https://journals.rcsi.science/2305-9117/article/view/286574
- DOI: https://doi.org/10.30826/CE21140108
- ID: 286574
Cite item
Abstract
Presented are the results of experimental studies on estimating the influence of the water vapor concentration in the vitiated airflow preheated to 550 K, which may occur when using a hydrogen fire-heater, on the operation process in the combustor of the model facility with condensed energy-intensive material. A significant effect of the water vapor content on slagging of the heat-protective coating surfaces and heat exchange with the walls in the combustor is detected. A decrease in the combustion efficiency of the condensed energy-intensive material in the presence of 2–3 %(wt.) water vapor in the air flow under specified conditions was registered.
About the authors
Evgeny V. Surikov
Baranov Central Institute of Aviation Motors
Author for correspondence.
Email: evsurikov@ciam.ru
Candidate of Science in Technology, Head of Sector of the Engines and Chemmotology Department
Russian Federation, 2, Aviamotornaya St., Moscow, 111116Mikhail S. Sharov
Baranov Central Institute of Aviation Motors
Email: mssharov@ciam.ru
Candidate of Science in Technology, Senior Researcher of the Engines and Chemmotology Department
Russian Federation, 2, Aviamotornaya St., Moscow, 111116Petr A. Kolomentsev
Baranov Central Institute of Aviation Motors
Email: kolomentsev@ciam.ru
Test Engineer of the Engines and Chemmotology Department
Russian Federation, 2, Aviamotornaya St., Moscow, 111116Olga M. Alekseeva
Baranov Central Institute of Aviation Motors
Email: alekseeva@ciam.ru
Test Engineer of the Engines and Chemmotology Department
Russian Federation, 2, Aviamotornaya St., Moscow, 111116Alexander V. Fedorichev
Soyuz Federal Center for Dual-Use Technologies
Email: dgr56@mail.ru
Head of the Laboratory
Russian Federation, 42, Acad. Zhukova St., Dzerzhinsky, Moscow Region, 140090Denis V. Zhesterev
Soyuz Federal Center for Dual-Use Technologies
Email: d_zhesterev@mail.ru
Head of Group
Russian Federation, 42, Acad. Zhukova St., Dzerzhinsky, Moscow Region, 140090References
- Aleksandrov, V. N., V. M. Bytskevich, V. K. Verkholomov, et al. 2006. Integral’nye pryamotochnye vozdushnoreaktivnye dvigateli na tverdykh toplivakh. Osnovy teorii i rascheta [Integrated ramjet engines on solid fuels. Fundamentals of theory and calculation]. Ed. L. S. Yanovskiy. Moscow: Akademkniga. 343 p.
- Sorokin, V. A., L. S. Yanovskiy, V. A. Kozlov, et al. 2010. Raketno-pryamotochnye dvigateli na tverdykh i pastoobraznykh toplivakh. Osnovy proektirovaniya i eksperimental’noy otrabotki [Ramjet engines on solid and pasty fuels. Fundamentals of design and experimental development]. Eds. Yu. M. Milekhin and V. A. Sorokin. Moscow: Fizmatlit. 320 p.
- Obnosov, B. V., V. A. Sorokin, L. S. Yanovskiy, et al. 2014. Konstruktsiya i proektirovanie kombinirovannykh raketnykh dvigateley na tverdom toplive [Design and engineering of combined solid-fuel rocket engines]. Ed. V. A. Sorokin. 2nd ed. Moscow: Bauman MSTU Publs. 303 p.
- Vigot, C., L. Bardelle, and L. Nadaud. 1986. Improvement of boron combustion in a solid-fuel ramrocket. AIAA Paper No. 86-1590.
- Vigot, C., A. Cochet, and C. Guin. 1993. Combustion behaviour of boron-based solid propellants in a ducted rocket. Combustion of boron-based solid propellants and fuels. CRC Press. 386–401.
- Yagodnikov, D. A. Vosplamenenie i gorenie poroshkoobraznykh metallov [Ignition and combustion of powdered metals]. Moscow: Bauman MSTU Publs. 432 p.
- Aleksandrov, V. Yu., K. Yu. Arefyev, A. N. Prokhorov, K. V. Fedotova, M. S. Sharov, and L. S. Yanovskiy. 2016. Metodika eksperimental’nykh issledovaniy effektivnosti rabochego protsessa v vysokoskorostnykh PRVD gazogeneratornoy skhemy na tverdykh toplivakh [The method of experimental research into the efficiency of the working process in high speed solid fuel ramjet engines]. BMSTU J. Mechanical Engineering 2(671):65–75.
- Aref’ev, K. Yu., A. V. Voronetskii, A. N. Prokhorov, and L. S. Yanovskii. 2017. Experimental study of the combustion of efficiency of two-phase gasification products of energetic boron-containing condensed compositions in a high-enthalpy airflow. Combust. Explo. Shock Waves 53(3):283–292.
- Aref’ev, K. Yu., and L. S. Yanovskii. 2019. Combustion efficiency of boron-containing particles of the condensed phase in channels with distributed injection of air. Combust. Explo. Shock Waves 55(1):56–64.
- Baikov, A. V., A. F. Zholudev, M. B. Kislov, I. V. Puchkovskii, M. S. Sharov, A. V. Shikhovtsev, and L. S. Yanovskii. 2019. Burning of solid propellant in gas generator of an airbreathing engine at large content of metal. Russ. J. Appl. Chem. 92(5):602–606.
- Yanovskiy, L. S., K. Yu. Arefyev, Yu. M. Milekhin, V. A. Sorokin, S. A. Gusev, A. V. Voronetskiy, E. V. Surikov, M. S. Sharov, A. V. Baykov, M. A. Abramov, K. V. Fedotova, and I. S. Aver’kov. 2020. Pryamotochnye vozdushnoreaktivnye dvigateli na energoemkikh kondensirovannykh materialakh [Ramjet engines based on energy-intensive condensed materials]. Ed. L. S. Yanovskiy. Moscow: CIAM. 198 p.
- Yanovskii, L. S., D. B. Lempert, V. V. Raznoschikov, I. S. Averkov, and M. S. Sharov. 2020. Evaluation of the performance of some metals and nonmetals in solid propellants for rocket-ramjet engines. Combust. Explo. Shock Waves 56(1):71–82.
- Aleksandrov, V. Yu., K. Yu. Aref’ev, M. A. Il’chenko, and M. V. Ananyan. 2015. Issledovanie effektivnosti rabochego protsessa v malogabaritnykh generatorakh vysokoental’piynogo vozdushnogo potoka [Investigation of workflow efficiency in high-enthalpy compact air flow generators]. Science and Education of the Bauman MSTU 15(8):75–86. doi: 10.7463/0815.0798965.
- Aleksandrov, V. Yu., and D. S. Moseev. 2016. Methods and ways to simulate real high enthalpy flight conditions for ground test facilities. 31st Conference (International) on Equations of State for Matter. Moscow. 218–219.
- Lanshin, A. I., A. N. Prokhorov, N. V. Kukshinov, K. Yu. Aref’ev, V. Yu. Aleksandrov, and O. V. Gus’kov. 2020. Osobennosti raschetnykh issledovaniy i eksperimental’noy otrabotki pryamotochnykh VRD na zhidkikh i gazoobraznykh goryuchikh [Features of design studies and experimental development of liquid and gaseous fueled ramjet engines]. Ed. A. I. Lanshin. Moscow: CIAM. 112 p.
- Spravochnik khimika. T. 1. Obshchie svedeniya, stroenie veshchestva, svoystva slozhnykh vazhneyshikh veshchestv, laboratornaya tekhnika [Chemist’s handbook. Vol. 1. General information, substance structure, properties of complex critical substances, laboratory equipment]. 1966. Leningrad: Khimiya. 1071 p.
- Trusov, B. G. 2002. Programmnaya sistema TERRA dlya modelirovaniya fazovykh i khimicheskikh ravnovesiy [TERRA software system for modeling phase and chemical equilibrium]. Tr. XIV Mezhdunar. konf. po khim. termodinamike. St. Petersburg. Available at: http://main. isuct.ru/¦les/konf/ISTAPC2005/proc/2-11.pdf (accessed February 14, 2021).
Supplementary files
