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Аннотация. Актуальной задачей физического материаловедения является улучшение необходимых для 

эксплуатации свойств металлов и металлических сплавов. Несмотря на значительный прогресс в 

металловедении и металлургии, в частности в создании новых сплавов, превосходящих по своим 

свойствам сплавы системы Al ‒ Si, силумины еще длительное время будут занимать лидирующие 

позиции в промышленности, что связано с их технологичностью при использовании почти во всех видах 

литья. Для улучшения структуры и физико-механических свойств металлических сплавов применяются 
различные методы термической обработки. Одним из них является технология искусственного старения, 

с помощью которой удается существенно изменить физико-механические свойства металлических 

сплавов. Представлены результаты комплексного экспериментального исследования влияния 

импульсного магнитного поля на процесс старения алюминиевого сплава АК9. Приведены сведения о 

химическом составе, режимах термической и термомагнитной обработок и основных экспериментально 

наблюдаемых закономерностях изменений микротвердости и параметров тонкой структуры 

алюминиевого сплава АК9, состаренного длительностью 4 ч при температурах от 120 до 250 °С в 

импульсном магнитном поле амплитудой напряженности 557,2 кА/м и при его отсутствии. Обнаружено, 

что импульсное магнитное поле в значительной мере влияет на прочностные свойства и структуру 

алюминиевого сплава АК9, при этом не изменяет стадийности процесса старения. При наложении 

импульсного магнитного поля средний размер блоков когерентного рассеяния становится больше, а 
плотность дислокаций и относительная микродеформация меньше, чем при его отсутствии, что 

свидетельствует о формировании менее искаженной кристаллической решетки. Рентгеновские 

исследования показали, что временные зависимости параметров тонкой структуры коррелируют с 

временными зависимостями микротвердости, что согласуется с основными классическими 

закономерностями процесса старения. 
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Abstract. An urgent task of physical materials science is to improve the properties of metals and metal alloys necessary 

for operation. Despite significant progress in metal science and metallurgy, in particular in the creation of new 

alloys superior in their properties to alloys of the Al ‒ Si system, silumins will occupy a leading position in 
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industry for a long time, which is associated with their manufacturability when used in almost all types of 

casting. Various methods of heat treatment are used to improve the structure and physico-mechanical properties 

of metal alloys. One of them is the technology of artificial aging, with the help of which it is possible to 

significantly change the physical and mechanical properties of metal alloys. The results of a comprehensive 

experimental study of the effect of a pulsed magnetic field on the aging process of AK9 aluminum alloy are 

presented. Information is provided on the chemical composition, modes of thermal and thermomagnetic 

treatments, and the main experimentally observed patterns of changes in microhardness and fine structure 

parameters of AK9 aluminum alloy aged for 4 hours at temperatures from 120 to 250 °C in a pulsed magnetic 

field with an amplitude of 557.2 kA/m and in its absence. It was found that the pulsed magnetic field 
significantly affects the strength properties and structure of the AK9 aluminum alloy, while it does not change 

the stages of the aging process. When a pulsed magnetic field is applied, the average size of coherent scattering 

blocks becomes larger, and the dislocation density and relative microdeformation are smaller than in its absence, 

which indicates the formation of a less pronounced crystal lattice. X-ray studies have shown that the time 

dependences of fine structure parameters correlate with the time dependences of microhardness, which is 

consistent with the basic classical laws of the aging process. 

Keywords: aluminum alloy, quenching, annealing, aging, pulsed magnetic field, microhardness, X-ray analysis, 

dislocations, fine structure parameters 
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Введение 
Термическая обработка металлических спла-

вов является одним из инструментов повышения 

эксплуатационных и конструкционных свойств 
деталей, изготовленных, в частности, из сплавов 

на основе алюминия. Современная классифика-

ция алюминиевых сплавов делит их на термиче-

ски упрочняемые и не упрочняемые. Эффект 
упрочнения достигается за счет образования в 

пересыщенном твердом растворе зон Гинье-

Престона и когерентных фаз [1 – 8]. В настоящее 
время наблюдается повышенный интерес к тер-

мической обработке материалов (металлов и 

сплавов, под воздействием магнитных полей). 
Появление новых количественных данных об 

эффекте влиянии магнитных полей на диффузи-

онно-контролируемые процессы в порошковых, 

поликристаллических и монокристаллических 
веществах [9 – 12] обуславливает необходимость 

его практического использования в современных 

технологиях искусственного старения. Это поз-
воляет получать материалы с модифицирован-

ными структурой и физико-механическими свой-

ствами, в частности, это хорошо наблюдается в 
алюминиевых сплавах [8 – 11]. Физическая при-

рода эффекта изменения структуры и свойств 

сплавов в результате наложения магнитных по-

лей остается дискуссионной.  

Целью настоящей работы является ком-
плексное экспериментальное исследование ис-

кусственного старения алюминиевого сплава 

АК9 в импульсном магнитном поле амплитудой 
напряженности 557,2 кА/м, частотой 2 Гц, дли-

тельностью 4 ч при температуре отжига от 120 

до 250 °C методами микротвердости и рентгено-

структурного анализа. 
 

Методы и принципы исследования 

Исследование искусственного старения про-
водили на образцах алюминиевого сплава АК9, 

химический состав которого приведен в табл. 1. 

Образцы исследуемого сплава представляли 
собой цилиндры диаметром и высотой примерно 

10 мм, которые предварительно подвергали за-

калке. Образцы одновременно выдерживали в 

печи в атмосфере воздуха при температуре 535 
°C длительностью 4 ч, затем охлаждали, быстро 

погружая в воду температурой 20 ± 0,5 °C. Режи-

мы старения выбирали на основе литературных 
данных и результатов, ранее проведенных иссле-

дований [13 ‒ 17]: процесс проводили в вакууме 

10–3 Па при температуре от 120 до 250 °C в тече-
ние 4 ч в импульсном магнитном поле амплиту-

дой напряженности 557,2 кА/м и частотой 2 Гц и 

при его отсутствии. 

Т а б л и ц а  1  

Химический состав алюминиевого сплава марки АК9 

Table 1. Chemical composition of aluminum alloy AK9 

Элемент Al Si Cu Fe Mn Zn Mg Ni 

Содержание в сплаве, % 85 – 91 8 – 11 до 1 до 1 0,2 – 0,5 0,5 0,2 – 0,4 до 0,3 

Радиус атома, Å 1,43 1,32 1,28 1,40 1,27 1,38 1,60 1,24 



Вестник Сибирского государственного индустриального университета № 3 (53), 2025 

 - 45 - 

 
Рис. 1. Форма сигнала импульсного магнитного поля 

Fig. 1. The shape of the pulse magnetic field signal 
 

Магнитное поле создавали электромагнитом 
ФЛ-1 с электронным блоком питания и управле-

ния. Форму сигнала импульсного магнитного 

поля можно описать следующим выражением: 
 

H(t) = {
H1 sin(2πνt), 0 < t < t1;

0,  t1 < t < t1 + t2,
 

 

где H1 – амплитуда напряженности импульсной 

гармонической составляющей магнитного поля; 

ν – частота магнитного поля; t1 – время импуль-

са; t2 – время паузы (задержки импульса); t1/t2 ≈ 0,5 ± 

0,1. 

Форма сигнала импульсного магнитного поля 
изображена на рис. 1, его характеристики пред-

ставлены в табл. 2. 

В настоящей работе для исследования про-
цесса старения алюминиевого сплава в импуль-

сном магнитном поле изучали микротвердость и 

рентгеноструктурный анализ образцов.  

Микротвердость по методу Виккерса [18] 
определяли с помощью микротвердомера 

HAUSER при нагрузке 0,98 Н. Каждое значение 

микротвердости получали путем усреднения 30 
измерений. Относительная ошибка среднего 

значения микротвердости исследуемого матери-

ала составила 2 – 3 %. 
С целью расчета параметров тонкой структу-

ры необходимо было методом аппроксимации 

[19 – 21] определить истинное физическое уши-
рение. Этот метод позволяет по изменениям 

формы дифракционных линий определять раз-

меры когерентно рассеивающих блоков, относи-

тельную микродеформацию и плотность дисло-
каций. Для этого записывали дифракционные 

линии эталона (закаленного образца) и алюми-

ниевого сплава марки АК9, состаренного в им-
пульсном магнитном поле и при его отсутствии. 

Далее подбирали функцию, которая наиболее 

точно описывала форму дифракционных линий. 
Было установлено, что профиль дифракционных 

линий наилучшим образом описывается функ-

цией (1 + a1x2)
–1, истинное физическое уширение 

дифракционных линий (311)α вычисляли по сле-
дующей формуле: 

 

Т а б л и ц а  2  

Характеристики импульсного магнитного поля  
Table 2. Characteristics of pulsed magnetic field 

 

Параметр Значение параметра 

Н1, кА/м 557,2 

Н1, дел. 28,5 шкала 1 

Н1, (РУЧКА Г6-27) 1,1  
f, Гц 2 

τ1, дел. 12 
шкала 0,20 

τ2, дел. 12 
τ1, с   0,24 
τ2, с 0,24 
τ1/τ2 1 

Тэксп, с 0,48 
Ттеор, с 0,50 

Нотр, дел. 1 шкала 1 

Нотр, кА/м 19,5 
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Рис. 2. Температурная зависимость микротведости алюминиевого сплава марки АК9 после термической и 
 термомагнитной обработок: 

1 – после закалки; 2 и 3– старение при наложении импульсного магнитного поля и без него 
Fig. 2. Temperature dependence of microhardness of aluminum alloy AK9 after thermal and thermomagnetic treatments: 

1 – after quenching; 2 and 3 – aging with and without pulsed magnetic field 
 

β = B ‒ b, 

 
где B – интегральная ширина дифракционных 

линий состаренных образцов; b – ширина ди-

фракционной линии эталона. 

Используя полученные значения истинного 
физического уширения, определяли параметры 

тонкой структуры сплава, а именно средний 

размер (<D>) блоков когерентного рассеяния, 

плотность (<>) дислокаций и относительную 

микродеформацию (<d/d>) по следующим 
формулам: 

 

⟨D⟩ = 0,94λ
1

β311

sec ϑ311; 

⟨
Δd

d
⟩ = 0,25β

311
ctgϑ311; 

ρ = 
3

⟨D⟩2
, 

 

где 311 – брэгговский угол отражения (311)α;    

311 – физическое уширение дифракционных 

линий;  – длина волны Co K-излучения. 
 

Основные результаты и их обсуждение 

На рис. 2 представлены результаты измере-
ний микротвердости алюминиевого сплава мар-

ки АК9, а также изображены температурные за-

висимости микротвердости, среднее значение 
которой в закаленном состоянии составляет 686 

МПа. Полученное значение согласуется с лите-

ратурными данными работы [14], что свидетель-

ствует о достоверности результатов. 

При старении без наложения магнитного поля 

во всем интервале температур наблюдается увели-
чение микротвердости сплава по сравнению с зака-

ленным состоянием. Полученное изменение мик-

ротвердости сплава можно объяснить тем, что в 

результате старения выделяются упрочняющие фа-
зы (Si и Mg2Si), которые тормозят движение дисло-

каций, и, как следствие, повышают прочность 

сплава. Факт наличия фаз подтвержден результата-
ми рентгенофазового анализа [16]. 

Наложение импульсного магнитного поля 

для старения сплава приводит практически все-

гда к уменьшению микротвердости до 18 %. Это 
можно объяснить тем, что при старении в им-

пульсном магнитном поле структура алюминие-

вого сплава марки АК9 испытывает значитель-
ные изменения, становится более совершенной, 

однородной и менее искаженной как показали 

результаты рентгеновского анализа. Движущие-
ся дислокации встречают на своем пути мень-

шее количество препятствий (фазы, границы зерен 

и другие), сплав становится более пластичным. 

Процесс старения при температурах от 120 до 140 
°С идет недостаточно интенсивно, так как такие 

температуры старения являются слишком низкими 

для заметных атомных перескоков, контролирую-
щих структурные и фазовые превращения. При 

увеличении температуры от 200 до 250 °С процесс 

старения идет наиболее интенсивно и завершается 
при кратковременных отжигах, что установлено 

при исследовании временных зависимостей микро-

твердости исследованного сплава. 
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Рис. 3. Температурная зависимость среднего размера блоков когерентного рассеивания (а),  

относительной микродеформации (б) и плотности дислокаций (в) алюминиевого сплава марки АК9: 
1 и 2 – старение без и при наложении импульсного магнитного поля 

Fig. 3. Temperature dependence of the average size of coherent scattering blocks (a), relative microdeformation (б) 
 and dislocation density (в) of AK9 aluminum alloy: 

1 and 2 – aging without and with the application of a pulsed magnetic field 
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Выявлено, что импульсное магнитное поле не из-

меняет стадийности процесса старения исследуемого 

сплава: максимумы и минимумы значений микро-

твердости наблюдаются при одном и том же времени 

старения. При температуре 175 °С наблюдается рез-

кий максимум микротвердости, причем как в им-

пульсном магнитном поле, так и без него (рис. 1). 

Рассматриваемая микротвердость согласуется с 

данными работы [8], согласно которым именно эта 

температура является оптимальной температурой 

старения алюминиевого сплава марки АК9.  

Построены температурные зависимости парамет-

ров тонкой структуры для образцов, состаренных в 

импульсном магнитном поле и без него (рис. 3). 

Наложение импульсного магнитного поля при 

всех исследованных температурах старения приво-

дит к увеличению среднего размера блоков коге-

рентного рассеяния в 1,9 раз и к уменьшению плот-

ности дислокаций в 3,5 раз и относительной микро-

деформации в 1,8 раз по сравнению со старением без 

магнитного поля. Подобное поведение параметров 

тонкой структуры при старении в импульсном маг-

нитном поле указывает на то, что структура сплава 

становится более однородной и менее искаженной. 

Наложение импульсного магнитного поля приводит 

к уширению дифракционных линий до 2,3 раз. 

Обнаружено, что при всех режимах термиче-

ской обработки температурные зависимости пара-

метров тонкой структуры коррелируют с темпера-

турными зависимостями микротвердости: макси-

мальной микротвердости сплава при температуре 

175 °С соответствуют минимальный средний раз-

мер блоков когерентного рассеяния и максималь-

ные плотность дислокаций и относительная мик-

родеформация. 

 

Выводы 

При старении алюминиевого сплава марки АК9 

в импульсном магнитном поле микротвердость 

сплава уменьшается до 18 %, при этом его пласти-

ческие свойства возрастают. По результатам рент-

геноструктурного анализа это связано с формиро-

ванием однородной и менее искаженной структу-

рой сплава. Максимальное значение микротвердо-

сти наблюдается при температуре 175 °С. 

При наложение импульсного магнитного поля 

на алюминиевый сплав марки АК9 средний размер 

блоков когерентного рассеяния больше, а плот-

ность дислокаций и относительная микродефор-

мация меньше, чем при отсутствии магнитного 

поля. Обнаружена корреляция между температур-

ными зависимостями параметров тонкой структу-

ры и микротвердости сплава. 
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