ПОДХОДЫ К ПОСТРОЕНИЮ ПРЕДИКТИВНЫХ СИСТЕМ КОНТРОЛЯ ВЫБРОСОВ ДЛЯ СОВРЕМЕННЫХ ПРОМЫШЛЕННЫХ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

Обложка

Цитировать

Полный текст

Аннотация

Актуальность и цели. Успех в достижении технологического суверенитета и лидерства, экологического благополучия государства неразрывно связан с реализацией экологической промышленной политики и переходом на наилучшие доступные технологии. Материалы и методы. Методология разработки модели предиктивной системы контроля выбросов, а также ее испытаний и поверок основывается на сравнении данных косвенных измерений выбросов (полученных через моделирование) и прямых измерений выбросов (выполненных с использованием временно устанавливаемой автоматической измерительной системы). Результаты. Рассмотрены принципы построения предиктивных систем контроля выбросов загрязняющих веществ производственных процессов на основе математических моделей, разрабатываемых с использованием технологических данных. Кратко рассмотрены правовые основы применения таких систем на промышленных предприятиях в России и за рубежом. Проанализированы особенности технологических процессов, уровни их автоматизации, а также характерные загрязняющие вещества, выбрасываемые в атмосферный воздух в составе отходящих газов, для ключевых отраслей российской промышленности: теплоэнергетики, черной и цветной металлургии, переработки углеводородного сырья, производства минеральных удобрений, производства цемента. Рассмотрено понятие платформы предиктивной аналитики, показана актуальность ее развития, в том числе в части создания предиктивных систем контроля выбросов, в контексте промышленной и технологической политики Российской Федерации. Выводы. Преимущество использования больших объемов данных о процессе может быть реализовано на практике для получения полезной информации.

Об авторах

Дмитрий Олегович Скобелев

Научно-исследовательский институт «Центр экологической промышленной политики»

Автор, ответственный за переписку.
Email: dskobelev@eipc.center

доктор экономических наук, директор

(Россия, г. Мытищи, Олимпийский пр-кт, 42)

Александр Юрьевич Попов

Научно-исследовательский институт «Центр экологической промышленной политики»

Email: a.popov@eipc.center

кандидат химических наук, ведущий научный сотрудник отдела химической и нефтехимической промышленности

(Россия, г. Мытищи, Олимпийский пр-кт, 42)

Василий Александрович Ганявин

Научно-исследовательский институт «Центр экологической промышленной политики»

Email: v.ganyavin@eipc.center

кандидат технических наук, заместитель руководителя инжинирингового центра

(Россия, г. Мытищи, Олимпийский пр-кт, 42)

Вера Михайловна Костылева

Научно-исследовательский институт «Центр экологической промышленной политики»

Email: v.kostyleva@eipc.center

руководитель департамента химической промышленности и автоматизации производственных процессов

(Россия, г. Мытищи, Олимпийский пр-кт, 42)

Андрей Станиславович Малявин

Научно-исследовательский институт «Центр экологической промышленной политики»

Email: a.malyavin@eipc.center

кандидат технических наук, начальник отдела химической и нефтехимической промышленности

(Россия, г. Мытищи, Олимпийский пр-кт, 42)

Список литературы

  1. Шкодинский С. В., Продченко И. А., Матюхин В. Н. Контуры современной промышленной политики России в обеспечении технологического суверенитета страны // Вестник евразийской науки. 2024. Т. 16, № 1. С. 111–121.
  2. Сухарев О. С. Технологический суверенитет России: формирование на базе развития сектора «экономика знаний» // Вестник Института экономики Российской академии наук. 2024. № 1. С. 47–64. doi: 10.52180/2073-6487_2024_1_47_64
  3. Потапцева Е. В., Акбердина В. В., Пономарева А. О. Концепция технологического суверенитета в современной государственной политике России // AlterEconomics. 2024. Т. 21, № 4. С. 818–842. doi: 10.31063/AlterEconomics/2024.21-4.9
  4. Crespi F., Caravella S., Menghini M., Salvatori C. European Technological Sovereignty: An Emerging Framework for Policy Strategy // Intereconomics. 2001. Vol. 56. P. 348–354. doi: 10.1007/s10272-021-1013-6
  5. Edler J., Blind K., Kroll H., Schubert T. Technology sovereignty as an emerging frame for innovation policy. Defining rationales, ends and means // Research Policy. 2023. Vol. 52, is. 6. P. 104765. doi: 10.1016/j.respol.2023.104765
  6. Конопелько Л. А., Попов О. Г., Кустиков Ю. А. [и др.]. Контроль промышленных выбросов автоматическими измерительными системами. М : ТРИУМФ, 2021. 288 с.
  7. Стороженко П. А., Скобелев Д. О., Малявин А. С. [и др.]. Международный и российский опыт нормативно-правового регулирования применения систем автоматического контроля выбросов загрязняющих веществ промышленных предприятий // Экология и промышленность России. 2022. Т. 26, № 4. С. 37–43. doi: 10.18412/1816-0395-2022-4-37-43
  8. Мешалкин В. П., Скобелев Д. О., Попов А. Ю. Автоматический контроль выбросов: опыт применения предсказывающих систем // Компетентность. 2020. № 9-10. С. 15–21. doi: 10.24411/1993-8780-2020-10902
  9. Грачев В. А., Скобелев Д. О., Попов А. Ю. Развитие предиктивных систем контроля выбросов загрязняющих веществ // Экология и промышленность России. 2020. Т. 24, № 10. С. 43–49. doi: 10.18412/1816-0395-2020-10-43-49
  10. Zhang H. [et al.]. Dynamic prediction of in-situ SO2 emission and operation optimization of combined desulfurization system of 300 MW CFB boiler // Fuel. 2022. Vol. 324. P. 124421. doi: 10.1016/j.fuel.2022.124421
  11. Eslick J. C. [et al.]. Predictive modeling of a subcritical pulverized-coal power plant for optimization: Parameter estimation, validation, and application // Applied Energy. 2022. Vol. 319. P. 119226. doi: 10.1016/j.apenergy.2022.119226
  12. Hu Z., Jiang E., Ma X. Numerical simulation on NOx emissions in a municipal solid waste incinerator // Journal of Cleaner Production. 2019. Vol. 233. P. 650–664. doi: 10.1016/j.jclepro.2019.06.127
  13. Belošević S. [et al.]. Numerical prediction of processes for clean and efficient combustion of pulverized coal in power plants // Applied Thermal Engineering. 2015. Vol. 74. P. 102–110. doi: 10.1016/j.applthermaleng.2013.11.019
  14. Lisandy K. Y. [et al.]. Prediction of unburned carbon and NO formation from low-rank coal during pulverized coal combustion: Experiments and numerical simulation // Fuel. 2016. Vol. 185. P. 478–490. doi: 10.1016/j.fuel.2016.08.026
  15. Li R. [et al.]. Real-time prediction of SO2 emission concentration under wide range of variable loads by convolution-LSTM VE-transformer // Energy. 2023. Vol. 269. P. 126781. doi: 10.1016/j.energy.2023.126781
  16. Tan P. [et al.]. Dynamic modeling of NOx emission in a 660 MW coal-fired boiler with long short-term memory // Energy. 2019. Vol. 176. P. 429–436. doi: 10.1016/j.energy.2019.04.020
  17. Yang G., Wang Y., Li X. Prediction of the NOx emissions from thermal power plant using long-short term memory neural network // Energy. 2020. Vol. 192. P. 116597. doi: 10.1016/j.energy.2019.116597
  18. Thieu V. In-depth numerical analysis of combustion and NOx emission characteristics in a 125 MWe biomass boiler // Fuel. 2023. Vol. 332. P. 125961. doi: 10.1016/j.fuel.2022.125961
  19. Wang Z. [et al.]. A dynamic modeling method using channel-selection convolutional neural network: A case study of NOx emission // Energy. 2024. Vol. 290. P. 130270. doi: 10.1016/j.energy.2024.130270
  20. Wu Y. A novel data-driven approach for coal-fired boiler under deep peak shaving to predict and optimize NOx emission and heat exchange performance // Energy. 2024. Vol. 304. P. 132106. doi: 10.1016/j.energy.2024.132106
  21. Dirik M. Prediction of NOx emissions from gas turbines of a combined cycle power plant using an ANFIS model optimized by GA // Fuel. 2022. Vol. 321. P. 124037. doi: 10.1016/j.fuel.2022.124037
  22. Liou J.-L., Liao K.-C., Wen H.-T., Wu H.-Yu. A study on nitrogen oxide emission prediction in Taichung thermal power plant using artificial intelligence (AI) model // International Journal of Hydrogen Energy. 2024. Vol. 63. P. 1–9. doi: 10.1016/j.ijhydene.2024.03.120
  23. Yu H., Gao M., Zhang H., Chen Y. Dynamic modeling for SO2-NOx emission concentration of circulating fluidized bed units based on quantum genetic algorithm – Extreme learning machine // Journal of Cleaner Production. 2021. Vol. 324. P. 129170. doi: 10.1016/j.jclepro.2021.129170
  24. Tang Z. [et al.]. Auto-encoder-extreme learning machine model for boiler NOx emission concentration prediction // Energy. 2022. Vol. 256. P. 124552. doi: 10.1016/j.energy.2022.124552
  25. Wang X., Liu W., Wang Y., Yang G. A hybrid NOx emission prediction model based on CEEMDAN and AM-LSTM // Fuel. 2022. Vol. 310. P. 122486. doi: 10.1016/j.fuel.2021.122486
  26. Han Z., Xie Y., Moinul Hossain Md., Xu C. A hybrid deep neural network model for NOx emission prediction of heavy oil-fired boiler flames // Fuel. 2023. Vol. 333. P. 126419. doi: 10.1016/j.fuel.2022.126419
  27. Si M., Du K. Development of a predictive emissions model using a gradient boosting machine learning method // Environmental Technology & Innovation. 2020. Vol. 20. P. 101028. doi: 10.1016/j.eti.2020.101028
  28. Chen J. [et al.]. Dynamic prediction of SO2 emission based on hybrid modeling method for coal-fired circulating fluidized bed // Fuel. 2023. Vol. 346. P. 128284. doi: 10.1016/j.fuel.2023.128284
  29. An B. [et al.]. Dynamic NOx Prediction Model for SCR Denitrification Outlet of Coal- Fired Power Plants Based on Hybrid Data-Driven and Model Ensemble // Industrial & Engineering Chemistry Research. 2023. Vol. 62, is. 36. P. 14286–14299. doi: 10.1021/acs.iecr.3c01559
  30. Wang Y. An Ensemble Deep Belief Network Model Based on Random Subspace for NOx Concentration Prediction // ACS Omega. 2021. Vol. 6, is. 11. P. 7655–7668. doi: 10.1021/acsomega.0c06317
  31. Li Q. [et al.]. Dynamic NOx Emission Modeling in a Utility Circulating Fluidized Bed Boiler Considering Denoising and Multi-Frequency Domain Information // Energies. 2025. Vol. 18. P. 790. doi: 10.3390/en18040790
  32. Wang Z. [et al.]. A predictive model with time-varying delays employing channel equalization convolutional neural network for NOx emissions in flexible power generation // Energy. 2024. Vol. 306. P. 132495. doi: 10.1016/j.energy.2024.132495
  33. Yuan Z. [et al.]. Prediction of NOx emissions for coal-fired power plants with stackedgeneralization ensemble method // Fuel. 2021. Vol. 289. P. 119748. doi: 10.1016/j.fuel.2020.119748
  34. Xie P. [et al.]. Dynamic modeling for NOx emission sequence prediction of SCR system outlet based on sequence to sequence long short-term memory network // Energy. 2020. Vol. 190. P. 116482. doi: 10.1016/j.energy.2019.116482
  35. Wang Y., Chen X., Zhao C. A data-driven soft sensor model for coal-fired boiler SO2 concentration prediction with non-stationary characteristic // Energy. 2024. Vol. 300. P. 131522. doi: 10.1016/j.energy.2024.131522
  36. Heryuano B. T., Nazaruddin Y. Y., Hadisupadmo S. Predicting Sulfur Content of Desulfurizer using Data-Driven based Inferential Measurement: An Ammonia Plant Case // 2020 IEEE 8th Conference on Systems, Process and Control (ICSPC): Melaka. Malaysia, 2020. P. 178–183. doi: 10.1109/ICSPC50992.2020.9305785
  37. Bonavita N., Ciarlo G. Inferential sensors for emission monitoring: An industrial perspective // Frontiers in Environmental Engineering. 2014. Vol. 3. P. 21–28.
  38. Ciarlo G., Bonavita N. Fulfilling evolving end-users expectations for site-wide emission monitoring: The role of PEMS // 12th International Conference and Exhibition on Emission Monitoring. Lisbon, 2016.
  39. Cheng A. M., Hagen G. F. An accurate predictive emissions monitoring system (PEMS) for an ethylene furnace // Environmental Progress. 1996. Vol. 15, is. 1. P. 19–27. doi: 10.1002/ep.670150115
  40. Saiepour M. [et al.]. Development and Assessment of Predictive Emission Monitoring Systems (PEMS) Models in the Steel Industry // AISTech 2006: Proceedings of the Iron & Steel Technology Conference. Cleveland, Ohio, 2006.
  41. Seol Y. [et al.]. An Interpretable Time Series Forecasting Model for Predicting NOx Emission Concentration in Ferroalloy Electric Arc Furnace Plants // Mathematics. 2024. Vol. 12 (6). P. 878. doi: 10.3390/math12060878
  42. Öztürk B., Öztürk O., Karademir A. NOx emission modeling at cement plants with coprocessing alternative fuels using ANN // Environmental Engineering Research. 2022. Vol. 27 (5). P. 210277. doi: 10.4491/eer.2021.277
  43. Okoji A. I. [et al.]. Evaluation of adaptive neuro-fuzzy inference system-genetic algorithm in the prediction and optimization of NOx emission in cement precalcining kiln // Environmental Science and Pollution Research. 2023. Vol. 30. P. 54835–54845. doi: 10.1007/s11356-023-26282-0
  44. Zhang Y. [et al.]. ANN-GA approach for predictive modelling and optimization of NOx emissions in a cement precalcining kiln // International Journal of Environmental Studies. 2017. Vol. 74 (2). P. 253–261. doi: 10.1080/00207233.2017.1280322
  45. Zheng J., Du W., Lang Z., Qian F. Modeling and Optimization of the Cement Calcination Process for Reducing NOx Emission Using an Improved Just-In-Time Gaussian Mixture Regression // Industrial & Engineering Chemistry Research. 2020. Vol. 59, is. 1. P. 4987–4999. doi: 10.1021/acs.iecr.9b05207
  46. Usman M., Ahmad I., Ahsan M., Caliskan H. Prediction and optimization of emissions in cement manufacturing plant under uncertainty by using artificial intelligence-based surrogate modeling // Environment, Development and Sustainability. 2024. doi: 10.1007/s10668-024-05068-5
  47. Guo Y., Mao Z. A long sequence NOx emission prediction model for rotary kilns based on transformer // Chemometrics and Intelligent Laboratory Systems. 2024. Vol. 251. P. 105151. doi: 10.1016/j.chemolab.2024.105151
  48. Hao X. [et al.]. Multi-objective prediction for denitration systems in cement: an approach combining process analysis and bi-directional long short-term memory network // Environmental Science and Pollution Research. 2023. Vol. 30. P. 30408–30429. doi: 10.1007/s11356-022-24021-5
  49. Моисеев Н. Н. Математические задачи системного анализа. М. : Наука, 1981. 488 c.
  50. Скобелев Д. О., Ганявин В. А., Куцевич Н. А. Предиктивная аналитика как инструмент повышения эффективности промышленного предприятия // Автомати- зация и IT в нефтегазовой отрасли. 2023. № 3 (53).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».