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Аннотация. Перспективным направлением в области переработки полимерных материалов является разра-
ботка самоармированных полимерных композитов, представляющих относительно новую группу компози-
ционных материалов. Метод самоармирования позволяет комбинировать материалы одного полимера с 
различными молекулярными, супрамолекулярными и структурными особенностями. При этом высокие адгези-
онные и механические свойства самоармированных композитов обусловливаются образованием гомогенной 
системы с отсутствием межфазной границы. Вместе с тем самоармирование рассматривает возможность 
использования полимерных отходов для создания высокопрочных композитов, что обеспечивает снижение 
экологической нагрузки. Целью проведенного исследования являлось изучение фазового состава и свойств 
самоармированных полимерных композитов на основе политетрафторэтилена. Самоармированные композиты 
готовили смешением порошков промышленного и переработанного политетрафторэтилена, а затем подвергали 
компрессионному формованию и свободному спеканию. Методом рентгенофазового анализа рассчитывали 
степень кристалличности полученных материалов (41–68%). Результаты динамического механического анализа 
показали, что при введении порошка регенерированного политетрафторэтилена в промышленный политетраф-
торэтилен модуль упругости значительно увеличивается (до 2,0–3,1 ГПа). Исследование деформационно-проч-
ностных характеристик показало возможность использования до 30 масс.% переработанного политетраф-
торэтилена, полученного путем механического истирания, для создания композитов с хорошими эксплуатаци-
онными свойствами. Итоги работы также иллюстрируют факт того, что фазовое состояние материала зависит 
от способа переработки полимерных отходов и является определяющим для теплостойкости и механических 
свойств полученных самоармированных полимерных композитов.
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Abstract. The development of self-reinforced polymer composites, representing a relatively new group of composite 
materials, is a promising direction in the field of polymer chemistry. The method of self-reinforcement is used to 
combine the materials of a single polymer possessing different molecular, supramolecular, and structural features. 
The high adhesion and mechanical properties of such self-reinforced composites are achieved by the formation of 
a homogeneous system without an interfacial boundary. In addition, self-reinforcement offers the opportunity of 
using polymer waste for manufacturing high-strength composites, thus contributing to environmental load mitigation. 
In this work, we investigate the phase composition and properties of self-reinforced polymer composites based on 
polytetrafluoroethylene. Self-reinforced composites were prepared by mixing powders of industrial and recycled 
polytetrafluoroethylene followed by compression molding and pressureless sintering. The crystallinity degree of the 
as-obtained materials calculated by X-ray phase analysis equaled 41–68%. The performed dynamic mechanical analysis 
showed that the introduction of a powder of regenerated polytetrafluoroethylene into industrial polytetrafluoroethylene 
increases the elastic modulus of the obtained materials significantly (up to 2.0–3.1 GPa). The study of deformation and 
strength characteristics confirmed the feasibility of using up to 30 wt% of recycled polytetrafluoroethylene, obtained 
by mechanical abrasion, for manufacturing composites with good performance properties. The findings also indicate 
that the phase composition of the material depends on the method of polymer waste processing, determining the 
heat resistance and mechanical properties of the obtained self-reinforced polymer composites.
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ВВЕДЕНИЕ
Использование вторичного сырья в качестве новой 

ресурсной базы – одно из наиболее динамично раз-
вивающихся направлений переработки полимерных 
материалов в мире [1, 2]. Самоармирование является 
одним из перспективных методов переработки мате-
риалов, позволяющим изготавливать высокопрочные 
термопластичные полимерные композиты [3, 4]. Самоар-
мированные полимерные композиты имеют множество 
преимуществ, включая термоформуемость, высокую 
прочность и жесткость, отличную ударопрочность при 
низкой плотности, высокую биоразлагаемость [3, 5, 6]. 
Отличительной особенностью этого типа композитов 
является возможность их полной переработки, поскольку 
самоармированный полимерный композит изготав-
ливается из одного полимерного материала, который 

служит одновременно и матрицей, и армирующим 
элементом, что позволяет повторно переработать 
использованные изделия из самоармированных ком-
позитов без необходимости разделения, как в других 
видах композиционных материалов [7–9]. Благодаря 
относительной однородности в этой однокомпонентной 
системе достигается идеальное взаимодействие между 
матрицей и армирующим компонентом (это невоз-
можно в гетерогенных композитах), что обеспечивает 
лучшую адгезию и облегчает передачу напряжения 
между матрицей и наполнителем [3]. Для получения 
самоармированных полимерных композитов могут 
быть использованы разные кристаллические формы 
аморфно-кристаллических полимеров (полиморфизм), 
разные супрамолекулярные структуры или разные сорта 
одного полимера. Например, монополимерный композит 
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может содержать более жесткую фазу в качестве арми-
рующего элемента и менее жесткую фазу в качестве 
матрицы. Продукты переработки полимерных отходов 
также можно рассматривать в производстве самоар-
мированных полимерных композитов в зависимости 
от требуемых свойств композита [3, 10]. 

 Целью проведенного исследования являлась оценка 
возможности использования продуктов переработки 
отходов политетрафторэтилена для создания самоар-
мированных композитов, а также изучение свойств 
полученных материалов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
В качестве матрицы использовали промышленный 

политетрафторэтилен (ПТФЭпром.) производства ООО ТД 
«Кирово-Чепецкая химическая компания»)1. В качестве 
армирующего компонента – порошок переработанного 
политетрафторэтилена (ПТФЭизм., Томфлон), полученный 
разными методами переработки отходов полимера. 
ПТФЭизм. представляет собой порошок политетрафторэ-
тилена, полученный переработкой отходов полимера 
путем механического истирания на обдирочном корун-
довом круге (линейная скорость скольжения 27 м/с 
при нагрузке 1 МПа на спроектированной и изготов-
ленной установке) [11]. Томфлон, в свою очередь, это 
ультрадисперсный политетрафторэтилен торговой марки 
ТОМФЛОНTM, представляющий рыхлый рассыпчатый 
порошок белого цвета с размером частиц ~5 мкм2 про-
изводства ООО «Фторполимерные технологии» (г. Томск, 
Россия), который получают комбинационным методом 
переработки отходов политетрафторэтилена, сочетающим 
радиационную и механическую обработку [12].

Самоармированные полимерные композиты готовили 
путем смешения порошков промышленного и перера-
ботанного политетрафторэтилена (ПТФЭизм., Томфлон) на 
высокоскоростной лопастной мельнице при скорости 
2800 об/мин. Содержание переработанного полите-
трафторэтилена в полимерном композите составляло 
5, 10, 20, 30 масс.%. Полимерную смесь формовали 
методом холодного прессования (27 °С, 50 МПа) с после-
дующим свободным спеканием при 370±5 °С в печи 

в воздушной атмосфере (скорость нагрева 100 °С/ч, 
выдержка 0,5 ч на 1 мм толщины образца, охлаждение 
в закрытой печи).

Размеры частиц переработанного политетраф-
торэтилена (ПТФЭизм.) определяли на наносайзере 
SALD-7500nano (Shimadzu, Япония), а также методом 
растровой электронной микроскопии на микроскопе 
высокого разрешения JEOL JSM-6000. 

Рентгенофазовый анализ образцов проводили 
на порошковых дифрактометрах D2 PHASER (Bruker, 
Германия) и TDM-20 (Tongda, Китай) в интервале  
2θ = 4–70° с шагом сканирования 0,02° (CuKα-излучение, 
комнатная температура). Обработку экспериментальных 
данных методами полнопрофильного анализа и расчет 
степени кристалличности выполняли с использованием 
программного комплекса TOPAS 4.2 [12].

Теплофизические свойства (модуль накопления E/, 
модуль потерь E//, тангенс угла механических потерь tg δ) 
образцов определяли на динамическом механическом 
анализаторе DMA 242 C (Netzsch, Германия) в темпе-
ратурном интервале 25–500 °С при скорости нагрева 
5 К·мин-1 в режиме пенетрации, диаметр проникающего 
конца пуансона составлял 3 мм. 

Определение прочности и свойств деформации 
материала вплоть до его разрушения проводили по 
ГОСТ 11262-803 на испытательной машине Instron 
3367 (Instron, США) при скорости движения траверсов 
200 мм/мин. Для испытаний использовали образцы в 
виде лопатки (тип 2).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
На рис. 1 представлено микроизображение измель-

ченного порошка отходов политетрафторэтилена. Размеры 
частиц порошка ПТФЭизм., получаемого механическим 
истиранием, имеют большой разброс и находятся в диа-
пазоне 0,5–250 мкм. Согласно диаграмме (см. рис. 1, b), 
средний размер частиц составляет 17 мкм. 

Рентгенографическим методом определена степень 
кристалличности полученных самоармированных поли-
мерных композитов. Результаты профильного анализа 
исследованных образцов представлены в таблице.

1 ГОСТ 10007-80. Фторопласт-4. Технические условия. М.: Стандартинформ, 2008. 16 с.
2 ТУ 2213-001-12435252-03. Порошок PTFE Томфлон.
3 ГОСТ 11262-80 (СТ СЭВ 1199-80). Пластмассы. Метод испытания на растяжение. М.: Издательство стандартов, 1986. 16 с.

Рис. 1. Микроизображение (a) и диаграмма (b) измельченного порошка отходов политетрафторэтилена
Fig. 1. Microimage (a) and diagram (b) of the ground polytetrafluoroethylene waste powder
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На основании полученных данных были рассчитаны 
количественные соотношения кристаллической и 
аморфных областей самоармированных полимерных 
композитов составов ПТФЭпром./ПТФЭизм. и ПТФЭпром./
Томфлон, а также степени кристалличности в зависимости 
от технологии переработки (см. таблицу). Во многих 
исследованиях сообщается об изменении степени 
кристалличности полимеров в зависимости от спо-
собов переработки [13–15]. Тем не менее данные о 
кристалличности полимерных смесей с использованием 
переработанных полимеров отсутствуют. 

Исследование теплофизических свойств полученных 
самоармированных полимерных композитов позволит 
определить температурные условия переработки поли-
мерных материалов в готовые изделия, а также тем-
пературные режимы эксплуатации изделий. 

На рис. 2 представлен вязкоупругий отклик полу-
ченных самоармированных полимерных композитов 
на механическое воздействие при постоянной частоте в 
интервале температур 25–500 °С. Показано, что значи-
тельные динамические потери наблюдаются в интервалах 
температур фазовых (~25–40 и ~325–327 °С) и релакса-
ционного (~150 °С) переходов (см. рис. 2). В интервале 
~25–40 °С наблюдается β-релаксация, связанная с твер-
дофазными превращениями I и II рода, происходящими 
в кристаллической области полимера. Твердофазный 
переход I рода при 25–30 °С вызван изменениями 
параметров элементарной ячейки кристаллита. Твер-
дофазный переход II рода при ~40 °С связан с потерей 
спиральной хиральности длинноцепочечной молекулы 
кристалла политетрафторэтилена, то есть элемента сим-
метрии кристалла [16, 17]. В работе [18] сообщается, что 
при атмосферном давлении и температуре в пределах 
нескольких десятков градусов Цельсия политетрафторэ-
тилен находится в трех твердофазных состояниях (II, 
IV и I). В фазе II при температуре ниже 19 °C полимер 
имеет хорошо упорядоченную триклинную элементарную 
ячейку. Макромолекулы имеют спиральную конфор-
мацию 13/6 (единиц на виток). При 19 °С происходит 

переход «порядок – беспорядок», представляющий собой 
переориентацию (вращение) макромолекул вокруг их 
осей. Молекулы слегка раскручиваются и принимают 
конформацию 15/7. Эта промежуточная фаза (IV) имеет 
метрически-гексагональную элементарную ячейку и 
сохраняется до 30 °С. При температуре выше 30 °С 
происходит дальнейшее вращательное разупорядочение 
и раскручивание спиралей (по мере увеличения темпе-
ратуры). В этой фазе I спиральная конформация 15/7 
постепенно уступает место усредненной конформации 
2/1 (плоский зигзаг). На рис. 2, с видно, что интенсив-
ность пиков β-релаксации полимерных композитов уве-
личивается с повышением кристалличности. Подобные 
результаты показаны в работе [16]. 

Для полученных самоармированных композитов с 
повышением степени кристалличности наблюдается 
увеличение модуля упругости Е  в 2–4 раза по срав-
нению с промышленным политетрафторэтиленом 

(см.  рис.  2,  а). Возможно, это объясняется тем, что 
образуются кристаллиты с новой морфологией [17]. В 
исследовании [19] авторами показано, что модуль упру-
гости увеличивается с концентрацией кристаллитов и чем 
меньше размер кристаллитов, тем большим модулем 
упругости обладает полимер. Наибольшая жесткость (Е ), 
наблюдаемая в интервале 25–34 °С, сопровождается 
плохой способностью материалов рассеивать энергию (Е )  
(см. рис. 2, b). На зависимости для модуля упругости с 
повышением температуры наблюдается постепенное 
снижение жесткости, связанное с переходом материала 
из стеклообразного состояния в высокоэластичное. В 
области ~150 °С полученные полимерные композиты 
характеризуются одним α-релаксационным переходом, 
связанным со стеклованием аморфной области полу-
ченного композита, что аналогично поведению гомогенных 
однородных полимеров (см. рис. 2, с) [20, 21]. В то же 
время с увеличением степени кристалличности поли-
мерных композитов α-переход расширяется, становится 
асимметричным (см. рис. 2, с), а интенсивность пика 
уменьшается. Это свидетельствует о том, что в компо-

Фазовый состав полученных полимерных материалов

Phase composition of the obtained polymer materials

Образец Фазовая область Площадь

ПТФЭпром./ПТФЭизм.  

(80/20 масс.%)

Аморфная область I (17,55°2θ) 6148,2595
Аморфная область II (38,62°2θ) 11151,8073
Кристаллическая область 4410,188

Степень кристалличности = 41,8%

ПТФЭпром./Томфлон  
(80/20 масс.%)

Аморфная область I (18,04°2θ) 8256,87617
Аморфная область II (38,76°2θ) 15611,7727
Кристаллическая область 8788,76292

Степень кристалличности = 57,7%

ПТФЭпром./ПТФЭизм.  
(70/30 масс.%)

Аморфная область I (16,27°2θ) 1601,54357
Аморфная область II (37,48°2θ) 9018,54478
Кристаллическая область 2185,21767

Степень кристалличности = 51,7%

ПТФЭпром./Томфлон  
(70/30 масс.%)

Аморфная область I (9,8°2θ) 2215,12779
Аморфная область II (37,13°2θ) 7116,64923
Кристаллическая область 4841,37617

Степень кристалличности = 68,6%
Примечание. Степень кристалличности рассчитывали как отношение доли кристаллической области к долям 
кристаллической и аморфной области I.
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зитах происходит частичное упорядочение аморфной 
фазы [21]. Существенное изменение свойств самоар-
мированных полимерных композитов наблюдается в 
области температуры плавления 325–327 °С. Оно связано 
с тем, что кристаллическая фаза материала исчезает 
и упругость образца резко уменьшается (см. рис. 2).

Рассмотрено влияние армирования промышленного 
политетрафторэтилена переработанным полимером на 
механические свойства. Установлено, что прочность при 
разрыве δр и относительное удлинение при разрыве εр 
полученных самоармированных композитов для всего 
диапазона составов отличаются от соответствующих 
величин промышленного политетрафторэтилена (рис. 3), 
уменьшаясь с увеличением содержания регенериро-
ванного полимера. Так, при наполнении 5 масс.% для 
самоармированного полимерного композита состава 
ПТФЭпром./ПТФЭизм. механические свойства находятся на 
уровне свойств промышленного политетрафторэтилена 

(σр = 23,5 МПа; εр = 418%), тогда как при использовании 
порошка Томфлон уже при малом наполнении проис-
ходит резкое снижение деформационно-прочностных 
свойств. При наполнении порошком ПТФЭизм. наблю-
дается ухудшение механических свойств в меньшей 
степени, нежели при применении порошка Томфлон, 
что связано с технологией переработки полимерных 
отходов. При переработке отходов политетрафторэ-
тилена простым истиранием возможна частичная 
механодеструкция полимера, что сопровождается незна-
чительным уменьшением молекулярной массы. При 
радиационном способе получения порошка Томфлон, 
деструкция полимера происходит в результате разрыва 
макромолекул под действием потока электронов или 
γ-квантов, что приводит к уменьшению молекулярной 
массы примерно в 10–30 раз и, как следствие, к сни-
жению физико-механических свойств [12].

Рис. 2. Теплофизические свойства: а – модуль упругости; b – модуль потерь; c – тангенс угла механических потерь  
(1–3 – фторполимеры: 1 – ПТФЭпром., 2 – ПТФЭизм., 3 – Томфлон; 4–6 – самоармированные полимерные композиты 
различного состава: 4 – ПТФЭпром./Томфлон (80/20 масс.%), 5 – ПТФЭпром./ПТФЭизм. (80/20 масс.%),  
6 – ПТФЭпром./Томфлон (70/30 масс.%))
Fig. 2. Thermophysical properties: a – elastic modulus; b – loss modulus; c – mechanical loss tangent  
(1–3 – fluoropolymers: 1 – PTFEman, 2 – PTFEgr, 3 – Tomflon; 4–6 – self-reinforced polymer composites of the composition:  
4 – PTFEman/Tomflon (80/20 wt.%), 5 – PTFEman/PTFEgr (80/20 wt.%), 6 – PTFEman/Tomflon (70/30 wt.%))
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ЗАКЛЮЧЕНИЕ
В результате проведенного исследования получены 

самоармированные полимерные композиты на основе 
политетрафторэтилена и продуктов переработки его 
отходов. Сравнительное исследование композитов 
показало, что теплофизические и механические 
свойства зависят от способа переработки и содер-
жания армирующего наполнителя. С повышением 
степени кристалличности наблюдается увеличение 
модуля упругости материалов в 2–4 раза, вероятно, 
обусловленное образованием мелких кристаллитов. 

Результаты деформационно-прочностных характе-
ристик показали возможность использования пере-
работанного политетрафторэтилена, полученного путем 
механического истирания, в диапазоне наполнения 
от 5 до 30 масс.% для создания композитов с хорошими 
эксплуатационными свойствами (σр = 17–24 МПа;  
εр = 370–410%). Деформационно-прочностные свойства 
промышленного политетрафторэтилена, армированного 
порошком Томфлон, уменьшаются практически в 
2 раза, что связано с низкой молекулярной массой 
переработанного полимера. 
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