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Аннотация. Среди устойчивых к биологической деструкции органических соединений особое место 
занимают антибиотики, так как возрастающий с каждым годом объем их потребления привел к тому, что их 
обнаруживают практически во всех компонентах водных экосистем. При использовании усовершенство-
ванных окислительных процессов удается достичь конверсии не только целевых соединений, но и проме-
жуточных продуктов их реакций, которые нередко являются более токсичными. Пристальное внимание 
уделяется использованию в качестве прекурсоров активных форм кислорода персульфатов, активиро-
ванных комбинированными методами, включающими ультрафиолетовое излучение. Среди современных 
безртутных источников выделяют KrCl-эксилампы с квазимонохроматическим излучением. В настоящей 
работе впервые исследованы кинетические закономерности окисления β-лактамного антибиотика цефтри-
аксона и минерализации общего органического углерода персульфатом при воздействии УФ-С-излучения 
KrCl-эксилампы. Дана сравнительная оценка различных окислительных систем. Установлено, что эффек-
тивность деструкции целевого соединения возрастает в ряду {S2O8

2-} << {УФ} < {Fe2+/S2O8
2-} < {УФ/S2O8

2-} <  
{УФ/Fe2+/S2O8

2-}. Минерализация общего органического углерода достигается только в окислительных 
системах {УФ/Fe2+/S2O8

2-} > {УФ/S2O8
2-}. Оптимальные условия для полной конверсии цефтриаксона и 

глубокой минерализации общего органического углерода (43–60%) в системе {УФ/Fe2+/S2O8
2-} реали-

зуются при мольном соотношении [S2O8
2-]:[Fe2+] = 10. Доказано, что в процессе деструкции цефриаксона 

и минерализации общего органического углерода принимают участие как сульфатные анион-радикалы, 
так и гидроксильные радикалы. Полученные результаты свидетельствуют о перспективности использо-
вания УФ-С-излучения KrCl-эксилампы в комбинированной окислительной системе {УФ/Fe2+/S2O8

2-} для 
эффективной деструкции β-лактамных антибиотиков.
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активные формы кислорода, эксилампа
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Photoactivation of oxidative degradation 
and mineralization of ceftriaxone with excilamp radiation
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Abstract. Among organic compounds resistant to biodegradation, antibiotics are of particular interest because their 
constantly increasing consumption has resulted in their presence in almost all components of aquatic ecosystems. 
With the use of advanced oxidation processes, it is possible to achieve conversion not only of target compounds 
but also of their reaction intermediates, which are often more toxic. Close attention is paid to the use of persulfates 
as precursors of reactive oxygen species, which are activated via combined methods involving ultraviolet radiation. 
Modern mercury-free sources include KrCl exilamps emitting quasi-monochromatic radiation. This study is the first 
to examine the kinetics of oxidation of a β-lactam antibiotic (ceftriaxone) and mineralization of total organic carbon 
by persulfate under the UVC radiation of a KrCl exilamp. Different oxidative systems were comparatively evaluated. 
The efficiency of target compound degradation was found to increase in the series {S2O8

2-} << {UV} < {Fe2+/S2O8
2-} <  

{UV/S2O8
2-} < {UV/Fe2+/S2O8

2-}. The total organic carbon was mineralized only in the oxidative systems {UV/Fe2+/
S2O8

2-} > {UV/S2O8
2-}. The optimal conditions for complete conversion of ceftriaxone and deep mineralization of total 

organic carbon (43–60%) in the {UV/Fe2+/S2O8
2-} system were achieved at a molar ratio of [S2O8

2-]:[Fe2+] = 10. Both 
sulfate radical anions and hydroxyl radicals were shown to participate in ceftriaxone degradation and mineralization 
of total organic carbon. The obtained results indicate the viability of using the UVC radiation of a KrCl exilamp in the 
combined oxidative system {UV/Fe2+/S2O8

2-} for effective degradation of β-lactam antibiotics.
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ВВЕДЕНИЕ
В области разработки технологий для минимизации 

поступления трудноразлагаемых и устойчивых к биоло-
гической деструкции органических соединений большой 
интерес у исследователей вызывают усовершенство-
ванные окислительные процессы (англ.: advanced 
oxidation processes), основанные на использовании 
генерируемых in situ высокореакционноспособных 
активных форм кислорода. При их применении удается 
достичь высокой конверсии не только целевого соеди-
нения, но и промежуточных продуктов реакций, которые 
нередко являются более токсичными и устойчивыми. 
Интегральным показателем, широко используемым 
для оценки эффективности усовершенствованных 
окислительных процессов и свидетельствующим о 
глубоком окислении интермедиатов и, следовательно, 
о повышении биоразлагаемости продуктов реакции, 
является эффективность минерализации – снижение 
концентрации общего органического углерода в рас-
творе [1–6].

Основными активными формами кислорода в усо-
вершенствованных окислительных процессах являются 

гидроксильные радикалы, характеризующиеся высокой 
окислительной способностью (Е0 = 2,72 В), низкой селек-
тивностью и малым временем существования в растворе 
(20 нс) [1]. При этом они способны окислить большинство 
целевых соединений через реакции гидроксилирования 
и дегидрирования [1, 7]. Особое внимание уделяется 
изучению возможности использования в усовершен-
ствованных окислительных процессах сульфатных ани-
он-радикалов – SO4

•- [8–11], так как они сочетают в 
себе высокую окислительную способность (Е0 = 2,44 В),  
селективность по отношению к органическим моле-
кулам с электронодонорными заместителями (-NH2, 
-ОН, -OR) и большее время существования в растворе  
(40 мкс) [1, 12]. Источниками формирования сульфатных 
анион-радикалов в растворе являются персульфаты – 
пероксидисульфаты и пероксомоносульфаты, которые 
подвергают химическому или физическому воздействию. 

Для химической активации персульфатов наиболее 
широко используют ионы переходных металлов, среди 
которых предпочтение отдается Fe2+, так как его сое-
динения широко распространены в природе и менее 
токсичны. При этом образование сульфатных анион-ра-
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дикалов происходит в результате окислительно-восста-
новительной реакции: 

Mеn+ + S2O8
2⁻ → Mе(n+1)+ + SO4

•⁻ + SO4
2⁻.

При активации персульфатов физическим воздей-
ствием широко используют ультрафиолетовое (УФ) 
излучение (λ < 280 нм) [13]. При этом образование 
сульфатных анион-радикалов происходит в результате 
гомолитического разрыва ковалентной связи «кислород –  
кислород»: 

– SO3–O–O–SO3
– 
ℎ𝜈𝜈
→   2 SO4

•⁻.
В большинстве публикаций источниками УФ-излу-

чения являются ртутные лампы (λmax = 254 нм), которые 
нашли практическое применение в процессах обезза-
раживания питьевых и очищенных сточных вод. В то же 
время, учитывая сложности в их хранении и утилизации 
и общемировую тенденцию к сокращению ртутного 
загрязнения, все большее внимание исследователей 
привлекают альтернативные источники УФ-излучения, 
в частности эксимерные лампы (эксилампы) [14–17]. 
Мировой интерес к изучению возможности их приме-
нения в процессах водоочистки и водоподготовки в 
последние годы возрос [18–22]. При этом особо выделяют  
KrCl-эксилампы с квазимонохроматическим излучением 
(λ = 222 нм), отмечая их особый потенциал в усовер-
шенствованных окислительных процессах. В частности, 
установлено, что выход гидроксильных радикалов при 
облучении дистиллированной воды, содержащей пероксид 
водорода, при использовании KrCl-эксилампы в 9,4 раза 
выше, чем при использовании ртутной лампы низкого 
давления (λmax = 254 нм) [22]. Ранее нами была экспе-
риментально подтверждена возможность эффективного 
использования KrCl-эксилампы (222 нм) для активации 
персульфата в процессах окислительной деструкции 
азокрасителей. Установлено, что лишь при комбиниро-
ванной активации персульфата УФ-излучением и ионами 
Fe2+ происходит не только полное окисление красителя, 
но и глубокая минерализация органического углерода 
в водном растворе (77%) [23]. Учитывая, что эффектив-
ность применения усовершенствованных окислительных 
процессов во многом определяется химическими свой-
ствами обезвреживаемых соединений, дальнейшее 
изучение возможности использования эксиламп для 
деструкции биорезистентных органических соединений 
других химических классов представляет теоретический 
и практический научный интерес.

Среди устойчивых к биологической деструкции 
органических соединений особое место занимают 
антибиотики, так как возрастающий с каждым годом 
объем их потребления привел к тому, что их обнару-
живают практически во всех компонентах водных эко-
систем. Не обладая острой токсичностью при малых 
концентрациях, антибиотики способствуют развитию 
резистентности у бактерий, что, по мнению Всемирной 
организации здравоохранения, является угрозой для 
человечества1 [1, 24, 25].

К источникам поступления антибиотиков в водные 
экосистемы относятся недостаточно очищенные стоки 
городских станций водоочистки, так как традиционные 
методы биологической очистки сточных вод малоэф-
фективны для их удаления. В связи с этим возникает 

острая необходимость в разработке новых методов, 
позволяющих удалить антибиотики из стоков. Наиболее 
перспективными в этом отношении являются усовер-
шенствованные окислительные процессы.

Цель проведенного исследования заключалась в 
изучении кинетических закономерностей окисления 
β-лактамных антибиотиков (на примере цефтриаксона) 
и минерализации общего органического углерода 
персульфатом при воздействии УФ-С-излучения KrCl-
эксилампы в водном растворе.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
Исследования проводили на растворах цефтриаксона 

(C18H16N8O7S3Na, 598 г/моль, «Биосинтез», Россия) с кон-
центрацией 33 мкМ, приготовленных на дистиллиро-
ванной воде (рН 5,7±0,2). В экспериментах использовали: 
FeSO4•7H2O (≥99,5%, Scharlab S.L., Испания), K2S2O8, 
метиловый и трет-бутиловый спирты (99%, «Химреак-
тивснаб», Россия).

Эксперименты проводили в проточном трубчатом фото-
реакторе с термостатированием (23±1 °С), оснащенном 
источником монохроматического УФ-излучения – KrCl-
эксилампой барьерного разряда, излучающей в узкой 
спектральной полосе с максимумом 222 нм (KrCl_BD_P 
model, «Эксилампы», г. Томск). Интенсивность погло-
щенного излучения KrCl-эксилампы, определенная 
методом химической актинометрии с атразином [26], 
составила 0,74 мВт/см2. 

Изменение концентрации цефтриаксона в растворе 
контролировали методом высокоэффективной жидкостной 
хроматографии (Agilent 1260 Infinity с диодно-матричным 
УФ-детектором, колонка Zorbax SB-C18 4,6×150 мм). 
Объем пробы составлял 70 мкл, температура колонки – 
35 °С, элюентом являлась смесь ацетонитрила и 0,1%-го 
раствора фосфорной кислоты (30:70). Скорость потока 
равнялась 0,3 мл/мин. 

Степень минерализации органических субстратов 
оценивали по изменению содержания общего органи-
ческого углерода, определяемого на приборе Shimadzu 
TOC-L CSN (Shimadzu, Япония, предел обнаружения 
50 мкг/л). Калибровку прибора проводили по стандартным 
образцам бифталата калия и двууглекислого натрия.

Кинетику окисления изучали по убыли концентрации 
цефтриаксона и концентрации общего органического 
углерода в ходе реакции. 

В условиях наших экспериментов, приняв, что 
радикалы генерируются в избытке и их концентрация 
постоянна во времени, кинетические зависимости мине-
рализации общего органического углерода в рассма-
триваемых системах можно представить уравнением 
реакции псевдопервого порядка: 

𝑘𝑘′ ×  = −ln(𝐶𝐶(𝑂𝑂𝑂𝑂𝑂𝑂)/𝐶𝐶(𝑂𝑂𝑂𝑂𝑂𝑂0)), 
где k’ – константа скорости реакции псевдопервого 
порядка;   – время экспозиции, мин; С(ООУ0) и С(ООУt) – 
исходная и в момент времени  , мин, концентрация 
общего органического углерода соответственно. 

Эффективность процесса окисления Э, %, оценивали 
по изменению концентрации цефтриаксона (конверсии) 
и минерализации общего органического углерода в 

1 Antimicrobial resistance (21 November 2023) // World Health Organization. Режим доступа: https://www.who.int/news-room/
fact-sheets/detail/antimicrobial-resistance (дата обращения: 17.02.2025).
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обрабатываемом растворе по формуле
Э = (1 − 𝐶𝐶/𝐶𝐶0) × 100, 

где С0 и С  – исходная и в момент времени t, мин, 
концентрация цефтриаксона или общего органического 
углерода соответственно.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
Цефтриаксон – цефалоспориновый антибиотик 

третьего поколения, часто используемый для лечения 
бактериальных инфекций. Молекула цефалоспорина 
содержит ядро – 7-аминоцефалоспориновую кислоту, 
состоящую из β-лактамного кольца из четырех элементов, 
слитого с шестичленным дигидротиазиновым кольцом, 
а также две боковые цепи.

Коэффициент молярной экстинкции цефтриаксона при 
222 нм достаточно высок (ε222нм = 19201±537 М-1см-1),  
поэтому он не устойчив к УФ-С-излучению KrCl-эксилампы 
(рис. 1). После 60 мин экспозиции концентрация 
цефтриаксона в растворе снизилась на 78%, однако 
минерализации общего органического углерода не 
наблюдалось (таблица). 

Цефтриаксон практически не взаимодействует с 
персульфатом. При [S2O8

2-] = 0,5 мМ через 60 мин 
концентрация цефтриаксона в растворе не изме-
нилась (рис. 2). При облучении эксилампой персульфат  
(ε222нм = 146 М-1см-1 [21]) активируется с образованием 
сульфатных анион-радикалов, в результате при 60 мин 
экспозиции цефтриаксон в растворе не обнаружен, 
а минерализация общего органического углерода 
составила 32% (см. рис. 2, таблицу).

Дополнительное введение в раствор Fe2+ при-
водит к существенному ускорению окислительного 
процесса, цефтриаксон не обнаруживается уже 
после 5 мин экспозиции. Минерализация в данном 
случае достигла 43%, а скорость минерализации 
общего органического углерода возросла в 1,5 раза 
(см. рис. 2, таблицу). 

В «темновых» условиях без фотовоздействия, несмотря 
на высокую начальную скорость (W0 = 5,5 мкМ/мин), 
через 5 мин реакция практически остановилась. Мине-

Фотоокислительная деструкция цефтриаксона
Photooxidative degradation of ceftriaxone

[Fe2+], мМ [S2O8
2-], мМ [S2O8

2-]:[Fe2+]
Конверсия, % Минерализация  

общего органического углерода
5 мин 60 мин k, ×10 -3 мин-1 R2 Э, %

0,000 0,00 – 17 78 0,0 0,00 0
0,000 0,10 – 13 90 1,4 0,96 8
0,000 0,50 – 30 100 6,1 0,93 32
0,100 0,10 1,0 60 97 3,3 0,97 17
0,100 0,25 2,5 98 100 4,6 0,99 25
0,100 0,50 5,0 100 100 8,9 0,98 43
0,100 1,00 10,0 100 100 14,3 0,97 60
0,025 0,50 5,0 98 100 6,6 0,98 35
0,050 0,50 10,0 100 100 8,6 0,99 43
0,200 0,50 2,5 100 100 8,9 0,99 43
0,100** 0,10** 1,0 30 85 0,0 0,00 0
0,100** 0,50** 5,0 85 86 0,0 0,00 0

Примечание. k – константа скорости реакции; R2 –  коэффициент корреляции; Э – эффективность процесса окисления 
после 60 мин экспозиции; ** – «темновая» реакция, без облучения.
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Рис. 1. Спектры поглощения водных растворов цефтриаксона, 
персульфата калия и спектр излучения KrCl-эксилампы
Fig. 1. Absorption spectra of ceftriaxone aqueous solutions, 
potassium persulfate and the emission spectrum of a KrCl excilamp
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Рис. 2. Окислительная деструкция цефтриаксона 
и минерализация общего органического углерода 
в различных системах ([Fe2+] = 0,1 мМ, [S2O8

2-] = 0,5 мМ)
Fig. 2. Oxidative destruction of ceftriaxone and TOC mineralization 
in different systems ([Fe2+] = 0.1 mM, [S2O8

2-] = 0.5 mM)
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рализации общего органического углерода не наблю-
далось (см. рис. 2, таблицу). 

В присутствии Fe2+ в растворе формируются условия 
для реализации сопряженного радикально-цепного 
механизма, подобно системе Фентона [13, 27, 28]. 
Дополнительное фотовоздействие инициирует процессы 
восстановления Fe3+ из гидроксо- и органических ком-
плексов [29–31]. 

Существенное влияние на скорость протекания 
процесса окисления цефтриаксона и минерализации 
общего органического углерода в системе {УФ/Fe2+/S2O8

2-} 
оказывает концентрация реагирующих веществ и их 
соотношение. Экспериментально установлено, что при 
увеличении концентрации окислителя с 0,1 до 1,0 мМ 
скорость минерализации общего органического углерода 
возрастает в 4 раза (с 3,3×10-3 до 14,3×10-3  мин-1)  
(см. таблицу; рис. 3). 
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Рис. 3. Влияние концентрации окислителя на кинетику 
минерализации цефтриаксона в комбинированной 
системе {УФ/Fe2+/S2O8

2-} ([Fe2+] = 0,1 мМ)

Fig. 3. Effect of oxidizer concentration on the kinetics  
of ceftriaxone mineralization in the combined system  
{UV/Fe2+/S2O8

2-} ([Fe2+] = 0.1 mM)

Увеличение концентрации Fe2+ с 0,025 мМ до 0,05 мМ 
при [S2O8

2-] = 0,5 мМ приводит к росту константы ско-
рости реакции минерализации общего органического 
углерода с 6,6×10-3 до 8,6×10-3 мин-1 (см. таблицу; рис.4). 
Дальнейшее увеличение концентрации Fe2+ не оказывает 
существенного влияния на кинетику минерализации 
общего органического углерода. Таким образом, экс-
периментально установлено, что оптимальные условия 
для полной конверсии цефтриаксона и глубокой мине-
рализации общего органического углерода (43–60%) 
в системе {УФ/Fe2+/S2O8

2-} реализуются при мольном 
соотношении [S2O8

2-]:[Fe2+] = 10.
Процесс окислительной деструкции органических 

соединений в железо-персульфатных системах проис-
ходит за счет их взаимодействия с высокореакционными 
активными формами кислорода, формирующимися 
в растворе (•OH, SO4

•–, O2
•− и др.). Для выявления 

роли активных форм кислорода при окислительной 
деструкции цефтриаксона в системе {УФ/Fe2+/S2O8

2-}  

проведены эксперименты с добавлением ингибиторов 
радикальных реакций – метилового и трет-бутилового 
спиртов. Константы скорости взаимодействия метанола 
с SO4

•– и •OH имеют относительно близкие значения  
(kMeOH/•OH = 9,7×108 М-1с-1 и kMeOH/SO4

•- = 1,1×107 М-1с-1 [31]), 
поэтому он будет реагировать с ними практически 
одновременно. Константа скорости взаимодей-
ствия трет-бутанола с •OH на три порядка выше, чем 
с SO4

•- (kt-BtOH/•OH = (3,8–7,6)×108  М-1с-1 и kt-BtOH/SO4
•- = 

(4,0–9,1)×105 М-1с-1 [32]), поэтому с гидроксильными 
радикалами он будет реагировать в первую очередь. 
Учитывая, что константы скорости взаимодействия 
антибиотиков цефалоспоринового ряда с SO4

•- и •OH 
составляют ≈109 М-1с-1 [33, 34], соединения-«ловушки» 
необходимо брать в большом избытке. Изменение 
характера кинетических зависимостей и анализ 
3D-хроматограмм растворов цефтриаксона до и 
после обработки в окислительной системе {УФ/Fe2+/
S2O8

2-} в присутствии «радикальных ловушек» одно-
значно свидетельствует об ингибировании окисли-
тельной деструкции целевого соединения (рис. 5). Так, 
после 5 мин экспозиции конверсия цефтриаксона с 
трет-бутанолом снизилась на 14%, а с метанолом – 
на 27%. Полученные результаты свидетельствуют о том, 
что в процессе окислительной деструкции цефтриаксона 
принимают участие как гидроксильные радикалы, так 
и сульфатные анион-радикалы. 

ЗАКЛЮЧЕНИЕ
Таким образом, в ходе проведенной работы впервые 

исследованы кинетические закономерности фотока-
талитического окисления β-лактамного антибиотика 
цефтриаксона и минерализации общего органического 
углерода персульфатом при воздействии УФ-С-излу-
чения KrCl-эксилампы (222 нм) в водном растворе. 
Дана сравнительная оценка различных окислительных 
систем. Экспериментально установлено, что эффектив-
ность деструкции целевого соединения возрастает в ряду 
{S2O8

2-} << {УФ} < {Fe2+/S2O8
2-} < {УФ/S2O8

2-} < {УФ/Fe2+/S2O8
2-}.  
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Рис. 4. Влияние концентрации Fe2+ на кинетику  
окисления цефтриаксона в комбинированной системе  
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Fig. 4. Effect of Fe2+ concentration on the kinetics  
of ceftriaxone oxidation in the combined system  
{UV/Fe2+/S2O8
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2-] = 0.5 mM)
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Минерализация общего органического углерода дости-
гается только в окислительных системах {УФ/Fe2+/S2O8

2-} > 
{УФ/S2O8

2-}. Оптимальные условия для полной конверсии 
цефтриаксона и глубокой минерализации общего орга-
нического углерода (43–60%) в системе {УФ/Fe2+/S2O8

2-} 
реализуются при мольном соотношении [S2O8

2-]:[Fe2+] = 
10. С применением ингибиторов радикальных реакций 
доказано, что в процессе деструкции цефтриаксона и 

минерализации общего органического углерода при-
нимают участие как сульфатные анион-радикалы, так и 
гидроксильные радикалы. Полученные результаты свиде-
тельствуют о перспективности использования УФ-С-излу-
чения KrCl-эксилампы в комбинированной окислительной 
системе {УФ/Fe2+/S2O8

2-} для эффективной деструкции 
β-лактамных антибиотиков.
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