ОБРАЗОВАНИЕ КЛАСТЕРОВ МЕДИ В ПРОЦЕССЕ БИОКОРРОЗИИ СПЛАВОВ АЛЮМИНИЯ МИКРОСКОПИЧЕСКИМИ ГРИБАМИ

Обложка

Цитировать

Полный текст

Аннотация

В работе исследована биокоррозия сплавов алюминия Д16Т и АМг6 в условиях воздействия микроскопических грибов. Показано, что микромицеты продуцируют активные формы кислорода - супероксидный анион-радикал, пероксид водорода, инициирующие биокоррозию металлов. Методом энергодисперсионной рентгеновской спектроскопии определен состав продуктов биокоррозии Д16Т и АМг6 после экспозиции сплавов на газоне консорциума микромицетов. Проведено рентгенофазовое исследование продуктов биокоррозии сплавов. Сканирующей электронной микроскопией и рентгенодифракционным анализом показано образование наноразмерных и субмикронных кластеров меди. Предложен физико-химический механизм биокоррозии сплавов алюминия микроскопическими грибами. Высказано предположение о механизме работы систем «нульвалентный металл - пероксид водорода», которые могут запускать каскад реакций, ведущих к деструктивному окислению металлов. В работе дана попытка объяснения роли биопленок сообщества микроскопических грибов как основного фактора микологической коррозии металлов.

Об авторах

Денис Владимирович Белов

ФГБНУ «Федеральный исследовательский центр Институт прикладной физики им. А. В. Гапонова-Грехова РАН»

Email: bdv@ipfran.RUS
603950, Россия, Нижний Новгород, ул. Ульянова, 46)Институт физики микроструктур Российской академии наук - филиал ФГБНУ «Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова РАН» (603950, Россия, Нижегородская обл., Кстовский р-н, д. Афонино, ул. Академическая, 7

Сергей Николаевич Беляев

ФГБНУ «Федеральный исследовательский центр Институт прикладной физики им. А. В. Гапонова-Грехова РАН»

603950, Россия, Нижний Новгород, ул. Ульянова, 46)Институт физики микроструктур Российской академии наук - филиал ФГБНУ «Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова РАН» (603950, Россия, Нижегородская обл., Кстовский р-н, д. Афонино, ул. Академическая, 7

Павел Андреевич Юнин

Институт физики микроструктур Российской академии наук - филиал ФГБНУ «Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова РАН»

603950, Россия, Нижегородская обл., Кстовский р-н, д. Афонино, ул. Академическая, 7

Артем Александрович Назаров

Институт физики микроструктур Российской академии наук - филиал ФГБНУ «Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова РАН»

603950, Россия, Нижегородская обл., Кстовский р-н, д. Афонино, ул. Академическая, 7

Список литературы

  1. Zhao, J. Biocorrosion of copper metal by Aspergillus niger / J. Zhao, L. Csetenyi, G.M. Gadd // International Biodeterioration and Biodegradation. - 2020. - V. 154. - Art. № 105081. - 10 p. doi: 10.1016/j.ibiod.2020.105081.
  2. Horeh, N.B. Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger / N.B. Horeh, S.M. Mousavi, S.A. Shojaosadati // Journal of Power Sources. - 2016. - V. 320. - P. 257-266. doi: 10.1016/j.jpowsour.2016.04.104.
  3. Lekbach, Y. Microbial corrosion of metals: The corrosion microbiome / Y. Lekbach, T. Liu, Y. Li et al. // Advances in Microbial Physiology. - 2021. - V. 78. - P. 317-390. doi: 10.1016/bs.ampbs.2021.01.002.
  4. Tang, H.Y. Stainless steel corrosion via direct iron-to-microbe electron transfer by Geobacter species / H.Y. Tang, C. Yang, T. Ueki et al. // The ISME Journal. - 2021. - V. 15. - № 10. - P. 3084-3093. doi: 10.1038/s41396-021-00990-2.
  5. Li, S. Extracellular electron transfer of Bacillus cereus biofilm and its effect on the corrosion behaviour of 316L stainless steel / S. Li, L. Li, Q. Qu et al. // Colloids and Surfaces B: Biointerfaces. - 2019. - V. 173.- P. 139-147. doi: 10.1016/j.colsurfb.2018.09.059.
  6. Costerton, J.W. How Bacteria Stick / J.W. Costerton, G.G. Geesey, K.J. Cheng // Scientific American.- 1978. - V. 238. - I. 1. - P. 86-95. doi: 10.1038/scientificamerican0178-86.
  7. Lamin, A. Quorum sensing inhibitors applications: A new prospect for mitigation of microbiologically influenced corrosion / A. Lamin, A.H. Kaksonen, I.S. Cole, X.-B. Chen // Bioelectrochemistry. - 2022. - V. 145. - Art. № 108050. - 10 p. doi: 10.1016/j.bioelechem.2022.108050.
  8. Huang, S. Field testing of an enzymatic quorum quencher coating additive to reduce biocorrosion of steel / S. Huang, C. Bergonzi, S. Smith et al. // bioRxiv. - 2022. - Art. № 518914. - 31 p. doi: 10.1101/2022.12.02.518914.
  9. Mehmood, A. Fungal quorum-sensing molecules and inhibitors with potential antifungal activity: A review / A. Mehmood, G. Liu, X. Wang et al. // Molecules. - 2019. - V. 24. - I 10. - Art. № 1950. 18 p. doi: 10.3390/molecules24101950.
  10. Wang, Y. Extracellular polymeric substances and biocorrosion/biofouling: Recent advances and future perspectives / Y. Wang, R. Zhang, J. Duan et al. // International Journal of Molecular Sciences. - 2022. - V. 23. - I. 10. - Art. no. 5566. - 20 p. doi: 10.3390/ijms23105566.
  11. Pal, M.K. Microbial influenced corrosion: Understanding bioadhesion and biofilm formation / M.K. Pal, M. Lavanya // Journal of Bio- and Tribo-Corrosion. - 2022. - V. 8. - Art. № 76. - 13 p. doi: 10.1007/s40735-022-00677-x.
  12. Belozerskaya, T.A. Reactive oxygen species and the strategy of antioxidant defense in fungi: A review / T.A. Belozerskaya, N.N. Gessler // Applied Biochemistry and Microbiology. - 2007. - V. 43. - I. 5. - P. 506-515. doi: 10.1134/S0003683807050031.
  13. Sies, H. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents / H. Sies, D.P. Jones // Nature Reviews Molecular Cell Biology. - 2020. - V. 21. - I. 7. - P. 363-383. doi: 10.1038/s41580-020-0230-3.
  14. Gessler, N.N. Reactive oxygen species in regulation of fungal development / N.N. Gessler, A.A. Aver'yanov, T.A. Belozerskaya // Biochemistry (Moscow). - 2007. - V. 72. - I. 10. - P. 1091-1109. doi: 10.1134/S0006297907100070.
  15. Aslanidi, K.B. Resistance of microscopic fungi to oxidative stress / K.B. Aslanidi, A.E. Ivanova, Y.V. Blazheevskaya et al. // Doklady Biochemistry and Biophysics. - 2003. - V. 392. - I. 1. - P. 241-243. doi: 10.1023/a:1026178410988.
  16. Hedison, T.M. Insights into the H2O2-driven catalytic mechanism of fungal lytic polysaccharide monooxygenases / T.M. Hedison, E. Breslmayr, M. Shanmugam et al. // The FEBS Journal. - 2021. - V. 288.- I. 13. - P. 4115-4128. doi: 10.1111/febs.15704.
  17. Bissaro, B. Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2 / B. Bissaro, Å.K. Røhr, G. Müller et al. // Nature Chemical Biology. - 2017. - V. 13. - I. 10. - P. 1123-1128. doi: 10.1038/nchembio.2470.
  18. Sideri, M. Differentiation and hydrogen peroxide production in Sclerotium rolfsii are induced by the oxidizing growth factors, light and iron / m. sideri, c.d. georgiou // Mycologia. - 2000. - V. 92. - I. 6. - P. 1033-1042. doi: 10.2307/3761468.
  19. Zhang, J. Guttation capsules containing hydrogen peroxide: an evolutionarily conserved NADPH oxidase gains a role in wars between related fungi / J. Zhang, Y. Miao, M.J. Rahimi et al. // Environmental Microbiology. - 2019. - V. 21. -№ 8. - P. 2644-2658. doi: 10.1111/1462-2920.14575.
  20. Wiberth, C.-C. Oxidative enzymes activity and hydrogen peroxide production in white-rot fungi and soil-borne micromycetes co-cultures / C.-C. Wiberth, A.-Z. C. Casandra, F. Zhiliang, H. Gabriela // Annals of Microbiology. - 2018. - V. 69. - I. 2. - P. 171-181. doi: 10.1007/s13213-018-1413-4.
  21. Xu, W. Accelerated corrosion of 316L stainless steel in simulated body fluids in the presence of H2O2 and albumin / W. Xu, F. Yu, L. Yang et al. // Materials Science and Engineering: C. - 2018. - V. 92. - P. 11-19. doi: 10.1016/j.msec.2018.06.023.
  22. Dong, C. Coupling mechanism between wear and oxidation processes of 304 stainless steel in hydrogen peroxide environments / C. Dong, C. Yuan, X. Bai et al. // Scientific Reports. - 2017. - V. 7. - I. 1.- Art. № 2327. 9 p. - doi: 10.1038/s41598-017-02530-5.
  23. Gong, Z. Oxidation towards enrofloxacin degradation over nanoscale zero-valent copper: mechanism and products / Z. Gong, J. Xie, J. Liu et al. // Environmental Science and Pollution Research. - 2023. - V. 30. - I. 13. - P. 38700-38712. doi: 10.1007/s11356-022-24984-5.
  24. Kumar, S. Nanoscale zerovalent copper (nZVC) catalyzed environmental remediation of organic and inorganic contaminants: A review / S. Kumar, P. Kaur, R.S. Brar, J.N. Babu // Heliyon. - 2022. - V. 8. - I. 8.- Art. № e10140. - 21 р. doi: 10.1016/j.heliyon.2022.e10140.
  25. Белов, Д.В. О роли активных форм кислорода в инициировании коррозии металлов микроскопическими грибами / Д.В. Белов, М.В. Челнокова, Т.Н. Соколова, В.Р. Карташов // Коррозия: материалы, защита. - 2009. - № 11. - С. 43-48.
  26. Белов, Д.В. Генерация супероксидного анион-радикала микромицетами и его роль в коррозии металлов / Д.В. Белов, М.В. Челнокова, Т.Н. Соколова и др. // Известия высших учебных заведений. Химия и химическая технология. - 2011. - Т. 54. - № 10. - C. 133-136.
  27. Bielski, B.H.J. Reactivity of HO2/O2- radicals in aqueous solution / B.H.J. Bielski, D.E. Cabelli, R.L. Arudi, A.B. Ross // Journal of Physical and Chemical Reference Data. - 1985. - V. 14. - I. 4. - P. 1041-1100. doi: 10.1063/1.555739.
  28. Winterbourn, C.C. Biological chemistry of superoxide radicals / C.C. Winterbourn // ChemTexts. - 2020.- V. 6. - I. 1. - Art. № 7. 13 p. doi: 10.1007/s40828-019-0101-8.
  29. Khudyakov, I.V. Oxidation-reduction reactions of free radicals / I.V. Khudyakov, V.A. Kuz'min // Russian Chemical Reviews. - 1978. - V. 47. - I. 1. - P. 22-42. doi: 10.1070/rc1978v047n01abeh002201.
  30. Meisel, D. Hydroperoxyl radical reactions. II. Cupric ions in modulated photolysis. Electron paramagnetic resonance experiments / D. Meisel, H. Levanon, G. Czapski // The Journal of Physical Chemistry. - 1974.- V. 78. - I. 8. - P. 779-782. doi: 10.1021/j100601a004.
  31. Pham, A.N. Fenton-like copper redox chemistry revisited: Hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production / A.N. Pham, G. Xing, C.J. Miller, T.D. Waite // Journal of Catalysis.- 2013. - V. 301. - P. 54-64. doi: 10.1016/j.jcat.2013.01.025.
  32. Belov, D.V. Research of corrosion cracking of D16T and Amg6 aluminum alloys exposed to microscopic fungi / D.V. Belov, S.N. Belyaev, M.V. Maksimov, G.A. Gevorgyan // Inorganic Materials: Applied Research.- 2022. - V. 13. - I. 6. - P. 1640-1651. doi: 10.1134/s2075113322060028.
  33. Коваль, Э.З. Микодеструкторы промышленных материалов / Э.З. Коваль, Л.П. Сидоренко. - Киев: Наукова думка, 1989. - 192 с.
  34. Ринальди, М. Определитель патогенных и условно патогенных грибов / М. Ринальди, Д. Саттон, А. Фотергилл. - М.: Мир, 2001. - 486 с.
  35. Berridge, M.V. Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction / M.V. Berridge, P.M. Herst, A.S. Tan // Biotechnology Annual Review. - 2005. - V. 11. - P. 127-152. doi: 10.1016/s1387-2656(05)11004-7.
  36. Seidler, E. The tetrazolium-fomazan system: design and histochemistry / E. Seidler // Progress in Histochemistry and Cytochemistry. - 1991. - V. 24. - I. 1. - P. 3-79. doi: 10.1016/s0079-6336(11)80060-4.
  37. Fridovich, I. Superoxide radical and superoxide dismutases / I. Fridovich // Annual Review of Biochemistry. - 1995. - V. 64. - I. 1. - P. 97-112. doi: 10.1146/annurev.bi.64.070195.000525.
  38. Burns, J.M. Methods for reactive oxygen species (ROS) detection in aqueous environments / J.M. Burns, W.J. Cooper, J.L. Ferry et al. // Aquatic Sciences. - 2012. - V. 74. - I. 4. - P. 683-734. doi: 10.1007/s00027-012-0251-x.
  39. Pobiner, H. Determination of hydroperoxides in hydrocarbon by conversion to hydrogen peroxide and measurement by titanium complexing / H. Pobiner // Analytical Chemistry. - 1961. - V. 33. - I. 10. - P. 1423-1426. 10.1021/ac60178a045.
  40. Белов, Д.В. О механизме биокоррозии сплавов алюминия Д16Т и АМг6 (обзор) / Д.В. Белов, С.Н. Беляев, М.В. Максимов, Г.А. Геворгян // Коррозия: материалы, защита. - 2021. - Т. 10. - С. 1-22. doi: 10.31044/1813-7016-2021-0-10-1-22.
  41. Belov, D.V. Physicoсhemical features of the mechanism of the biocorrosion of D16T duralumin by microscopic fungi / D.V. Belov, S.N. Belyaev, G.A. Gevorgyan, M.V. Maksimov // Russian Journal of Physical Chemistry A. - 2022. - V. 96. - I. 8. - P. 1599-1614. doi: 10.1134/S0036024422080052.
  42. Merkel, T.H. General corrosion of copper in domestic drinking water installations: scientific background and mechanistic understanding / T.H. Merkel, S.O. Pehkonen // Corrosion Engineering, Science and Technology. - 2006. - V. 41. - I. 1. - P. 21-37. doi: 10.1179/174327806X94009.
  43. Крымский, C.В. Межкристаллитная коррозия криопрокатанного и состаренного алюминиевого сплава Д16 / С.В. Крымский, Р.Р. Ильясов, Е.В. Автократова и др. // Физикохимия поверхности и защита материалов. - 2017. - Т. 53. - № 6. - C. 646-655. doi: 10.7868/S0044185617060158.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).