СТРУКТУРНО-ФАЗОВЫЕ СОСТОЯНИЯ НАНОЧАСТИЦ МНОГОКОМПОНЕНТНОГО СПЛАВА AlCuNiCoCrFe, ФОРМИРУЮЩЕГОСЯ В РЕЗУЛЬТАТЕ СОВМЕСТНОГО ЭЛЕКТРИЧЕСКОГО ВЗРЫВА ПРОВОЛОЧЕК

Обложка

Цитировать

Полный текст

Аннотация

В данной работе впервые методом совместного электрического взрыва проволочек металлов Al , Cu , Ni и сплавов 20 Х 80 Н , 29 НK в атмосфере аргона были получены образцы наночастиц многокомпонентного сплава AlCuNiCoCrFe . В качестве базового режима взрыва проволочек был выбран режим, близкий к согласованному, что позволило минимизировать влияние энергии дуговой стадии разряда на структурно-фазовое состояние формирующихся наночастиц. Показано, что полученные образцы представлены сферическими частицами с размерами от 15 до 500 нм. Среднечисленный размер наночастиц полученных образцов варьируется от 40 до 58 нм. Распределение частиц по размерам описывается нормально-логарифмическим законом, кристаллическая структура частиц соответствует твердым растворам замещения с ОЦК и/или ГЦК кристаллической решеткой. Увеличение содержания Al в продуктах взрыва приводит к увеличению содержания в образцах фазы с ОЦК решеткой, тогда как увеличение содержания Cu - к увеличению фазы с ГЦК решеткой. Полученные образцы могут быть использованы электрокатализе.

Об авторах

Константин Владимирович Сулиз

ФГБУН «Институт физики прочности и материаловедения СО РАН»

Email: konstantin.suliz@gmail.com
634055, Россия, Томск, просп. Академический, 2/4

Александр Васильевич Первиков

ФГБУН «Институт физики прочности и материаловедения СО РАН»

Email: pervikov@list.RUS
634055, Россия, Томск, просп. Академический, 2/4

Список литературы

  1. Yao, Y. High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery/ Y. Yao, Q. Dong, A. Brozena et al. // Science. - 2022. - V. 376. - I. 6589. - 11 p. doi: 10.1126/science.abn3103.
  2. Koo, W.-T. The design and science of polyelemental nanoparticles/ W.-T. Koo, J.E. Millstone, P.S. Weiss,I.-D. Kim // ACS Nano. - 2020. - V. 14. - I. 6. - P.6407-6413. doi: 10.1021/acsnano.0c03993.
  3. Zoubi, W.A. Recent experimental and theoretical advances in the design and science of high-entropy alloy nanoparticles / W.A. Zoubi, R.A.K. Putri, M.R. Abukhadra, Y.G. Ko // Nano Energy. - 2023. - V. 110.- Art. № 108362. - 25 р. doi: 10.1016/j.nanoen.2023.108362.
  4. Sindhu, T.K. Understanding nanoparticle formation by a wire explosion process through experimental and modelling studies / T.K. Sindhu, R. Sarathi, S.R. Chakravarthy // Nanotechnology. - 2008. - V. 19. - I. 2.- Art. № 025703. - 11 р. doi: 10.1088/0957-4484/19/02/025703.
  5. Suliz, K.V. Synthesizing multicomponent AlCrFeCuNi nanoparticles by joint electrical explosion of wires/ K.V. Suliz, А.А. Miller, K.V. Ivanov, А.V. Pervikov // Powder Technology. - 2022. - V. 404. - Art. № 117491. - 7 p. doi: 10.1016/j.powtec.2022.117491.
  6. Han, R. Compositionally graded multi-principal-element alloy coating with hybrid amorphous-nanocrystalline structure by directional electrical explosion/ R. Han, C. Li, Q. Li et al. // Journal of Alloys and Compounds. - 2023. - V.933. - Art. № 167780. - 7 р. doi: 10.1016/j.jallcom.2022.167780.
  7. Yin, Z. Microwave-absorbing performance of FeCoNi magnetic nanopowders synthesized by electrical explosion of wires / Z. Yin, J. Wu, L. Liang et al. // Journal of Alloys and Compounds. - 2023. - V. 966.- Art. № 171594. - 9 р. doi: 10.1016/j.jallcom.2023.171594.
  8. Romanova, V.M. Electric explosion of fine wires: three groups of materials / V.M. Romanova, G.V. Ivanenkov, A.R. Mingaleev et al // Plasma Physics Reports. - 2015. - V. 41. - I. 8. - P. 617-636. doi: 10.1134/S1063780X15080085.
  9. Romanova, V.M. Observation of laser radiation scattering effects in explosion products of thin molybdenum wires/ V.M. Romanova, I.N. Tilikin, A.E. Ter-Oganesyan et al. // Plasma Physics Reports. - 2022. - V. 48.- I. 2. - P. 121-130. doi: 10.1134/S1063780X2202012X.
  10. Sarkisov, G.S. Anomalous transparency at 1064 nm of a freely expanding gas cylinder in vacuum during fast electric explosion of thin metal wires/ G. S. Sarkisov // Journal of Applied Physics. - 2022. - V. 131.- I. 10. - Art. № 105904. - 9 р. doi: 10.1063/5.0082990.
  11. Pervikov, A.V. Metal, metal composite, and composited nanoparticles obtained by electrical explosion of wires / A.V. Pervikov // Nanobiotechnology Reports. - 2021. - V. 16. - I. 4. - P. 401-420. doi: 10.1134/S2635167621040091.
  12. Suliz, K.V. Control of cluster coalescence during formation of bimetallic nanoparticles and nanoalloys obtained via electric explosion of two wires / K.V. Suliz, A.Yu. Kolosov, V.S. Myasnichenko et al. // Advanced Powder Technology. - 2022. - V. 33. - I. 3. - Art. № 103518. - 15 р. doi: 10.1016/j.apt.2022.103518.
  13. Rogachev, A.S. Structure, stability, and properties of high-entropy alloys / A. S. Rogachev // Physics of Metals and Metallography. - 2020. - V. 121. - I. 8. - P. 733-764. doi: 10.1134/S0031918X20080098.
  14. Long, Y. Fine-Grained FeCoNi(CuAl)x High entropy alloys: phase transformation, microstructure evolution and mechanical properties / Y. Long, G. Li, X. Liang, H. Peng // Frontiers in Materials. - 2020. - V. 7.- Art. № 537812. - 11 р. doi: 10.3389/fmats.2020.537812.
  15. Tomboc, G.M. High entropy alloy electrocatalysts: a critical assessment of fabrication and performance / G.M. Tomboc, T. Kwon, J. Joo, K. Lee. // Journal of Materials Chemistry A. - 2020. - V. 8. - I. 30. - P. 14844-14862. doi: 10.1039/D0TA05176D.
  16. Kotov, Yu.A. The electrical explosion of wire: A method for the synthesis of weakly aggregated nanopowders / Yu.A. Kotov // Nanotechnologies in Russia. - 2009. - V. 4. - I. 7-8, - P. 415-424. doi: 10.1134/S1995078009070039.
  17. Miracle D.B. A critical review of high entropy alloys and related concepts / D.B. Miracle, O.N. Senkov // Acta Materialia. - 2017. - V. 122. - P. 448-511. doi: 10.1016/j.actamat.2016.08.081.
  18. Takeuchi A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element /A. Takeuchi, A. Inoue. // Materials Transactions. - 2005. - V. 46. - I. 12. - P. 2817-2829. doi: 10.2320/matertrans.46.2817.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).