
 

 

© А.Н. Заритовский, Е.Н. Котенко, С.В. Грищук, В.А. Глазунова, Г.К. Волкова, 2023 

УДК 546.26-162:534.838.7:547.469.3 Оригинальная статья 

СИНТЕЗ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ  

ПРИ МИКРОВОЛНОВОМ КАТАЛИТИЧЕСКОМ ПИРОЛИЗЕ 

ЦЕЛЛЮЛОЗЫ 
А.Н. Заритовский1, Е.Н. Котенко1, С.В. Грищук1, В.А. Глазунова2, Г.К. Волкова2 

1ФГБНУ «Институт физико-органической химии и углехимии им. Л.М. Литвиненко» 

283048, Россия, Донецк, ул. Розы Люксембург, 70 
2ФГБНУ «Донецкий физико-технический институт им. А.А. Галкина» 

283048, Россия, Донецк, ул. Розы Люксембург, 72 

zaritovski@gmail.com 

DOI: 10.26456/pcascnn/2023.15.973 

Аннотация: Растущий спрос на углеродные нанотрубки, являющиеся типичными 

представителями класса углеродных наноматериалов и обладающие уникальными 

физико-химическими свойствами, вызывает необходимость поиска доступных и 

возобновляемых углеводородных ресурсов для их получения и разработки 

энергоэффективного и высокопроизводительного метода синтеза. В работе 

рассмотрены вопросы перспективности использования лигноцеллюлозной биомассы и 

ее отходов в качестве источника углерода для синтеза углеродных нанотрубок в 

микроволновом каталитическом пиролизе, подчеркивается целесообразность 

исследований в данном направлении. Отмечается, что одним из параметров, 

отвечающих за протекание процесса пиролитического синтеза углеродных нанотрубок, 

является концентрация поглотителя микроволнового излучения, определяющая 

температуру пиролиза. Изучено влияние изменения концентрации микроволнового 

поглотителя в реакционной смеси на каталитический синтез многостенных углеродных 

нанотрубок в процессе микроволнового пиролиза целлюлозы. Показано, что изменение 

содержания микроволнового акцептора от 10 до 30% сопровождается увеличением 

концентрации многостенных углеродных нанотрубок разупорядоченной морфологии в 

реакционной смеси. Высказано предположение о двухстадийном процессе пиролиза-

синтеза. Рассмотрены результаты просвечивающей электронной микроскопии и 

рентгенофазового анализа полученных продуктов. 

Ключевые слова: растительное сырьё, углеродные нанотрубки, целлюлоза, 

микроволновые поглотители, концентрация, микроволновая обработка, пиролиз. 

 

1. Введение 

Высокая востребованность углеродных материалов нанометрового 

диапазона (углеродные нанотрубки (УНТ), графен, фуллерены и др.) 

вызывает необходимость поиска новых эффективных методов получения 

указанных структур и вовлечения в синтез экологически чистых, 

доступных и возобновляемых сырьевых углеводородных ресурсов. 

Среди большого ассортимента источников углерода биомасса, 

состоящая в основном из целлюлозы, лигнина и гемицеллюлозы, 

соответствует вышеприведенным критериям и с успехом может 

использоваться в качестве углеродного прекурсора для масштабного 

синтеза углеродных наноструктур, в первую очередь углеродных 

нанотрубок. 
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Стратегия синтеза УНТ, на наш взгляд, может быть связана с 

модификацией разработанных и реализованных в последние десятилетия 

передовых технологий переработки биомассы, в основу которых положены 

термохимические подходы, отличающиеся от других способов 

энергоэффективностью и гибкостью в отношении сырья и продуктов [1]. 

В ряду основных термохимических методов пиролиз является 

известной и хорошо исследованной платформой, которая используется для 

превращения биомассы в ценные продукты (биотопливо, газ, биоуголь). 

Основные недостатки, присущие пиролизу, такие как потери тепла в 

окружающую среду, неселективный нагрев и пр., по мнению авторов 

обзора [2], могут быть устранены интеграцией процесса пиролиза с 

микроволновым (МВ) облучением. Данный аспект представляет собой 

новую концептуальную разработку для эффективного расширения 

возможностей переработки растительного сырья. 

Технология пиролиза с использованием микроволн становится 

одним из наиболее перспективных подходов к ускорению химических 

реакций благодаря эффективным профилям теплопередачи посредством 

МВ излучения. Ключевые преимущества МВ диэлектрического нагрева 

делают процесс пиролиза биомассы и ее отходов применимым для 

успешного превращения растительного сырья в углеродные 

наноматериалы (УНМ) в присутствии или в отсутствие катализаторов. При 

этом разработки по микроволновому синтезу углеродных нанотрубок 

должны быть сориентированы на решение вопросов снижения стоимости 

их производства за счет применения прекурсоров растительного 

происхождения. 

Использование углеродных предшественников на основе 

лигноцеллюлозной биомассы в условиях микроволнового синтеза 

углеродных нанотрубок описано в ряде публикаций. 

Так, в работе [3] рассмотрен синтез полых углеродных нановолокон 

(ПУНВ) в результате МВ преобразования при 500°C смеси скорлупы 

пальмовых орехов с активированным углем. Синтез нановолокон 

трубчатой и бамбукообразной морфологии наблюдался только при  

СВЧ-пиролизе, в то время как как обычный пиролиз в неподвижном слое 

не приводит к образованию указанных соединений. Данный факт, по 

мнению авторов, говорит о ключевой роли МВ излучения в формировании 

ПУНВ. 

Эти же авторы, исследуя влияние целлюлозы и лигнина на синтез 

УНТ в условиях микроволнового пиролиза, установили, что обработка 

образцов целлюлозы МВ излучением способствует получению 

многостенных углеродных нанотрубок (МУНТ), тогда как в тех же 

условиях УНТ из лигнина не образовывались. Анализ летучих продуктов 
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пиролиза позволил предположить, что, в отличие от лигнина, 

образующиеся вещества, обогащенные моносахаридами, действовали как 

эффективный источник углерода для синтеза УНТ [4]. 

О новом способе синтеза сверхдлинных УНТ длиной до 2 мм из 

целлюлозы, выделенной из скорлупы пальмовых орехов, в условиях 

двухстадийного микроволнового процесса сообщается в статье [5]. 

В обзоре [6] исследователи, опираясь на экспериментальные 

результаты, предложили механизм образования УНТ, связанный с 

селективным МВ нагревом и возникновением горячих точек, 

содействующих выделению летучих веществ из биомассы. Выделяющиеся 

продукты взаимодействуют с минеральными компонентами сырья, 

играющими роль катализатора, что приводит к формированию и росту 

УНТ в соответствии со схемой (см. рис. 1). 

 

 
а б в г 

Рис. 1. Механизм образования УНТ: а – микроволновый нагрев, б – выделение летучих 

веществ из частиц биомассы, в – самоэкструзия летучих веществ, г – рост УНТ. 

 

О получении многослойных УНТ диаметром 50 нм путем 

МВ пиролиза камеди, содержащей целлюлозу, гемицеллюлозу и лигнин, 

при 500°C с добавкой карбида кремния как микроволнового поглотителя 

заявлено в публикации [7]. Образование смеси индивидуальных УНТ, 

композитов графена и углеродных нанотрубок в условиях обработки 

рисовой шелухи МВ излучением мощностью 900 Вт описано в статье [8]. 

Смесь углеродных наноструктур трубчатой и сферической 

морфологии, среди которых идентифицированы одностенные углеродные 

нанотрубки, получена в процессе МВ обработки массы, состоящей из 

измельченной рисовой шелухи ‒ материала, используемого как источник 

углерода, и порошкообразного ферроцена в качестве катализатора [9]. 

В работе [10] приводятся результаты исследований каталитического 

МВ пиролиза лигноцеллюлозных биомасс арахисовой скорлупы и 

сосновых опилок, выполненных с целью разработки способа селективного 

производства биомасел, обогащенных фенолами. Процессы проводились 
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при различных температурах и соотношениях биомасса : рецептор. В роли 

микроволновых рецепторов и катализаторов пиролиза выступали бурый и 

активированный угли. Высокие локальные температуры в реакционной 

зоне благоприятствуют образованию УНТ, осажденных на поверхностях 

частиц углей. 

Информативными и содержательными представляются обзоры  

[11-16] по синтезу углеродных нанотрубок из растительного сырья с 

использованием микроволновых методов, в которых обобщаются 

последние достижения в области переработки лигноцеллюлозной 

биомассы, анализируются факторы, влияющие на направление процесса, 

подчеркиваются проблемы МВ пиролиза, отмечаются тенденции и 

перспективы развития данного способа получения УНТ. 

Известно, что один из рабочих параметров, определяющих 

эффективность микроволнового пиролиза лигноцеллюлозной биомассы,  

– присутствие в реакционной смеси поглотителя ‒ материала с высокими 

диэлектрическими характеристиками, активно поглощающего энергию 

МВ излучения и играющего важную роль в скорости нагрева и достижении 

желаемой температуры пиролиза. Количество микроволнового абсорбента, 

добавляемого к биомассе, является показателем, который оказывает 

влияние на состав продуктов процесса пиролиза и описывается как 

отношение поглотителя к исходному сырью биомассы. 

Стоит отметить, что роль рецептора в микроволновом пиролизе 

лигноцеллюлозного ресурса при получении биотоплива, газообразных 

компонентов и биоугля исследована достаточно полно. 

В то же время параметры и значимость поглотителя в аналогичном 

МВ преобразовании биомассы, направленном на синтез УНТ, изучены 

недостаточно. 

Цель настоящего исследования заключалась в оценке влияния 

концентрации поглотителя микроволнового излучения на процесс синтеза 

углеродных нанотрубок, поскольку указанный параметр, по нашему 

мнению, является одним из определяющих факторов при разработке 

перспективных технологий синтеза наноструктурных материалов. 

 

2. Экспериментальная часть и обсуждение результатов 

В работе изложены результаты изучения процесса микроволнового 

каталитического пиролиза микрокристаллической целлюлозы в 

присутствии углеродного рецептора, в качестве которого служил графит 

марки МККЗ. Содержание поглотителя регулировалось в пределах  

10-30 мас.%. В роли предшественников металлических катализаторов 

применялась смесь солей кобальта и никеля. Эксперименты 

осуществлялись путем обработки смеси компонентов, помещенных в 
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кварцевую ампулу, МВ излучением с частотой 2450 МГЦ при мощности 

1000 Вт циклически в течение 8-10 минут. Большинство опытов 

сопровождается образованием искровых микродуговых разрядов, 

свечением реакционной массы. 

Продукты МВ пиролитических превращений, полученные в виде 

темных пушистых порошков, анализировались методом просвечивающей 

электронной микроскопии (ПЭМ) с использованием микроскопа  

JEM-200А фирмы «JEOL». На рис. 2 приведены микрофотографии 

продуктов МВ пиролиза целлюлозы с различным содержанием 

МВ поглотителя в реакционной смеси. 

Анализ ПЭМ-изображений показал, что при концентрации 

поглотителя 10% образуются графеноподобные частицы и небольшое 

количество наноскроллов, тогда как углеродные нанотрубки в продуктах 

реакции обнаружены не были (см. рис. 2 а). При увеличении содержания 

МВ рецептора в смеси до 20, 25 и 30% процесс сопровождается 

образованием хаотически переплетенных пучков МУНТ разного размера 

диаметром от 20 до 200 нм и длиной до нескольких десятков микрометров, 

а также частиц графенов. На электронограммах наблюдается размытое 

дебаевское кольцо, характерное для поликристаллических образцов, и 

гексагональные рефлексы, отвечающие малослойным графеновым 

частицам (см. рис. 2 б, в, г). 
 

   
а б в 

  
г д 

Рис. 2. ПЭМ-изображения продуктов микроволнового каталитического пиролиза 

целлюлозы. Содержание МВ поглотителя: а – 10%, б – 20%, в – 25%, г, д – 30%. 
 

Интересно отметить, что при концентрации МВ поглотителя 30% 

происходит изменение в характере продуктов синтеза – уменьшается 
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количество МУНТ, но увеличиваются их диаметр и протяженность, 

появляются графеновые плоскости и скроллы. Среди продуктов синтеза 

зафиксированы «гигантские» углеродные образования с диаметром около 

700 нм и толщиной стенки 90 нм, представляющие самостоятельный 

интерес для исследований (см. рис. 2 д). 

Особенности структуры синтезированных УНМ исследовали 

методом рентгенофазового анализа с помощью дифрактометра «ДРОН-3» 

с использованием CuK  излучения, длина волны   = 1,54181Ǻ (U  = 30 кВ, 

I = 20 мА). На дифрактограмме продуктов, полученных с применением в 

реакции 30% МВ поглотителя, профили отражений от плоскостей 004 и 

002 несимметричны, уширены и смещены в сторону меньших углов 2  , 

что свидетельствует о присутствии в образцах нескольких фаз (см. рис. 3). 
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Рис. 3. Дифрактограмма и деконволюция пика 002 продукта МВ пиролиза целлюлозы 

(концентрация поглотителя 30%). 
 

По рассчитанному истинному положению максимума пика 002 

установлена основная фаза в структуре синтезированных УНМ при 

2  = 26,33° ( 002d (расчет) = 3,3846Å), которая по своему межплоскостному 

расстоянию принадлежит структуре многостенных углеродных 

нанотрубок. Осуществлено разложение рефлекса 002 на три реплики. С 

помощью расчетов в образце определены фазы при 2  (расчет) = 26,415° 

( d  = 3,3756Å), 2 (расчет) = 26,339° (d  = 3,3857Å) и при  

2 (расчет) = 26,279° (d  = 3,4045Å). Первые два значения межплоскостных 

расстояний в первом приближении могут быть отнесены к фазе МУНТ 

различной структурной упаковки, третье – к структуре турбостратного 

углерода. 

Рассчитанные фазы подтверждаются данными электронно-

микроскопических исследований. 
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3. Заключение 

Проведена оценка влияния микроволнового поглотителя и его 

содержания в реакционной смеси на процесс синтеза углеродных 

нанотрубок. Установлено, что микроволновой пиролиз целлюлозы с 

использованием МВ поглотителя в количестве 20-30% приводит к 

образованию в качестве основного продукта реакции многостенных 

углеродных нанотрубок разупорядоченной морфологии. 

Высказано предположение, что увеличение концентрации 

микроволнового абсорбента в изученных пределах способствует 

интенсификации каталитического синтеза УНТ с участием продуктов 

реакции, в том числе биоугля, выступающего в роли рецептора и донора 

углерода. 
 

Работа выполнена при поддержке Министерства науки и высшего образования 

Российской Федерации (бюджетная тема «Углеродные наночастицы с заданной 
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Original paper 

SYNTHESIS OF CARBON NANOMATERIALS BY MEANS OF MICROWAVE-ASSISTED 

CATALYTIC PYROLYSIS OF CELLULOSE 

A.N. Zaritovskii1, E.N. Kotenko1, S.V. Grishchuk1, V.A. Glazunova2, G.K. Volkova2 
1L.M. Litvinenko Institute of Physical Organic and Coal Chemistry, Donetsk, Russia 

2Galkin Donetsk Institute for Physics and Engineering, Donetsk, Russia 

DOI: 10.26456/pcascnn/2023.15.973 

Abstract: The growing demand for carbon nanotubes, which are typical representatives of the class of 

carbon nanomaterials and have unique physical and chemical properties, necessitates the search for 

available and renewable hydrocarbon resources for their production and development of an energy-

efficient and a highly productive synthesis method. The prospects of using lignocellulosic biomass and 

its wastes as a carbon source for the synthesis of carbon nanotubes by means of microwave catalytic 

pyrolysis are considered. The expediency of research in this direction is emphasized. It is noted that 

one of the parameters responsible for the process of pyrolytic synthesis of carbon nanotubes is the 

concentration of microwave radiation absorber, which determines pyrolysis temperature. The effect of 

changing the concentration of microwave absorber in reaction mixture on the catalytic synthesis of 

multi-walled carbon nanotubes during microwave pyrolysis of cellulose has been studied. It is shown 

that a change in the microwave acceptor content from 10 to 30% is accompanied by an increase in the 

concentration of multi-walled carbon nanotubes of disordered morphology in reaction mixture. A two-

stage pyrolysis-synthesis process is suggested. The results of transmission electron microscopy and X-

ray phase analysis of the obtained products are considered. 

Keywords: plant raw materials, carbon nanotubes, cellulose, microwave absorbers, concentration, 

microwave processing, pyrolysis. 
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