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Аннотация: В данном исследовании с помощью квантово-химического моделирования 

было проведено определение оптимальной конфигурации молекулярной системы 

«наночастицы силиката марганца - незаменимая аминокислота». Для начала 

проводилось квантово-химическое моделирование отдельных молекул силиката 

марганца и незаменимых аминокислот, после проводилось моделирование 

молекулярных систем «наночастицы силиката марганца-незаменимые аминокислоты», 

в которых атом кислорода, присоединённый к атому кремния в силикате марганца, 

соединялся с ионизированной аминогруппой аминокислоты. В результате установлено, 

что молекулярные системы «наночастицы силиката марганца-незаменимые 

аминокислоты» являются энергетически выгодными и химически стабильными. На 

основе полученных данных можно сделать вывод, что оптимальной конфигурацией 

данных молекулярных систем является взаимодействие силиката марганца с лизином 

через ионизированную α-аминогруппу лизина. Данная молекулярная система обладает 

наибольшими значениями разницы полной энергии (ΔE = 73,268 ккал/моль) и 

химической жёсткости (η = 0,144 эВ), которые являются показателями энергетической 

выгоды и химической стабильности молекулярной системы. После путём смешивания 

ацетата марганца, L-лизина и силиката натрия были получены наночастицы силиката 

марганца, стабилизированные L-лизином.  

Ключевые слова: наночастицы силиката марганца, незаменимые аминокислоты, 

квантово-химическое моделирование, лизин, ИК-спектроскопия. 

 

1. Введение 

За всю историю развития медицины для изготовления имплантатов 

использовалось множество материалов [1, 2]. Так, широкую популярность 

в качестве имплантов при лечении полного или частичного 

зубочелюстного аппарата приобрел гидроксиапатит [3]. Гидроксиапатит 

является одной из популярных структур благодаря высокой 

биосовместимости, однако его низкая стабильность ограничивает его 

применение [4]. Для увеличения стабильности и биосовместимости 

гидроксиапатита прибегают к легированию наночастицами металлов. В 

роли металлов, используемых для легирования, могут выступать 

различные металлические наночастицы, в том числе марганца, серебра, 
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магния, кобальта и цинка [5]. Анализируя существующие данные, 

становится возможным сделать вывод о том, что легирование 

гидроксиаппатита наночастицами металлов позволяет улучшить 

показатели механической стабильности, биосовместимости, 

остеоиндуктивности, целостности костной ткани, антибактериальных 

свойств и других характеристик, что способствует расширению 

возможностей их применения [6].  

В случае использования наночастиц марганца в костной 

имплантации, можно увеличить биосовместимость и приживаемость 

протеза, не оказывая токсического действия на организм [7, 8]. Также 

использование наночастиц марганца не создает помехи при проведении 

процедуры МРТ [9]. Таким образом, исследование различных форм 

наночастиц марганца способствует созданию биосовместимых имплантов 

для их применения в современной медицине, что в свою очередь 

открывает возможность создания новых методик лечения пациентов с 

различными видами поражения костных тканей [10]. Так, можно сделать 

вывод о том, что наночастицы марганца являются перспективным 

материалом для использования в качестве покрытия для биосовместимых 

имплантатов [11]. Одним из способов изучения разнообразных соединений 

наночастиц металлов, в том числе и наночастиц марганца, является 

компьютерное моделирование [12]. Методы компьютерного 

моделирования позволяют проводить эксперименты с использованием 

нейросетей, что в свою очередь позволяет значительно сэкономить 

ресурсы, задействованные в ходе исследования [13]. Так, в работе [14] 

было проведено исследование влияния наночастиц марганца на растения 

Vigna radiata, в рамках которого рассмотрено токсическое влияние 

марганца на Vigna radiata и проведено моделирование взаимодействия 

наночастиц марганца с органическими соединениями, входящими в состав 

данного растения. По результатам исследования был сделан вывод, о том 

марганец не оказывает токсического влияния на растения Vigna radiata.  

Таким образом, целью данной работы является определение 

оптимальной конфигурации молекулярной системы наночастиц силиката 

марганца с незаменимыми аминокислотами. 

 

2. Экспериментальная часть 

Определение оптимальной конфигурации молекулярной системы 

наночастиц силиката марганца с незаменимыми аминокислотами 

проводилось с помощью квантово-химического моделирования, в рамках 

которого с помощью программного обеспечения QChem [15] 

рассчитывались полная энергия молекулярного комплекса E , энергия 

высшей заселённой молекулярной орбитали HOMOE , энергия низшей 
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свободной молекулярной орбитали LUMOE . Расчет проводился при 

следующих параметрах – метод: HF, базис: 6-31G, convergence – 5, силовое 

поле – Ghemical. Расчет осуществлялся на оборудовании центра обработки 

данных (Schneider Electric) ФГАОУ ВО «Северо-Кавказский федеральный 

университет». На основе рассчитываемых значений получали разницу 

суммы полной энергии составляющих элементов молекулярного 

комплекса – молекулы аминокислоты и силиката марганца, и полной 

энергии системы «наночастицы силиката марганца-аминокислота» E , а 

химическую жёсткость молекулярной системы  , рассчитываемые как: 

 
30 1MnSiOE E E E    , (1) 

где 0E  – полная энергия аминокислоты, 1E  – полная энергия 

молекулярного комплекса «наночастица силиката марганца-незаменимая 

аминокислота»; 

   / 2LUMO HOMOE E  . (2) 

Для определения оптимальной конфигурации молекулярной системы 

силиката марганца с незаменимыми аминокислотами на первом этапе 

проводилось квантово-химическое моделирование молекулы силиката 

марганца и молекул незаменимых аминокислот: L -валин (Val), L -лейцин 

(Leu), L -изолейцин (Ile), L -метионин (Met), L -треонин (Tre), L -лизин 

(Lys), L -фенилаланин (Phe), L -триптофан (Trp). После проводилось 

моделирование взаимодействие силиката марганца с незаменимыми 

аминокислотами. На основе предыдущих исследований моделирование 

проводилось путём взаимодействия атома кислорода, присоединённого к 

атому кремния силиката марганца, с ионизированной аминогруппой 

аминокислоты [16]. 

Синтез наночастиц силиката марганца, стабилизированных 

незаменимыми аминокислотами, проводился с использованием ацетата 

марганца в качестве прекурсора и силиката натрия в качестве осадителя. 

На первом этапе получали растворы ацетата марганца и силиката натрия с 

концентрацией 0,8 M, после в раствор силиката натрия добавляли 

аминокислоту с массовой долей   = 0,27 %, перемешивали в течение 

10 минут при скорости 750 об/мин. На втором этапе полученные суспензии 

отмывали с помощью метода центрифугирования при скорости 

2000 об/мин. Отмытые осадки высушивали в сушильном шкафу при 

температуре 80°C. Также получали образец наночастиц силиката марганца 

без добавления незаменимых аминокислот. 

Для изучения колебаний связей функциональных групп, образцы 

исследовали методом инфракрасной спектроскопии с помощью ИК-

спектрометра ФСМ-1201 с преобразованием Фурье. 
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3. Обсуждение результатов 

Результаты квантово-химического моделирования силиката марганца 

и незаменимых аминокислот представлены в Таблице 1. 
 

Таблица 1. Результаты квантово-химического моделирования силиката марганца и 

незаменимых аминокислот. 

Молекулярная система E , ккал/моль HOMOE , эВ LUMOE , эВ  , эВ 

3MnSiO  -1658,876 -0,339 0,047 0,193 

Val -402,112 -0,249 0,016 0,133 

Leu -441,397 -0,260 0,006 0,133 

Ile -441,394 -0,247 0,018 0,133 

Met -800,251 -0,232 0,006 0,119 

Tre -438,015 -0,248 0,006 0,127 

Lys -496,481 -0,177 -0,024 0,077 

Phe -554,424 -0,240 0,002 0,121 

Trp -685,684 -0,195 -0,035 0,080 

Результаты квантово-химического моделирования взаимодействия 

наночастиц силиката марганца с незаменимыми аминокислотами 

представлены в Таблице 2. 
 

Таблица 2. Результаты квантово-химического моделирования взаимодействия 

наночастиц силиката марганца с незаменимыми аминокислотами. 
Молекулярная 

система 

«наночастица 

силиката 

марганца-

незаменимая 

аминокислота» 

Взаимодействие 

селена через 

ионизированную  -

аминогруппу 

незаменимой 

аминокислоты 

E , 

ккал/моль 
E , 

ккал/моль 
HOMOE , 

эВ 
LUMOE , 

эВ 
 , эВ 

3MnSiO -Val валина -2133,361 72,373 -0,204 0,051 0,128 

3MnSiO -Leu лейцина -2173,457 73,184 -0,197 0,049 0,123 

3MnSiO -Ile изолейцина -2173,044 72,774 -0,221 0,061 0,141 

3MnSiO -Met метионина -2531,945 72,818 -0,216 0,061 0,139 

3MnSiO -Tre треонина -2169,159 72,268 -0,201 0,050 0,126 

3MnSiO -Lys лизина -2228,061 73,268 -0,238 0,049 0,144 

3MnSiO -Lys лизина -2228,351 72,994 -0,207 0,078 0,143 

3MnSiO -Phe фенилаланина -2285,494 72,194 -0,218 0,051 0,135 

3MnSiO -Trp триптофана -2416,484 71,924 -0,214 0,071 0,143 

в индольном кольце 

триптофана 

-2416,083 71,523 -0,201 0,041 0,121 

Исходя из анализа полученных данных установлено, что 

молекулярная система «наночастица силиката марганца-незаменимая 

аминокислота» обладает значением полной энергии большим, чем сумма 

полной энергии отдельных молекул аминокислоты и силиката марганца  

( E  > 71 ккал/моль), что свидетельствует о высокой энергетической 
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выгоде взаимодействия данных соединений. Также установлено, что 

химическая жёсткость молекулярных систем «наночастица силиката 

марганца-незаменимая аминокислота» находится в диапазоне от 0,121 эВ 

до 0,144 эВ, что в случае взаимодействия с L -изолейцином,  

L -метионином, L -лизином, L -фенилаланином и L -триптофаном 

превосходит значения химической жёсткости молекул аминокислот, что в 

свою очередь свидетельствует о повышении химической стабильности 

молекул при взаимодействии с силикатом марганца. 

  
а б 

-0,0822  0,0714 

в 

  
г д 

Рис. 1. Результаты квантово-химического моделирования молекулы лизина:  

а – модель молекулярного комплекса; б – распределение электронной плотности;  

в – градиент распределения электронной плотности (эВ); г – высшая заселённая 

молекулярная орбиталь; д – низшая свободная молекулярная орбиталь. 

На основе полученных данных, можно сделать вывод, что 

оптимальной конфигурацией молекулярной системы «наночастицы 

силиката марганца-незаменимая аминокислота» является взаимодействие 

3MnSiO  с лизином через ионизированную  -аминогруппу лизина. Данная 

молекулярная система является наиболее энергетически выгодной  

( E  = 73,268 ккал/моль), и химически стабильной (  = 0,144 эВ). На  

рис. 1, 2 представлены квантово-химические модели лизина и 

молекулярной системы « 3MnSiO -Lys». 

На основе полученных моделей распределения электронной 

плотности и молекулярных орбиталей можно сделать вывод, что при 

взаимодействии лизина с силикатом марганца происходит смещение 

электронной плотности в отрицательную область, а также происходит 

формирование новых молекулярных орбиталей, что свидетельствует об 

образовании взаимодействия между молекулами лизина и силиката 

марганца. 
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а б 

-0,2086  0,4614 

в 

  
г д 

Рис. 2. Результаты квантово-химического моделирования молекулярной системы  

« 3MnSiO -Lys», в которой взаимодействие силиката марганца с лизином происходит 

через ионизированную   -аминогруппу лизина: а – модель молекулярного комплекса; 

б – распределение электронной плотности; в – градиент распределения электронной 

плотности (эВ); г – высшая заселённая молекулярная орбиталь; д – низшая свободная 

молекулярная орбиталь. 
ИК-спектры наночастиц силиката марганца, стабилизированных  

L -лизином, L -лизина и наночастиц силиката марганца без добавления 

незаменимых аминокислот представлен на рис. 3. 

Анализ ИК-спектра силиката марганца показал, что полоса на 617 см-1 

соответствует колебаниям связи Mn O , а полоса на 1023 см-1 – 
Mn O Si  . Область от 929 до 1080 см-1 соответствует асимметричным 

колебаниям связи O Si O  , на 1346 и 1415 см-1 – связь Si O Si  . Полоса 

от 1485 до 1643 см-1 соответствует колебаниям связи Si O . ИК-спектр 

L -лизина представляет собой полосы, характерные для данной 

аминокислоты: на 550 и 590 см-1 – колебание связи 2CH , на 660 см-1 – 

связи OH , от 766 до 907 см-1 и от 1411 до 1498 см-1 – связи 3CH , на 1053 

и 1101 см-1 – связи C C   , на 1130 см-1 – ионизированной карбоксильной 

группы COO , в области от 1289 до 1340 см-1 – валентными колебаниями 

связи C N  . На участке от 1537 до 1654 см-1 наблюдается полоса, 

характерная для колебаний ионизированной аминогруппы 3NH  . Анализ 

ИК-спектра наночастиц силиката марганца, стабилизированных L -

лизином показал, что в соединении присутствуют связи, характерные для 

силиката магния, а также, что в диапазоне от 1485 до 1654 наблюдается 
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падение интенсивности полосы, которая характерна для колебаний 

ионизированной аминогруппы L -лизина и связи Si O  силиката марганца. 

Падение интенсивности поглощения в данном диапазоне свидетельствует 

о формировании взаимодействия между кислородом, присоединённым к 

атому кремния силиката марганца, и ионизированной аминогруппой L -

лизина, что согласуется с данными [17]. 
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Рис. 3. ИК-спектры: 1 – наночастиц силиката марганца; 2 – наночастиц силиката 

марганца, стабилизированных L -лизином; 3 – L -лизина. 

 

4. Заключение 

В результате данной работы с помощью квантово-химического 

моделирования определена оптимальная конфигурация молекулярной 

системы «наночастицы силиката марганца-незаменимая аминокислота». 

Установлено, что взаимодействие силиката марганца с аминокислотами 

является энергетически выгодным и химически стабильным, а также, что 

оптимальной конфигурацией является молекулярная система « 3MnSiO -

Lys», в которой взаимодействие силиката марганца с лизином происходит 

через ионизированную  -аминогруппу лизина. С помощью ИК-

спектроскопии были подтверждены результаты квантово-химического 

моделирования, а также доказано формирование взаимодействие силиката 

марганца с незаменимыми аминокислотами через кислород, 

присоединённый к атому кремния в силикате марганца, и ионизированную 

аминогруппу аминокислоты. 
 

Исследование выполнено при финансовой поддержке Совета по грантам Президента 

РФ (проект СП-476.2022.4) и в рамках программы поддержки развития научных 

коллективов Ставропольского государственного аграрного университета (Программа 

стратегического академического лидерства «Приоритет – 2030»). 
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DETERMINATION OF THE OPTIMAL CONFIGURATION OF THE MOLECULAR 

SYSTEM «MANGANESE SILICATE NANOPARTICLES-AN ESSENTIAL AMINO ACID» 

A.A. Blinova1, E.S. Kastarnova2, M.A. Pirogov1, E.S. Kuznetsov3, P.S. Leontiev1, D.D. Filippov1 
1North-Caucasian Federal University, Stavropol, Russia 
2Stavropol State Agrarian University, Stavropol, Russia 
3Stavropol State Medical University, Stavropol, Russia 

DOI: 10.26456/pcascnn/2023.15.940 

Abstract: In this study, the optimal configuration of the molecular system «manganese silicate 

nanoparticles - essential amino acid» was determined using quantum chemical simulation. To begin 

with, quantum chemical simulation of individual molecules of manganese silicate and essential amino 

acids was carried out, after which molecular systems «manganese silicate nanoparticles - essential 

amino acids» were modeled, in which an oxygen atom attached to silicon atom in manganese silicate 

was combined with an ionized amino group of amino acids. As a result, it was found that the 

molecular systems «manganese silicate nanoparticles - essential amino acids» are energetically 

advantageous and chemically stable. Based on the data obtained, it can be concluded that the optimal 

configuration of these molecular systems is the interaction of manganese silicate with lysine through 

the ionized α-amino group of lysine. This molecular system has the highest values of the difference in 

total energy (ΔE = 73.268 kcal/mol) and chemical hardness (η = 0.144 eV), which are indicators of 

energy benefits and chemical stability of molecular system. After mixing manganese acetate, L-lysine 

and sodium silicate, manganese silicate nanoparticles stabilized with L-lysine were obtained. 

Keywords: manganese silicate nanoparticles, essential amino acids, quantum chemical modeling, 

lysine, IR spectroscopy. 
 

Блинова Анастасия Александровна – к.т.н., доцент кафедры физики и технологии наноструктур и 

материалов физико-технического факультета ФГАОУ ВО «Северо-Кавказский федеральный 

университет» 

Кастарнова Елена Сергеевна – к.б.н., научный сотрудник кафедры терапии и фармакологии ФГБОУ ВО 

«Ставропольский государственный аграрный университет» 

Пирогов Максим Александрович – студент 4 курса кафедры физики и технологии наноструктур и 

материалов физико-технического факультета ФГАОУ ВО «Северо-Кавказский федеральный 

университет» 

Кузнецов Егор Станиславович – студент 3 курса специалитета педиатрического факультета ФГБОУ 

ВО «Ставропольский государственный медицинский университет» 

Леонтьев Павел Сергеевич – студент 3 курса кафедры физики и технологии наноструктур и 

материалов физико-технического факультета ФГАОУ ВО «Северо-Кавказский федеральный 

университет» 

Филиппов Дионис Демокритович – студент 3 курса кафедры физики и технологии наноструктур и 

материалов физико-технического факультета ФГАОУ ВО «Северо-Кавказский федеральный 

университет» 

 

Anastasia A. Blinova – Ph. D., Docent, Department of Physics and Technology of Nanostructures and Materials, 

North Caucasus Federal University 

Elena S. Kastarnova – Ph. D., Researcher, Department of Therapy and Pharmacology, Stavropol State Agrarian 

University 

Maxim A. Pirogov – 4th year student, Department of Physics and Technology of Nanostructures and Materials of 

the Faculty of Physics and Technology, North Caucasus Federal University 

Yegor S. Kuznetsov – 3rd year student, Pediatric Faculty, Stavropol State Medical University 

Pavel S. Leontiev – 3rd year student, Department of Physics and Technology of Nanostructures and Materials of 

the Faculty of Physics and Technology, North Caucasus Federal University 

Dionis D. Filippov – 3rd year student, Department of Physics and Technology of Nanostructures and Materials 

of the Faculty of Physics and Technology, North Caucasus Federal University 

 
Поступила в редакцию/received: 27.07.2023; после рецензирования/revised: 04.09.2023; принята/accepted: 09.09.2023. 

Физико-химические аспекты изучения кластеров, 
наноструктур и наноматериалов. – 2023. – Вып. 15

949




