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Аннотация: Исследованы конечные конфигурации, полученные в процессе 

кристаллизации в тернарных металлических наносплавах Tix-Al96-x-V4 различного 

состава. В качестве метода атомистического моделирования использовался метод 

молекулярной динамики. Межатомное взаимодействие описывалось потенциалом 

сильной связи. Определена размерная зависимость температур плавления, а также 

изменение температур плавления и кристаллизации при изменении состава тернарных 

наночастиц. По результатам серий компьютерных экспериментов были установлены 

различия в сценариях кристаллизации тернарных наночастиц Tix-Al96-x-V4. Предложена 

и апробирована классификация по внутреннему строению и степени кристалличности. 

Для тернарных наночастиц Tix-Al96-x-V4 выделено пять основных классов по количеству 

(полу)осей симметрии 5 порядка. Несмотря на то, что изучение сегрегации 

компонентов тернарных наночастиц Tix-Al96-x-V4 не являлось целью работы построены b 

описаны атомные конфигурации, отвечающие различным температурам в процессе 

охлаждения. 

Ключевые слова: метод молекулярной динамики, потенциал сильной связи, тернарные 

наночастицы, структурообразование, температуры плавления и кристаллизации. 

 

1. Введение и краткая характеристика полученных ранее результатов 

Несмотря на уникальные свойства титансодержащих нанокластeров 

[1], а также ряд важных их практических приложений [2] отдельные 

аспекты структурообразования в наносплавах на основе титана требуют 

прецизионного изучения и описания. Ранее нами методом молекулярной 

динамики были исследованы закономерности структурообразования в 

бинарных [3-5] и тернарных [6, 7] наночастицах на основе титана. Самым 

широко используемым как массивным сплавом, так и наноразмерным 

является тернарный сплав 6 4Ti Al V  (здесь цифры 6 и 4 соответствуют 

процентному содержанию алюминия и ванадия соответственно; начиная с 

раздела 2 мы будем использовать индексы для обозначения процентного 

соотношения компонент). В имеющихся исследованиях [8, 9] отмечается 

именно важность фазового состава тернарного наносплава. Причем 

наносплав Ti Al V   проявляет уникальные свойства как 

высокотемпературный наносплав с памятью формы [8, 9]. При этом в 

работе [8] исследуется тернарный наносплав с достаточно высоким 

процентом содержания ванадия (12 вес. %) при условии изменения 

концентрации алюминия (от 2 до 6 вес.%). Отметим, что согласно нашим 

оценкам [6, 7] именно ванадий препятствует образования кристаллических 
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фаз в тернарном наносплаве 6 4Ti Al V . В [10] исследовали морфологию и 

трибологические свойства тернарного наносплава 6 4Ti Al V . Именно 

изучение процессов диффузии и структурообразования при низких 

температурах (порядка 250С) представляют технологический интерес с 

точки зрения износостойкости данного образца.  

Кроме того, остается открытым вопрос апробации параметров (в [3-

7] как для монометаллических связей, так и для перекрестных) потенциала 

сильной связи [6], а также наследование или исчезновение определенных 

структурных мотивов (по сравнению с бинарными наночастицами, 

основные компоненты которых будут содержаться в рассматриваемых 

нами тернарных наночастицах) при исследовании различных составов и 

размеров тернарных наночастиц.  

Наши предварительные оценки [11] по размерному эффекту 

применительно к фазовому составу тернарной наночастицы 6 4Ti Al V  

представлены на рис. 1 (а-в). Охлаждение наночастицы начиналось от 

температуры выше температуры плавления для данного размера и 

проводилось до 300 К со скоростью 0,4 К/пс. 
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Рис. 1. Изменение фазового состава тернарной 6 4Ti Al V : а – 506, б – 1350, в, г – 5083 

атома.  
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Было установлено, что с увеличением размера тернарной 

наночастицы 6 4Ti Al V  происходит уменьшение доли ГПУ фазы в пользу 

ГЦК фазы. Требуется дополнительное исследование для уточнения доли 

ОЦК фазы в стабильных наночастицах 6 4Ti Al V  размером от пяти тысяч 

атомов. В охлаждённых наночастицах меньшего размера атомы ОЦК фазы 

не определяются. 

Очевидно, что представленные результаты [12] оценки температуры 

кристаллизации для исследуемых размеров также идентифицируют 

размерный эффект (см. рис. 2). Пунктирными линиями показан диапазон 

значений температуры кристаллизации наночастицы тернарного сплава 
6 4Ti Al V , состоящей из 2869 атомов. Такой разброс обусловлен с одной 

стороны различием в параметрах потенциалов в работах [6, 7], с другой 

стороны в работе [7] анализ структуры проводился в программном пакете 

OVITO [13] с использованием модификатора Polyhedral template matching 

[14] и использовались различные значения параметра RMSD. 
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Рис. 2. Размерная зависимость температуры кристаллизации наночастиц тернарного 

сплава 6 4Ti Al V . 

 

Целью данной работы является изучение, как размерного эффекта, 

так и изменения фазового состава в тернарных наночастицах 96 4x xTi Al V . 

 

2. Методология компьютерного моделирования 

В данной работе в качестве объекта исследования для изучения 

структуры тернарных наночастиц различного состава 96 4x xTi Al V , ( x =10, 30, 

50, 70, 90) были выбраны следующие размеры N : 506, 1350, 5083. 

Моделирование проводилось в авторском ПО [15]. Тернарную 

наносистему 96 4x xTi Al V  нагревали до полного разупорядочения (на 50 К 

выше температуры плавления с учетом размерного эффекта [16]), а потом 
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охлаждали со скоростью 0,4 К/пс.  

Для описания межатомного взаимодействия использовался 

потенциал сильной связи (ПСС), параметры которого представлены в 

Таблице 1 [17, 18]. Для вычисления перекрестных параметров 

используется правило Лоренца-Бертло [19], обоснованного в [20] и 

апробированного нами в [3-7]. 

Как было отмечено ранее, для изучения структуры тернарных 

наночастиц 96 4x xTi Al V  после охлаждения, а также для более точного 

определения температуры фазовых переходов (температуры 

кристаллизации идентифицировались не только по скачку на калорической 

зависимости удельной потенциальной энергии, но и по скачку степени 

кристалличности1), проводился анализ наличия кристаллических фаз (ГЦК, 

ГПУ, ОЦК) методом сопоставления полиэдрических шаблонов с помощью 

программы OVITO [13]. Для параметра обрезки RMSD (root-mean-square 

deviation), используемого в этом методе, мы задавали значение 0,155. 
 

Таблица 1. Параметры ПСС для наносистемы Ti Al V   [17, 18]. 

Металл A , эВ  , эВ p  q  
0
,År  

Ti
 

0,1519 1,8112 8,6200 2,3900 2,9510 

Al  0,1602 1,5074 7,5681 2,7456 2,8634 

V
 

0,2572 2,3126 6,8543 2,1886 2,6223 

 

3. Описание и классификация полученных структурных изомеров для 

тернарных наночастиц 96 4x xTi Al V  

Полученные путём сверхбыстрого охлаждения атомные 

конфигурации мы классифицировали по внутреннему строению и степени 

кристалличности в [15]. Выделяли пять основных классов по количеству 

(полу)осей симметрии 5 порядка: 

 fcc+hcp – поликристалл, нет элементов симметрии 5 порядка; 

 dec – близкий к идеальному декаэдр, присутствует одна ось 

симметрии 5 порядка;  

 ico_full – близкий к идеальному икосаэдр, присутствует шесть 

осей симметрии 5 порядка; 

 ico_part – частичный икосаэдр, в котором частично нарушена 

симметрия, а также присутствуют тетраэдры ГЦК структуры между 

полуосями;  

 chirality – ассиметричная «скрученная» наночастица, возможно 

идентифицировать короткие участки осей симметрии у поверхности. 

                                                           
1 В данном случае под степенью кристалличности понимаем суммарную долю атомов, отнесённых к 

кристаллическим фазам. 
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В Таблице 2 приведены результаты оптимизации удельной 

внутренней энергии для тернарных наночастиц Ti Al V  . Представлены 

различные составы, имеющие различные типы внутреннего строения. 

Жирным показана конфигурация, отвечающая минимальной энергии, из 

рассмотренных типов внутреннего строения. 
 

Таблица 2. Удельная внутренняя энергия оптимизированных наночастиц Ti Al V   

размера 506N   в зависимости от состава и внутреннего строения. 

Атомный состав доля Ti , % fcc dec fcc+hcp ico_full 

51 435 20Ti Al V   10 -3,5274 -3,5291 -3,5270 -3,5288 

152 334 20Ti Al V   30 -3,8003 -3,8024 -3,7969 -3,8008 

253 223 20Ti Al V   50 -4,0637 -4,0627 -4,0610 -4,0627 

354 132 20Ti Al V   70 -4,2916 -4,2906 -4,2882 -4,2932 

456 30 20Ti Al V   90 -4,4877 -4,4876 -4,4814 -4,4977 

 

На рис. 3 представлена оценка вероятности появления описанных 

выше классов для тернарных наночастиц Ti Al V   различного состава при  
N = 500. Анализ показывает вариабельность внутренней структуры, что 

доля кристаллических наночастиц (состоящих только из ГЦК и ГПУ 

атомов локального окружения) практически не меняется до состава c 

соотношением доли атомов Ti  и Al  ~ 1:1, но в дальнейшем резко 

возрастает, когда соотношение для атомов Ti  и Al  близко к 1:2. Однако 

при дальнейшем росте содержания Al  доля кристаллических наночастиц 

резко уменьшается (степень кристалличности 0). Близкие к идеальным 

икосаэдры наблюдаются при низких концентрациях Al  и исчезают при 

приближении соотношения Ti  и Al  к эквиатомному. При этом доля 

структур, являющихся частичными икосаэдрами гораздо слабее зависит от 

состава тернарных наночастиц Ti Al V   и лишь при высоких 

концентрациях атомов Al  составляет конкуренцию наночастицам с 

ассиметричным (а также аморфным) строением. Последний класс 

наночастиц (chirality) определенно связан с ролью атомов Al  в 

структурообразовании тернарных наночастиц выбранного размера. При 

содержании Al  в 86% почти половина от всех идентифицированных 

классов относится к классу chirality. Отметим также, что структуры, 

отвечающие идеальному декаэдру, также демонстрируют существенную 

зависимость от состава. Максимальная вероятность образования 

декаэдрической наночастицы определена в 37% и достигается при 

содержании 26% Al . В то время как для других составов по атомам Ti  и Al  

доля декаэдров практически не изменяется и составляет около 20%. 

Заметим также, что закономерности структурообразования зависят 

от величины температуры кристаллизации [21]. Так, при наиболее высоких 
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температурах кристаллизации у наносистемы больше возможностей для 

эволюционирования с учетом выбранной скорости кристаллизации. На 

рис. 4 представлена концентрационная зависимость температуры 

кристаллизации для тернарных наночастиц 96 4x xTi Al V . Ожидаемо, что с 

ростом доли атомов Ti  увеличивается температура кристаллизации, однако 

зависимость имеет слабый нелинейный характер именно составах, близких 

к эквиатомному по Ti  и Al . 
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Рис. 3. Частота проявления различных сценариев (η, %) внутреннего строения 

тернарных наночастиц Ti Al V   различного состава. Цветовая легенда соответствует 

выделенным классам по внутренней структуре. 
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Рис. 4. Зависимость температуры кристаллизации от состава тернарной наночастицы 

96 4x xTi Al V при N = 506. 

 

На рис. 5-7 представлены типичные конфигурации тернарных 

наночастиц Ti Al V  , отвечающие конфигурациям при температуре 300 K. 

Выполненные молекулярно-динамические эксперименты подтвердили 
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многообразие структурных превращений в тернарных наночастицах 
Ti Al V   [6], в том числе при изменении их состава. Необходимо 

отметить, что в данном случае мы не учитывали возможность изменения 

скорости охлаждения системы [6, 7], параметры для оценки ближайшего 

окружения [7], наличие внешних факторов [11]. В последующем пункте 

будут изложены результаты по анализу энергий конечных конфигураций, а 

также подробно описаны получаемые структурные мотивы. 
 

   
а б в 

Рис. 5. Примеры сечений конечных конфигураций тернарных наночастиц различного 

состава и структуры: а – 90 6 4Ti Al V  (ico_full), б – 70 26 4Ti Al V  (fcc+hcp), в – 50 46 4Ti Al V  

(chirality) размера 506 атомов. Здесь и далее цвет определяет распознанное локальное 

окружение в программе OVITO [13]: зеленые атомы – ГЦК, красные – ГПУ, синие – 

ОЦК, белые – нераспознанные. 
 

   
а б в 

Рис. 6. Примеры сечений конечных конфигураций тернарных наночастиц 90 6 4Ti Al V  

размера 1350 атомов. 
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Рис. 7. Примеры сечений конечных конфигураций тернарных наночастиц 90 6 4Ti Al V  

размера 5083 атомов. 
 

В Таблице 3 представлены результаты оценок температур плавления 

и кристаллизации для исследованных тернарных наночастиц Ti Al V   
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размером 5083 атомов. Обе зависимости демонстрируют рост с 

увеличением доли атомов титана. Причем диапазон изменения температур 

плавления и кристаллизации в таком изменении состава тернарных 

наночастиц Ti Al V   практически одинаков. 
 

Таблица 3. Расчётные значения температур плавления и кристаллизации для тернарной 

наночастицы 96 4x xTi Al V  размером N = 5083 атома. 

доля Ti , % 
mT , К cT , К 

10 552 413 

30 640 479 

50 763 579 

70 863 677 

90 921 755 
 

Таблица 4. Конфигурации тернарной наночастиц при различных температурах (атомы 

титана показаны серым цветом, алюминий – синим, ванадий – красным). 

T , К 1 2 T , К 1 2 

120 

  

600 

  

360 

  

720 

  

480 

  

840 

  
 

В Таблице 4 представлен фазовый состав и соответствующие 

конфигурации (по атомам компонентов – 1 и по локальным распознанным 

фазам – 2), отвечающие различным температурам (данные рис. 1 г). Видно, 

что ИК ядра идентифицируются только выше температуры 720 К, ОЦК 

фаза в диапазоне от 350 до 800 К, а доминирующей ниже 700 К (твёрдая 

НЧ) является ГЦК фаза. Кроме того, при всех температурах наблюдается 

поверхностная сегрегация атомов алюминия, в то время как атомы ванадия 

практически не выходят за пределы второго третьего монослоя 

наночастицы. 
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4. Заключение 
В данной работе по результатам серий компьютерных экспериментов 

были установлены и описаны различные сценарии кристаллизации 

тернарных наночастиц 96 4x xTi Al V . Так была предложена идея 

классифицировать тернарные наночастицы 96 4x xTi Al V , выделяя пять 

основных классов по количеству (полу)осей симметрии 5 порядка. Был 

изучен размерный эффект температуры плавления, отмечен размер, 

соответствующий «магическому» числу, температура плавления для 

которого существенно выше, чем в исследуемом размерном диапазоне. 

Кроме того, изучено влияние состава на значения температур плавления и 

кристаллизации в тернарной наночастице 96 4x xTi Al V  размер N = 5083 атома. 

Полученные результаты, вносят вклад в понимание процессов 

структурообразования в тернарных наночастицах при изменении их 

размера и фазового состава. 
 

Исследования выполнены при поддержке Министерства науки и высшего образования 

РФ в рамках выполнения государственного задания в сфере научной деятельности 

(проект № 0817-2023-0006).  
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NANOPARTICLES Tix-Al96-x-V4 

V.S. Myasnichenko, P.M. Ershov, S.A. Veresov, A.N. Bazulev, N.Yu. Sdobnyakov

Tver State University, Tver, Russia 
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Abstract: The final configurations obtained during crystallization in ternary metal nanoalloys 

Tix-Al96-x-V4 of various compositions were studied. The molecular dynamics method was used as an 

atomistic simulation method. Interatomic interaction was described by the tight-binding potential. The 

size dependence of melting temperatures, as well as changes in melting and crystallization 

temperatures with changes in the composition of ternary nanoparticles, have been determined. Based 

on the results of a series of computer experiments, differences in the crystallization scenarios of Tix-

Al96-x-V4 ternary nanoparticles were established. A classification based on internal structure and degree 

of crystallinity was proposed and tested. For Tix-Al96-x-V4 ternary nanoparticles, five main classes are 

identified based on the number of (semi) axes of 5th order symmetry. Despite the fact that studying the 

segregation of components of Tix-Al96-x-V4 ternary nanoparticles was not the goal of the work, atomic 

configurations corresponding to different temperatures during the cooling process were constructed 

and described. 

Keywords: molecular dynamics method, tight-binding potential, ternary nanoparticles, structure 

formation, melting and crystallization temperatures. 
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